当前位置:文档之家› 220kV线路保护配置及运行方式

220kV线路保护配置及运行方式

220kV线路保护配置及运行方式
220kV线路保护配置及运行方式

220kV 线路保护配置及运行方式

概况

220kV 踏九线线路保护装置由两套独立的、配置相同保护功能的保护装置组成。两套装置配置了光纤差动保护、零序保护、距离保护。两套装置都带有重合闸功能,其中2号保护装置单相重合闸启用。

光纤差动保护

输电线路保护采用光纤通道后由于通信容量很大所以往往做成分相式的电流纵差保护。输电

线路分相电流纵差保护本身有选相功能,哪一相纵差保护动作那一相就是故障相。输电线路两侧的电流信号通过编码成码流形式然后转换成光的信号经光纤输出。传送的信号可以是包含了幅值和相位信息在内的该侧电流的瞬时值,保护装置收到输入的光信号后先转换成电信号再与本侧的电流信号构成纵差保护。

纵联电流差动继电器的原理

I 0dz

K=0.6I CD

I f K=0.752

1

3

dz

I

许继差动特性 四方差动特性

本装置差动保护由故障分量差动、稳态量差动及零序差动保护组成。

差动保护采用每周波96点采样,由于高采样率,差动保护可以进行短窗相量算法实现快速

动作,使典型动作时间小于20ms 。故障分量差动保护灵敏度高,不受负荷电流的影响,具有很强的耐过渡电阻能力,对于大多数故障都能快速出口;稳态量差动及零序差动则作为故障分量差动保护的补充。

比例制动特性动作方程如下:

CDset N M I I I ?+.

. (3)

N M N M I I K I I .

...-?+ (4)

*****************************************************************************

讲解例子

设流过两侧保护的电流M

I 、N I 以母线流向被保护的线路方向规定为其正方向,如图中箭头方向所示。

以两侧电流的相量和作为继电器的动作电流d I ,N

M d I I I +=。该电流有时也称做差动电流。另以两侧电流的相量差作为继电器的制动电流r I ,N

M r I I I -=。纵联电流差动继电器的动作特性一般如图(b )所示,阴影区为动作区,非阴影区为不动作区。这种动作特性称做比率制动特性,是差动继电器(线路、变压器、发电机、母线差动保护中用的差动继电器)常用的动作特性。图中qd I 为起动电流,r K 是制动系数。

当差动继电器的动作电流d I 和制动电流r I 满足两个动作方程时,它们对应的工作点位于阴影

区,继电器动作。

当线路内部短路时,如图 (c)所示,两侧电流的方向与规定的正方向相同。此时

K N M d I I I I =+= ,动作电流等于短路点的电流K I ,动作电流很大。而制动电流r

I 较小,N K N N M N M r I I I I I I I I 22-=-+=-=,小于短路点的电流K

I 。如果两侧电流幅值相等的话,制动电流甚至就为零。因此工作点落在动作特性的动作区,差动继电器动作。当正常运行或线路外部短路时,如图 (d)所示,线路上流的是穿越性电流,N 侧流的电流与规定的正方向相反。

(a)

系统图I r

I (b) 动作特性

图2-29 纵联电流差动保护原理

(c)

内部短路N (d) 外部短路

如果忽略线路上的电容电流,则K M I I =、K N I I -=。因而动作电流0I I I I I K K N M d =-=+= ,制动电流M

K K N M r I 2I I I I I =+=-= ,制动电流是二倍的短路电流,制动电流很大。因此工作点落在动作特性的不动作区,差动继电器不动作。所以这样的差动继电器可以区分内部短路和外部短路(含正常运行)。继电器的保护范围是两侧TA 之间的范围。

从上述原理的叙述可以进一步推广得知:只要在线路内部有流出的电流,例如内部短路的短

路电流、线路内部的电容电流都会形成动作电流。只要是穿越性的电流,例如外部短路时流过线路的短路电流、负荷电流都只形成制动电流而不会产生动作电流。

TA 断线检查

许继判据:

由于差动保护的灵敏性,对TA 二次回路的监视应更加严格,其中TA 断线可能引起误动。

当一侧TA 断线时,本侧可能电流突变量启动,但对侧不会突变量启动,且系统电压不会发生变化,因此差动保护不会开放,不会误动作。在两侧装置都不启动的情况下,投入以下TA 断线或异常识别判据:

c n n m I I I I ?+>+15.0 n m I I 04.0< ;或 n

n I I 04.0< ②. c

n n m I I I I ?+>+15.0 n

m I I 04.0> n

m n m I I I I ->+25.0 式中当电容电流补偿投入或线路参数电纳整定为零时ΔIC=0,否则ΔIC=1.5IC ,IC 为根据线

路电纳参数求得的全线路电容电流,采用以上判据,既具有灵敏性,又能自适应于重负荷运行方式。以上判据①或②满足持续1s 后,装置发生告警Ⅱ信号,呼唤值班员进行处理。当判据①满足n m I I 04.0< 时报文为本侧A (B 、C )相TA 断线,当判据①满足n

n I I 04.0< 时报文为对侧A (B 、C )相TA 断线。判据②满足时,报文为本侧A (B 、C )相差流长期存在。装置TA 断线后在相应控制字投入情况下,分相闭锁差动保护;当TA 断线消失后,差动保护重新投入。差流长期存在时,装置只发告警信号,并不闭锁保护。

后备保护在判断出零序电流持续12s 大于零序辅助启动定值I04时,将驱动告警Ⅱ继电器发

出本地及中央告警信号,并发出“TA 回路异常”告警报告,闭锁保护,装置继续监视零序电流,一旦零序电流消失,保护将自动解除闭锁。

四方判据:

a) 装置的零序电流连续12s 大于I04 定值,报“TA 断线告警”, 并闭锁零序各段保护;

b) 差动保护TA 断线检测:断线侧的自产3I0 值连续12s 大于max {0.9*min (I04定值、反

时限零序电流定值、零差定值),一次240A },而断线相电流小于0.06In(In 为二次侧额定电流);计算出正常两侧的差电流连续12s 大于0.15In 而断线相电流小于0.06In 报“TA 断线告警”。判出TA 断线后,可通过控制字选择闭锁或不闭锁差动保护,如果选择闭锁差动保护,只闭锁断线相差动保护。

零序差动保护与分相差动保护类似

零序电流方向保护

零序电流方向保护及其作用

在中性点直接接地的高压电网中发生接地短路时,将出现零序电流和零序电压。利用上述的特征电气量可构成保护接地短路故障的零序电流方向保护。

统计资料表明,在中性点直接接地的电网中,接地故障点占总故障次数的90%左右,作为接地保护的零序电流方向保护又是高压线路保护中正确动作率最高的一种。在我国中性点直接接地系统不同电压等级电力网线路上,按国家《继电保护和安全自动装置技术规程》规定,都装设了零序电流方向保护装置。

带方向性和不带方向性的零序电流保护是简单而有效的接地保护方式,它主要由零序电流滤过器、电流继电器和零序方向继电器以及与收发信机、重合闸配合使用的逻辑电路所组成。

现今,大接地电流系统中输电线路接地保护方式主要有纵联保护、零序电流方向保护和接地距离保护等。它们都与系统中的零序电流、零序电压及零序阻抗密切相关的。

实践表明零序电流方向保护在高压电网中发挥着重要作用,成为各种电压等级高压电网接地故障的基本保护。即使在装有接地距离保护作为接地故障主要保护的线路上,为了保护经高电阻接地的故障和对相邻线路保护有更好的后备作用,也为了保证选择性,仍然需要装设完整的成套零序电流方向保护作基本保护。

零序方向继电器

CSC-103A/103B 保护装置的零序后备保护配置相同。在全相运行时配置了四段零序方向保护和零序反时限保护,零序Ⅰ段自动带方向,其他各段都可由控制字选择经方向或不经方向元件闭锁。零序Ⅰ段由零序Ⅰ段压板控制投退,其他段由零序其他段压板控制投退,零序反时限保护由零序反时限压板控制投退。非全相时设置了瞬时段,通常称为不灵敏Ⅰ段,固定带方向,不灵敏Ⅰ段由零序Ⅰ段压板投退;另有带延时(T04-500ms)的零序Ⅳ段(接线路TV 时固定不带方向,接母线TV 时经控制字控制投退)和零序反时限保护。突变量启动元件或零序辅助启动元件动作后,转入故障处理程序,全相运行时投入零序Ⅰ、Ⅱ、Ⅲ、Ⅳ段和零序反时限保护。零序Ⅰ、Ⅱ、Ⅲ段动作后选相跳闸(Ⅱ、Ⅲ段动作也可永跳),零序Ⅳ段动作后永跳或三跳,零序反时限动作后永跳或三跳。非全相运行时,闭锁零序Ⅰ、Ⅱ、Ⅲ、Ⅳ段,投入零序不灵敏Ⅰ段、短时限的零序Ⅳ段和零序反时限保护,动作后永跳或三跳出口。在持续一定的时间内,零序各段和零序辅助启动元件均不动作,保护整组复归。

零序灵敏段与不灵敏段

当线路上采用单相自动重合闸时,在非全相运行状态下又发生系统振荡时,零序电流会很大,而此时保护应该不动作。为了解决这一问题,一般零序电流保护设置灵敏段和不灵敏段。

零序电流保护灵敏段主要任务是对全相运行状态下的接地故障起保护作用,有较大的保护范围和灵敏度,当单相重合闸起动时,灵敏段零序电流保护自动退出;而零序电流保护不灵敏段主要任务是对非全相运行状态下的接地故障起保护作用。正常情况下,全相运行状态时,不灵敏段的保护范围较小。

3 U0 极性问题

保护采用自产3 U0,即由软件将三个相电压相加而获得3 U0,供方向判别用,TV断线时,带方向的零序保护退出,不带方向的零序各段保留。

TA 断线的问题

为防止TA 断线引起灵敏的零序Ⅲ段或Ⅳ段误动作,可利用TA 断线时无零序电压这一特征,使可能误动的段带方向,用零序方向元件实现闭锁。有的情况下,如正常运行时3 U0 的工频不平衡

分量较大,怕方向元件闭锁不可靠,装置还设置了一个3 U0 突变量元件,动作门槛固定为2V 有效值,在控制字KG4.8 相应位置“1”时,零序保护各段都经过此3 U0 突变量元件的闭锁。TA 断线时零序电流将长时间存在,保护在零序电流持续12s 大于Ⅳ段整定值I04 时报,并闭锁零序各段。

非全相零序保护逻辑

利用非全相运行中的不灵敏Ⅰ段和零序Ⅳ段(动作时间为T04-500ms)切除非全相运行中的再故障。注意,若TV 在线路侧时,非全相再故障零序电压量不是真正的故障零序电压,所以对于带延时(T04-500ms,要大于单重时间)的零序Ⅳ段固定不带方向。

零序的方向问题

对零序方向继电器的最基本要求是利用比较零序电压和零序电流的相位来区分正、反方向的接地短路。

接地故障时,相电流反应接地故障灵敏度不能满足时,用零序电路构成接地保护。

零序的正方向:电流(母线指向线路),电压(线路高于大地)。实际上,零序电流的实际方向是从故障点流入母线的。

零序电压在故障点最高,中性点最低为0,和相电压相反。

零序电流的数值和分布和变压器中性点的接地的多少和位置有关,和电源的数目和位置无关。

零序电压和零序电流的相位:在正方向短路下,保护安装处零序电压和电流的相位关系,取决于母线背后元件的零序阻抗(一般零序电流超前电压95-110度),而与被保护线路的零序阻抗和故障点的位置无关。

零序功率:在线路正方向故障时,零序功率从线路流入母线,为负值。在线路反方向故障时,零序功率从母线流向线路,为正值。

零序电流滤过器:在正常和相间短路时,理论上没有电流流过。对三个CT组成的滤过器,不平衡电流主要是三个CT励磁电流引起的。

零序电流互感器:好处是没有不平衡电流。

(a) 正方向短路(b) 反方向短路

I 0S 0Z I 0

U 0

I Z Z I U +=(c) 正方向短路相量图

(d) 反方向短路相量图

图2-1 正、反方向接地短路时的零序序网图和相量图

零序电流方向保护的应用

220kV 线路采用了单相重合闸,此时零序电流方向保护就还要考虑非全相运行的问题。

零序电流保护一般为四段式。根据各地的多年运行经验,大部分线路采用可分别经方向元件

控制的四段式零序电流保护作为接地故障时的基本保护较为适宜。对于三相重合闸线路,零序电流保护可以按四段式运行,或按三段式运行,但其中有两个第一段,其中灵敏一段重合闸时带延时0.1s 。对于单相重合闸线路,可按三段式运行,其中也有两个第一段或者两个第二段,两个第一段时灵敏一段在重合闸过程中退出运行,两个第二段时灵敏二段在重合闸过程中退出运行。对终端输电线路可装设较少段数的零序电流保护。

距离保护

一 距离保护的作用原理和时限特性

距离保护和电流保护一样是反应输电线路一侧电气量变化的保护。在下图所示的电网中,将

输电线路一侧的电压m U 、电流m

I 加到阻抗继电器中,阻抗继电器反应的是它们的比值,称之为阻抗继电器的测量阻抗m

m m I U Z =。

mK

m U =阻抗继电器接线示意图 反应输电线路一侧电气量变化的保护一定要满足两个条件。首先,它必须区分正常运行和短

路故障。其次,它应该能反应短路点的远近。正常运行时,加在阻抗继电器上的电压是额定电压N U ,电流是负荷电流l I 。阻抗继电器的测量阻抗是负荷阻抗l

N l m I U Z Z ==。短路时,加在阻抗继电器上的电压是母线处的残压mK

U ,电流是短路电流K I 。阻抗继电器的测量阻抗是短路阻抗K Z ,K mK K m I U Z Z ==。由于N mK U U <<,l K I I >>,因而l K Z Z <<。所以,阻抗

继电器的测量阻抗可以区分正常运行和短路故障。如果在K 点发生金属性短路,短路点到保护安

装处的阻抗为K Z ,流过保护的电流为K I ,则保护安装处的电压为K

K mK Z I U =。阻抗继电器的测量阻抗是K K m K m Z I U Z == 。这说明阻抗继电器的测量阻抗反应了短路点到保护安装处的阻

抗,也就是反应了短路点的远近。所以可以用它来构成反应一侧电气量的保护。

由于阻抗继电器的测量阻抗反应了短路点的远近,也就是反应了短路点到保护安装处的距离,

所以把以阻抗继电器为核心构成的反应输电线路一侧电气量变化的保护称做距离保护。

距离保护相对于电流保护来说,其突出的优点是受运行方式变化的影响小。距离保护第Ⅰ段

只保护本线路的一部份,在保护范围内金属性短路时,一般在短路点到保护安装处之间没有其它分支电流,所以它的测量阻抗完全不受运行方式变化的影响。距离保护第Ⅱ、Ⅲ段其保护范围伸到相邻线路上,在相邻线路上发生短路时,由于在短路点和保护安装处之间可能存在分支电流,所以它们在一定程度上将受运行方式变化的影响。

距离保护的阶梯型时限特性

由于阻抗继电器的测量阻抗可以反应短路点的远近,所以可以做成阶梯型时限特性。短路点

越近,保护动作得越快;短路点越远,保护动作得越慢。第Ⅰ段按躲过本线路末端短路(本质上是躲过相邻元件出口短路)继电器的测量阻抗(也就是本线路阻抗)整定。它只能保护本线路的一部份,其动作时间是保护的固有动作时间(软件算法时间),不带专门的延时。第Ⅱ段应该可靠保护本线路的全长,它的保护范围将伸到相邻线路上,其定值一般按与相邻元件的瞬动段例如相邻线路的第Ⅰ段定值相配合整定。第Ⅲ段除作为本线路Ⅰ、Ⅱ段的后备外,也作为相邻元件保护的后备。所以它除了在本线路末端短路要有足够的灵敏度外,在相邻元件末端短路也应有足够的灵敏度,其定值一般按与相邻线路Ⅱ、Ⅲ段定值相配合并躲最小负荷阻抗整定。

TV 断线检测

装置各保护均设有两种检测TV 断线的判据,两种判据都带延时,且仅在线路正常运行,启动元件不启动的情况下投入,一旦启动元件启动,TV 断线检测立即停止,等整组复归后才重新投入。

1) 三相电压之和不为零,用于检测一相或两相断线。判据为:|UA+UB+UC|>7V(有效值)

2) 三相失压检测

三相失压判据:三相电压有效值均低于8V ,且任一相电流大于0.04In 或三相电流均小于0.04In 且无跳闸位置开入。附加电流条件是防止TV 在线路侧时,断路器合闸前误告警。

检测到TV 断线后,驱动告警Ⅱ发出本地及中央告警信号,但不切断保护出口回路的+24V 电源。

在TV 断线时,差动保护退出电容电流补偿;距离保护将被闭锁;零序保护带方向段退出或选择无方向。装置继续监视TV 电压,一旦电压恢复正常,各保护恢复正常。

接地距离保护特性

多边形特性阻抗元件接地距离保护采用多边形特性的综合阻抗元件。接地综合阻抗元件由Z A 、Z B 、Z C 三个阻抗元件、偏移阻抗元件、零序方向元件、电抗线和电阻线组成。

a. 阻抗元件

根据电流电压方程

[]f R X R I I K I K I K I j X U *)3*()3*(*0010++++=ΦΦΦ (9)

求解ΦΦΦ+=R jX Z

φ=A 、B 、C

1103)(X X X K X -= 零序电抗分量补偿系数

1103)(R R R K R -= 零序电阻分量补偿系数

1111ctgPS X R K == 线路正序电阻与正序电抗之比

b. 偏移阻抗元件

偏移阻抗元件是在原多边形特性基础上加一个包括坐标原点的小矩形特性,以保证出口短路可靠切除故障。矩形的X 、R 取值,按500kV 一次系统、每公里0.3Ω、10公里线路长度考虑,220kV 一次系统、每公里0.4Ω、7公里线路长度考虑。

}{19.0,/3min XD TV TA R X ==

TA 为TA 变比

TV 为TV 变比

XD1接地距离Ⅰ段电抗分量定值

c. 零序方向元件

零序方向元件属故障分量方向元件,其方向特性与阻抗元件方向特性相反,按线路阻抗角考虑,零序方向元件最大灵敏度角-110°,保证接地距离的方向性。

动作方程:

3019000-<<-I U Arg (10)

d. 电抗线

电抗线是为了防止接地距离超越,计算X 后下倾α,接地距离的多边形特性如图4-7所示。

图4-7接地综合阻抗元件的多边形特性

e. 电阻线

电阻线倾斜,与R 轴夹角为60°。

圆特性阻抗元件

相间距离保护采用圆特性的阻抗元件。相间阻抗元件由Z AB 、Z BC 、Z CA 三个阻抗元件和全阻抗元件组成,相间阻抗元件是为保护二相、三相故障而设置。在故障发生40ms 之内采用带记忆的正序电压作极化量的姆欧继电器,记忆电压采用故障前三周电压。

动作方程: 1|0|1127090θθφφφφ-<-<- I Z U U Arg

Y m (11)

式中: U1m|0|为故障前的正序电压;

φφ=AB 、BC 、CA

θ1为方向特性向第一象限偏移角。

40ms 之后取消记忆,采用正序电压作极化量,动作方程为

11127090θθφφφφ-<-<- I Z U U Arg

Y m (12)

若正序电压较低(15%Un ),为三相短路,为保证正方向故障能动作,反方向故障不动作,设置了偏移特性。在Ⅰ、Ⅱ段距离继电器暂态动作后,增加一个全阻抗继电器,保证继电器动作后能保持到故障切除。在Ⅰ、Ⅱ段距离继电器暂态不动作时,去掉一个全阻抗继电器,保证母线及背后故障时不误动。对Ⅲ段及后加速则一直投入全阻抗继电器。全阻抗继电器为: ΦΦΦΦ>U I Z q

}{19.0,/3min ZY TV TA Z q =

1ZY 为相间距离Ⅰ段定值

图4-8a Ⅰ、Ⅱ段阻抗继电器暂态特性 图4-8b Ⅰ、Ⅱ段阻抗继电器稳态特性

在单相故障跳开后,DI2元件又开放计算Z φφ时,为消除断开相(TV 在线路侧)引起正序电压频率偏差的影响,改用健全相电压作极化量,动作方程为:

1127090θθφφφφφφ-<-<- I Z U U Arg

Y (13)

Ⅰ、Ⅱ段阻抗继电器暂态及稳态动作特性如图4-8所示。

Ⅲ段阻抗继电器的动作特性:

270901<-<φφφφI Z U U Arg

Y m (14)

自动重合闸的作用及应用

据统计,输电线路上有%90以上的故障是瞬时性的故障如雷击、鸟害等引起的故障。短路以后如果线路两侧的断路器没有跳闸,虽然引起故障的原因已消失,例如雷击已过去、电击以后的鸟也已掉下,但由于有电源往短路点提供短路电流,所以故障不会自动消失。等继电保护动作将输电线路两侧的断路器跳开后,由于没有电源提供短路电流,电弧将熄灭。原先由电弧使空气电离造成的空气中大量的正、负离子开始中和,这过程称之为去游离。等到足够的去游离时间后,空气可以恢复绝缘水平。这时如果有一个自动装置能将断路器重新合闸就可以立即恢复正常运行,显然这对保证系统安全稳定运行是十分有利的。将因故跳开的断路器按需要重新合闸的自动装置就称做自动重合闸装置。自动重合闸装置将断路器重新合闸以后,如果继电保护没有再动作跳闸,系统马上恢复正常运行状态,这样重合闸成功了。如果是永久性的故障,例如杆塔倒地、带地线合闸,或者是去游离时间不够等原因,断路器合闸以后故障依然存在,继电保护再次将断路器跳开。这样重合闸就没有成功。据统计,重合闸的成功率在%80以上。

自动重合闸的作用有如下几点:

1.对瞬时性的故障可迅速恢复正常运行,提高了供电可靠性,减少了仃电损失。

2.对由于继电保护误动、工作人员误碰断路器的操作机构、断路器操作机构失灵等原因导致的

断路器的误跳闸可用自动重合闸补救。

3.提高了系统并列运行的稳定性。重合闸成功以后系统恢复成原先的网络结构,加大了功角特性中的减速面积有利于恢复系统稳定运行。也可以说在保证稳定运行的前提下,采用了重合闸后允许提高输电线路的输送容量。

当然应该看到,如果重合到永久性故障的线路上,系统将再一次受到故障的冲击,对系统的稳定运行是很不利的。但是由于输电线路上瞬时性故障的机率多得多,所以在中、高压输电线路上除某些特殊情况外普遍都使用自动重合闸装置。

自动重合闸方式及动作过程

重合闸方式

CSC-103B 型装置具有综合重合闸功能,该功能只负责合闸,不担当保护跳闸选相。

单重方式:单相故障单跳单合,多相故障进行三跳不重合;

三重方式:任何故障三跳三合;

综重方式:单相故障单跳单合,多相故障进行三跳三合;

停用方式:重合闸退出,任何故障三跳不重合,重合闸长期不用时,应设置于该

方式。

在220kV及以上电压等级的输电线路上,断路器一般是分相操作机构的断路器。三相断路器是独立的,因而可以进行分相跳闸。所以这些电压等级中的自动重合闸可以由用户选择重合闸的方式,以适应各种需要。在这些电压等级中的线路保护装置中的重合闸可由屏上转换开关或定值单中的控制字选择使用三重方式、单重方式、综重方式和重合闸停用几种方式。

当使用三相重合闸方式时,连保护和重合闸一起的动作过程是:对线路上发生的任何故障跳三相,重合三相,如果重合成功继续运行,如果重合于永久性故障再跳三相。

当使用单相重合闸方式(单重方式)时,连保护和重合闸一起的动作过程是:对线路上发生的单相接地短路跳单相(保护功能),重合(重合闸功能),如果重合成功继续运行,如果重合于永久性故障再跳三相(保护功能)。对线路上发生的相间短路跳三相(保护功能),不再重合。

当使用综合重合闸方式时,保护和重合闸一起的动作过程是:对线路上发生的单相接地短路按单相重合闸方式工作,即由保护跳单相,重合,如果重合成功继续运行,如果重合于永久性故障再跳三相。对线路上发生的相间短路按三相重合闸方式工作,即由保护跳三相,重合三相,如果重合成功继续运行,如果重合于永久性故障再跳三相。

自动重合闸的起动方式

自动重合闸的起动方式有下述两种:

位置不对应起动方式。

如果跳闸位置继电器动作了,说明断路器现处于断开状态。但同时控制开关在合闸后状态,说明原先断路器是处于合闸状态的。这两个位置不对应,起动重合闸的方式称做位置不对应起动方式。用不对应方式起动重合闸后既可在线路上发生短路,保护将断路器跳开后起动重合闸,也可以在断路器‘偷跳’以后起动重合闸。所谓断路器‘偷跳’是指系统中没有发生过短路,也不是手动跳闸而由于某种原因例如工作人员不小心误碰了断路器的操作机构、保护装置的出口继电器接点由于撞击震动而闭合、断路器的操作机构失灵等原因造成的断路器的跳闸。发生这种‘偷跳’时保护没有发出过跳闸命令,如果没有不对应起动方式就无法用重合闸来进行补救。

103B装置利用三个跳位继电器触点启动重合闸,二次回路设计必须保证手跳时通过闭锁重合闸开入端子将重合闸“放电”,不对应启动重合闸时,单跳还是三跳的判别全靠三个跳位触点输入。单相断路器偷跳和三相断路器偷跳可分别由控制字设定是否启动重合闸。另外,不对应启动重合闸重合后没有后加速触点给出。

保护起动方式。

设有保护<单跳启动重合>闸、<三跳启动重合>闸两个开入端子,这些端子开入信号不要求来自跳闸固定继电器,而要求来自跳闸重动继电器,即要求跳闸成功后立即返回,重合闸在这些触

点闭合又返回时启动。

如果单相故障,重合闸在单重计时过程中收到三跳启动重合闸信号,将立即停止单重计时,并在三跳启动重合闸触点返回时开始三重计时。保护启动重合闸虽有单相和三相两个输入端,可以区分单跳还是三跳,但装置还将根据三个跳位继电器触点进一步判别,防止三跳按单重处理。装置内保护功能发出跳闸命令时,已经内部启动重合闸。所以本装置保护功能与本装置重合闸功能配合时不需要外部引入单跳启动重合闸和三跳启动重合闸信号。

重合闸检定方式

装置可以实现在断路器三相跳开时的三种重合闸检定方式,如下所示:

a)检同期:线路侧电压和母线侧电压均有压,且满足同期条件进行同期重合;

b)检无压:检线路侧无电压重合,若两侧均有压,则自动转为检同期重合;

c)非同期:无论线路侧和母线侧电压如何,都重合。

重合闸的充放电

在软件中,专门设置一个时间计时元件,实现充放电功能,避免多次重合闸。此充电计时元件充满电的时间为15s,重合闸的重合功能必须在充满电后才允许重合,同时点亮面板上的充电灯;未充满电时不允许重合,熄灭面板上的充电灯。a) 在满足如下条件满足时,充电计数器开始计数,模仿重合闸的充电功能:

(1) 断路器在“合闸”位置,即接入保护装置的跳闸位置继电器TWJ 不动作;

(2) 重合闸不在“重合闸停用”位置;

(3) 重合闸启动回路不动作;

(4) 没有低气压闭锁重合闸和闭锁重合闸开入;

如下条件下,充电计数器清零,模仿重合闸放电的功能:

(1) 重合闸方式在“重合闸停用”位置;

(2) 重合闸在“单重”方式时保护动作三跳,或断路器断开三相;

(3) 收到外部闭锁重合闸信号(如手跳、永跳、遥控闭锁重合闸等);

(4) 重合闸出口命令发出的同时“放电”;

(5) 重合闸“充电”未满时,跳闸位置继电器TWJ 动作或有保护启动重合闸信

号开入;

(6) 重合闸启动前,收到低气压闭锁重合闸信号,经200ms 延时后放电;

(7) 重合闸启动过程中,跳开相有电流。

500KV变电站保护配置

500KV变电站继电保护 的配置 一、500KV变电站的特点: 1)容量大、一般装750MV A主变1-2台,容量为220KV变电站5-8倍。2)出线回路数多一般500KV出线4-10回 220KV出线6-14回 3)低压侧装大容量的无功补偿装置(2×120MAR) 4)在电力系统中一般都是电力输送的枢纽变电站。其地位重要,变电站的事故或故障将直接影响主网的安全稳定运行。 5)500KV系统容量大,一次系统时常数增大(50-200ms)。保护必须工作在暂态过程中,需用暂态CT。 6)500KV变电站,电压高、电磁场强、电磁干扰严重,包括对一些仪器仪表工作的干扰。 二、500KV变电站主设备继电保护的要求 1)500KV主变、线路、220KV线路,500KV‘220KV母线均采用双重化配置。 2)近后备原则 3)复用通道(包用复用截波通道,微波通道,光纤通道)。 三、500KV线路保护的配置

1、500KV线路的特点 a)长距离200-300km ,重负荷可达100万千瓦。 使短路电流接近负荷电流,甚至可能小于负荷电流 例:平式初期:姚双线在双河侧做人工短路试验。 姚侧故障相电流仅1200多A。送100万瓦千负荷电流=1300A b)500KV线路有许多同杆并架双回线,因其输送容易大,发生区内异名相跨线故障时,不允许将两回线同时切除。否则将影响系统的安全运行,线路末端跨线故障时,首端距离保护,会看成相间故障。 c)500KV一般采用1个半开关接线,线路停电时,开关要合环,需加短线保护。 d)线路输送功率大,稳定储备系数小,要保证系统稳定,要求保护动作速度快,整个故障切除时间小于100ms。保护动作时间一般要≤50ms。(全线故障) e)线路分布电容大 500KV线路、相间距离为13m、线分裂距离45cm、正四角分裂、相对地距离12m。 线路空投时,未端电压高。要加并联电抗器,并联电抗器保护需跳对侧开关,需加远方跳闸保护。 f)500KV线路一般采用单相重合闸,为限制潜供电流,中性点要加小电抗器 2、配置原则: 1)500KV线路保护配置原则: 设置两套完整、独立的全线速动保护,其功能满足: 每一套保护对全线路内部发生的各种故障(单相接地、相间短路,两相接地、三相短路、非全相再故障及转移故障)应能正确反映每套保护具有独立的选相相功能,实现分相和三相跳闸,当一套停用时,不影响另一套运行。 两套保护的交流电流、电压、直流电源彼此独立 断路器有2组挑圈时,每套保护分别起动一组跳闸线圈 每套主保护分别使用独立的通道信号传输设备,若一套采用专用收发信机,另一套可与通讯复用通道。 2) 500KV线路后备保护的配置原则 线路保护采用近后备方式 每条线路均应配置反映系统D1、D1-1、D2、D3 各种类型故障的后备保护,当双重化的主保护均有完善后备保护时可不另配。

变电站的保护配置

一、变电站的保护配置: 220kV变电站主变三侧都就是双母带旁母接线。 220kV线路保护配置: 四方的保护已经淘汰。931南瑞、许继的。 225、226线路931、PSL602保护就是重点。 保护配置原则: 220kV以上电压等级要配两套,不论母线(915、BP-2B)还就是主变,还就是线路均为两套,不同厂家、不同原理,保护范围应一致,功能应一致。 220kV线路保护的范围就是两侧CT(TA)之间,TA在出线刀闸与开关之间,要了解一个变电站的二次保护,就应找到它的TA与线路TV,两套保护要取自不同的CT绕组,计量、测量、母线保护(两套)都要从CT不同的绕组上取电流。故障录波器也要用,还应有一组备用CT绕组。这些CT绕组都在开关与线路刀闸之间,CT串在主回路中,GIS设备的CT配在开关两侧,所以GIS装置的线路与母线保护范围交叉,消除死区。线路保护取自母线侧CT,母线保护取自线路侧CT绕组。PSL931纵联差动,产自南瑞;602产自南自,纵联距离。

线路两侧的保护应配置一致,否则不易配合。相同的厂家、原理应对应配置,升级版本时两侧应同时进行。速动保护,光纤进行信号传输,主保护都就是本线路的快速保护,0s切除本线路任何故障,纵联距离、纵联差动,投主保护压板就就是要投全线速动保护,光纤信号传输装置,两侧保护、主保护要配置光纤信号传输装置。 如果故障出了线路两侧CT之外,按理应启动母线保护,但还可启动后备保护。此时主保护不动作,主保护做不了相邻元件的后备保护,所以602与931均配置了以相间与接地距离为主的距离保护,还有四段零序保护。 三段式距离保护,I段本线路70-80%,动作时间零秒,II段保护范围为本线路的全长并延伸至下一线路出口,动作时间加了0、5秒,III段保护范围为本线路及下一级线路的全长并延伸至下一线路的一部分,时间为0、5秒加一个Δt。 相间距离就是相间故障的后备,接地距离与零序电流为接地故障的后备保护。 主保护动作后,报文中除有主保护信息外,还有I段后备的信息。 主保护就是全线速动的保护,光纤保护,后备保护……

高压线路维护规范标准

110(66)kV~500kV架空输电线路运行规范目录 第一章总则 (1) 第二章引用标准 (1) 第三章岗位职责 (2) 第四章安全管理 (5) 第五章输电线路工程设计及验收管理 (9) 第六章输电线路的运行管理 (10) 第七章特殊区段输电线路的管理 (13) 第八章输电线路保护区管理 (13) 第九章运行维护重点工作 (15) 第十章输电线路缺陷管理 (23) 第十一章事故预想及处理 (24) 第十二章输电线路技术管理 (26) 第十三章输电线路评级与管理 (29) 第十四章带电作业管理 (29) 第十五章人员培训 (31) 附录A(规范性附录):架空输电线路缺陷管理办法 (35) 附录B(规范性附录):架空输电线路评级管理办法 (38) 附录C(规范性附录):架空输电线路专业年度工作总结提纲 (42) 附录D(规范性附录):架空输电线路故障调查及统计办法 (47)

附录E(资料性附录):架空输电线路运行技术资料档案(技术专档、线路台帐) (54) 编制说明 (64) 第一章总则 第一条为了规范架空输电线路(以下简称“输电线路”或“线路”)的运行管理,使其达到标准化、制度化,保证设备安全、可靠、经济运行,特制定本规范。 第二条本规范依据国家(行业)有关法律法规、标准(包括规程、规范等,下同),以及国家电网公司发布的生产技术文件(包括导则、管理制度等,下同),并结合近年来全国电力系统输电线路运行经验、设备评估分析而制定。 第三条本规范对架空输电线路生产过程中的工程设计、验收、运行、缺陷管理、事故预想及处理、技术管理、设备评级、带电作业、人员培训等项工作以及运行维护重点工作,分别提出了具体要求或指导性意见。 第四条500kV交流架空输电线路。±500kV直流线路、35kV交流线路可参照执行。 本规范适用于国家电网公司系统内的110(66)kV 第五条各区域电网、省(自治区、直辖市)电力有限公司可根据本规范,制定适合本地区电网实际情况的实施细则。 第二章引用标准

线路保护调试方案

工程施工方案审批单 包头供电局2016年主网技改-4 高新变500kV线路保护更换工程施工方案审批单批准: 生产副总审核: 生产处审核: 运行单位审核: 检修(维护)单位审核: 监理单位审核: 施工单位批准: 施工单位审核: 施工方案编制: 包头供电局2016年主网技改-4工程

高新变500kV线路保护屏更换 施工方案 (修试一处) 内蒙古电力建设集团有限责任公司 包头供电局生产处2016年主网技改、配网行动计划施工建设工程项目部 2017年8月23 日 1.编制和试验依据: 1.1包头供电局2016年主网技改工程设计图纸: 1.2 设备制造厂家的产品技术说明、资料等文件 1.3 GB/T 14285-2006《继电保护和安全自动装置技术规程》 1.4 DL/T587-2007《微机继电保护装置运行管理规程》 1.5 DL/T995-2006《继电保护和电网安全自动装置检验规程》 1.6 DL/T 559-2007《220--750kV电网继电保护装置运行整定规程》

1.7 《国家电网公司电力安全工作规程》(变电部分) 1.8 《继电保护及电网安全自动装置反事故措施》 1.9 《国家电网公司十八项电网重大反事故措施》 1.10 华北电网调(2006)30号《华北电网继电保护基建工程验收规范》 1.11 国家和电力行业的有关标准及规范 2.工程概况 高新变500kV线路保护屏屏更换项目共更换500kV线路保护屏4面。500kV 响高I、II回各1面线路保护屏,500kV华新I、II回各1面线路保护屏。 3. 工作计划时间、工作内容: 3.1计划工作时间:2017年09月07日——2017年12月31日 3.2工作内容 将500kV响高I、II回原L90型线路保护整屏更换,更换后的保护柜含:RCS-931AMV纵联电流差动保护装置1台,RCS-925A保护装置1台,新更换的保护柜仍放在原有屏位上。 将500kV华新I、II回原L90型线路保护整屏更换,更换后的保护柜含:CSC-103A纵联电流差动保护装置1台,CSC-125保护装置1台,新更换的保护柜仍放在原有屏位上。 3.2工作步骤 1)原保护屏拆除,更换的电缆敷设 2)安装新保护屏 3) 二次接线,回路检查 4)保护调试、传动验收、综合自动化对点、投入运行。 4. 组织机构 为了保证更换工程各项施工工作能够顺利进行,协调好与建设单位、运行单位及各有关单位的关系,组织安排本单位的施工力量,在规定的工期内圆满的完成施工任务,特成立以下施工组织机构: 项目经理:孙彪 项目总工:王欣 技术负责人:王欣 技术员:李雪飞赵旭任利辉 安全员:陈兵刘欢赵占博 5.施工方案 5.1 500kV华新I线线路保护更换方案(工期:2天) 1)500kV华新I线线路停电,华新I线5011、5012断路器转检修。断开华新I 线线路保护装置电源,断路器控制电源,测控装置电源,再从直流屏将空开断开。 2)拆除电压时认真核对相应端子,先从电压转接屏打开用绝缘胶布包好,再拆除保护屏处,防止保护电压失压,短路、接地。

线路保护规程四方CSCc参考其说明书仅供参考(终审稿)

线路保护规程四方C S C c参考其说明书仅 供参考 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-

1线路保护 1.1技术参数 1.1.1环境条件 装置在以下环境条件下能正常工作: (1)工作环境温度:-10℃~+55℃。运输中短暂的贮存环境温度-25℃~+70℃,在极限值下不施加激励量,装置不出现不可逆的变化,温度恢复后,装置应能正常工作; (2)相对湿度:最湿月的月平均最大相对湿度为90%,同时该月的月平均最低温度为25℃且表面无凝露; (3)大气压力:80kPa~110kPa; (4)使用场所不得有火灾、爆炸、腐蚀等危及装置安全的危险和超出本说明书规定的振动、冲击和碰撞。 1.1.2额定参数 (1)交流电压Un:100/ 3 V;线路抽取电压Ux:100V 或100/ 3 V; (2)交流电流In:5A ,1A; (3)交流频率: 50Hz; (4)直流电压: 220V,110V; (5)开入输入直流电压:24V(默认),也可以选择220V 或110V。 1.1.3交流回路精确工作范围 (1)相电压:~70V ;

(2)检同期电压:~120V ; (3)电流:~30In。 1.1.4差动元件 (1)整定范围:~2In;级差; (2)整定值误差:不大于±% 或± In; (3)动作时间: 2 倍整定值时,不大于20ms。 1.1.5距离元件 (1)整定范围:Ω~40Ω(5A);Ω~200Ω(1A);级差Ω; (2)距离I 段的暂态超越:不大于±4%; (3)距离I 段动作时间:近处故障不大于15ms; (4)倍整定值以内时,不大于20ms; (5)测距误差(不包括装置外部原因造成的误差) (6)金属性短路故障电流大于 In 时,不大于±2%,有较大过渡电阻时测距 (7)误差将增大。 1.1.6零序方向过流元件 (1)整定范围:~20In;级差; (2)零序I 段的暂态超越:不大于±4%。 (3)零序电流I 段的动作时间:倍整定值时,不大于20ms; (4)零序功率方向元件的正方向动作区:18°≤arg(

[整理]500kV线路保护

500kV线路保护培训 一、基本概念 1、主保护:满足系统稳定和设备安全要求,能以最快速度有 选择地切除故障的保护。 2、后备保护:当主保护或开关拒动时,用以切除故障的保护。 分近后备和远后备。 近后备:故障元件自身的后备保护动作切除故障。(失 灵保护) 远后备:相邻元件的保护动作切除故障。 3、辅助保护:补充主保护和后备保护性能,或当主保护和后 备保护退出时用以切除故障的保护。(短线保护、开关临时过 流保护) 二、3/2接线的特点(针对保护) 1、一条出线对应两个开关 线路保护CT采用和电流 有重合闸优先问题 中间开关同时和两条出线(主变)有关联 线路发生故障时,必须跳开两个开关才能切除故障点 2、线路保护比母线保护重要 500kV线路PT接于线路刀闸外侧,因此保护所需电压无需进行电压切换

500kV母线PT只安装在A相,用于开关检同期;而500kV 线路PT采用A、B、C三相。 500kV母差保护无母线复合电压闭锁条件,只要差动元件动作,即可出口跳闸,切除所有连接在该段母线上的开关。 由于采用3/2接线方式,因此当母差保护动作切除所有连接在该段母线上的开关,并不影响对线路的供电,因此 500kV母差保护应保证其可靠性,一旦母差保护拒动,则 后果不堪设想。 3、有出线闸刀的接线方式需配置短线保护 保证在线路停运而开关完整运行的特殊方式下,引线范围内发生故障,有快速保护动作切除故障。 三、500kV线路保护介绍 (一)通道介绍 500kV通道按类型可分为: 1、载波通道 采用相—相耦合,一般取A、B两相。载波机工作原理采用移频键控方式,即:正常发监频,故障时,频率跃变,发跳频,通道中传送的为允许信号。 载波通道按照通道传输延时又可分为快速通道和慢速通道。 (1)慢速通道: 传输远方跳闸信号的通道 (2) 快速通道

线路保护调试方案

工程施工案审批单 供电局2016年主网技改-4 高新变500kV线路保护更换工程施工案审批单 批准: 生产副总审核: 生产处审核: 运行单位审核: 检修(维护)单位审核: 监理单位审核: 施工单位批准: 施工单位审核: 施工案编制:

供电局2016年主网技改-4工程高新变500kV线路保护屏更换 施工案 (修试一处)

电力建设集团有限责任公司 供电局生产处2016年主网技改、配网行动计划施工建设工程项目部 2017年8月23 日 1.编制和试验依据: 1.1供电局2016年主网技改工程设计图纸: 1.2 设备制造厂家的产品技术说明、资料等文件 1.3 GB/T 14285-2006《继电保护和安全自动装置技术规程》 1.4 DL/T587-2007《微机继电保护装置运行管理规程》 1.5 DL/T995-2006《继电保护和电网安全自动装置检验规程》 1.6 DL/T 559-2007《220--750kV电网继电保护装置运行整定规程》 1.7 《电网公司电力安全工作规程》(变电部分) 1.8 《继电保护及电网安全自动装置反事故措施》 1.9 《电网公司十八项电网重大反事故措施》 1.10 华北电网调(2006)30号《华北电网继电保护基建工程验收规》 1.11 和电力行业的有关标准及规 2.工程概况 高新变500kV线路保护屏屏更换项目共更换500kV线路保护屏4面。500kV响高 I、II回各1面线路保护屏,500kV华新I、II回各1面线路保护屏。 3. 工作计划时间、工作容: 3.1计划工作时间:2017年09月07日——2017年12月31日 3.2工作容 将500kV响高I、II回原L90型线路保护整屏更换,更换后的保护柜含:RCS-931AMV 纵联电流差动保护装置1台,RCS-925A保护装置1台,新更换的保护柜仍放在原有屏位上。 将500kV华新I、II回原L90型线路保护整屏更换,更换后的保护柜含:CSC-103A 纵联电流差动保护装置1台,CSC-125保护装置1台,新更换的保护柜仍放在原有屏位上。 3.2工作步骤 1)原保护屏拆除,更换的电缆敷设 2)安装新保护屏 3) 二次接线,回路检查

线路保护规程四方CSC-103c(参考其说明书)(仅供参考)

1线路保护 1.1技术参数 1.1.1环境条件 装置在以下环境条件下能正常工作: (1)工作环境温度:-10℃~+55℃。运输中短暂的贮存环境温度-25℃~+70℃,在极限值下不施加激励量,装置不出现不可逆的变化,温度恢复后,装置应能正常工作; (2)相对湿度:最湿月的月平均最大相对湿度为90%,同时该月的月平均最低温度为25℃且表面无凝露; (3)大气压力:80kPa~110kPa; (4)使用场所不得有火灾、爆炸、腐蚀等危及装置安全的危险和超出本说明书规定的振动、冲击和碰撞。 1.1.2额定参数 (1)交流电压U n:100/ 3 V;线路抽取电压U x:100V 或100/ 3 V; (2)交流电流I n:5A ,1A; (3)交流频率: 50Hz; (4)直流电压: 220V,110V; (5)开入输入直流电压:24V(默认),也可以选择220V 或110V。 1.1.3交流回路精确工作围 (1)相电压: 0.25V~70V ; (2)检同期电压: 0.4V~120V ; (3)电流: 0.08I n~30I n。 1.1.4差动元件 (1)整定围: 0.1I n~2I n;级差0.01A; (2)整定值误差:不大于±2.5% 或±0.02 I n; (3)动作时间: 2 倍整定值时,不大于20ms。 1.1.5距离元件 (1)整定围:0.01Ω~40Ω(5A);0.05Ω~200Ω(1A);级差0.01Ω; (2)距离I 段的暂态超越:不大于±4%; (3)距离I 段动作时间:近处故障不大于15ms; (4)0.7 倍整定值以时,不大于20ms; (5)测距误差(不包括装置外部原因造成的误差) (6)金属性短路故障电流大于0.01 I n 时,不大于±2%,有较大过渡电阻时测距 (7)误差将增大。 1.1.6零序方向过流元件

220kV线路保护规程

220kV线路保护规程线路保护SV及GOOSE网流向表 1、采样值A网信息流向表 2、采样值B网信息流向表 3、GOOSE信息流向表A网

4、 一、线路保护 1、保护配置及概述 220kV关西开关站220kV 线路保护(除关白I路与关白II路)均采用双重化配置,第一套为南瑞PCS902高频距离保护+FOX41B超高压线路成套保护,第二套为国电南自PSL-603U电流差动保护。两套保护共用一组屏,交流电压、电流回路,直流电源回路完全独立,并分别接入 220kV 第一套 GOOSE 网和第二套 GOOSE 网,分别跳断路器第一、二组跳闸线圈。 2、保护测控屏上空开、按钮及切换开关说明(见下表1.1) 表1.1、保护屏上有关空气开关、按钮及切换开关说明表

2FA PSL-603U保护信号复归 PSL-603U保护动作时按下此按钮复归动 作报文 24FA FOX-41装置信号复归FOX-41保护动作时按下此按钮复归动作 报文 3QK 关闽线231间隔远方就地转换开关此开关为关闽线231间隔开关刀闸远方就 地切换 3BK 关闽线231五防切换把手本站均置解锁位置 3、PCS-902 PCS-902G系列包括以纵联距离和零序方向元件为主体的快速主保护,由工频变化量距离元件构成快速Ⅰ段保护,由三段式相间和接地距离及多个零序方向过流构成的全套后备保护。保护装置设有分相跳闸出口,配有自动重合闸功能,对单或双母线接线的开关实现单相重合、三相重合。 本站PCS-902线路纵联距离保护与通信接口FOX-41B装置配合,构成线路光纤允许式纵联距离保护,作为线路的第一套保护。 3.1装置面板图,见图1.1 图1.1 PCS-902保护装置面板图 3.2装置面板指示灯与按钮说明表:(见表1.2) 表1.2 PCS-902超高压线路成套保护装置面板指示灯与按钮说明表 名称正常状态说明 液晶显示正常显示日期、实时时钟、三相平均值(电流、电压)、定值区号,保护动作时显示最新一次保护动作报告,当一次有多个动作元件时,则滚屏显示,自检出错时显示自检报告,一次有多个出错信息时,则滚屏显示。 运行绿灯亮亮-装置正常运行,闪烁-装置启动TV断线黄灯灭亮-交流电压回路断线 充电黄灯亮亮-重合闸充电完成 通道异常黄灯灭亮-通道故障 A相跳闸 红灯灭亮-保护动作出口断路器A相跳闸,自保持 B相跳闸亮-保护动作出口断路器B相跳闸,自保持C相跳闸亮-保护动作出口断路器C相跳闸,自保持重合闸亮-重合闸动作断路器重合闸,自保持 信号复归按钮按下则复归装置面板上自保持信号,还可切换液晶显示状态(跳闸报告、自检报告、正常显示状态) 确认 按键用于确认本次数据修改 区号按下则液晶显示“当前区号”和“修改区号”,

变电站的保护配置

一、变电站的保护配置: 220kV变电站主变三侧都是双母带旁母接线。 220kV线路保护配置: 四方的保护已经淘汰。931南瑞、许继的。 225、226线路931、PSL602保护是重点。 保护配置原则: 220kV以上电压等级要配两套,不论母线(915、BP-2B)还是主变,还是线路均为两套,不同厂家、不同原理,保护范围应一致,功能应一致。 220kV线路保护的范围是两侧CT(TA)之间,TA在出线刀闸和开关之间,要了解一个变电站的二次保护,就应找到它的TA和线路TV,两套保护要取自不同的CT绕组,计量、测量、母线保护(两套)都要从CT不同的绕组上取电流。故障录波器也要用,还应有一组备用CT绕组。这些CT绕组都在开关与线路刀闸之间,CT串在主回路中,GIS设备的CT配在开关两侧,所以GIS装置的线路和母线保护范围交叉,消除死区。线路保护取自母线侧CT,母线保护取自线路侧CT绕组。

PSL931纵联差动,产自南瑞;602产自南自,纵联距离。线路两侧的保护应配置一致,否则不易配合。相同的厂家、原理应对应配置,升级版本时两侧应同时进行。速动保护,光纤进行信号传输,主保护都是本线路的快速保护,0s切除本线路任何故障,纵联距离、纵联差动,投主保护压板就是要投全线速动保护,光纤信号传输装置,两侧保护、主保护要配置光纤信号传输装置。 如果故障出了线路两侧CT之外,按理应启动母线保护,但还可启动后备保护。此时主保护不动作,主保护做不了相邻元件的后备保护,所以602和931均配置了以相间和接地距离为主的距离保护,还有四段零序保护。 三段式距离保护,I段本线路70-80%,动作时间零秒,II段保护范围为本线路的全长并延伸至下一线路出口,动作时间加了0.5秒,III段保护范围为本线路及下一级线路的全长并延伸至下一线路的一部分,时间为0.5秒加一个Δt。 相间距离是相间故障的后备,接地距离与零序电流为接地故障的后备保护。 主保护动作后,报文中除有主保护信息外,还有I段后备的信息。

PCS-931G超高压线路成套保护装置调试大纲

目录 一、线路保护概述: (2) 二、试验接线与参数配置 (2) 1、试验接线 (2) 2、IEC61850参数设置 (2) 3、系统参数设置 (7) 三、电压电流采样及信号测试 (8) 四、稳态差动 (9) 1、保护原理 (9) 2、保护定值与压板 (10) 3、调试方法 (10) 五、距离保护 (17) 1、保护原理 (17) 2、保护定值与压板 (18) 3、调试方法 (18) 六、零序过流保护 (20) 1 保护原理 (20) 2 保护定值与压板 (20) 3 调试方法 (21) 3.1.零序过流动作值测试 (21) 3.2.零序过流保护动作时间测试 (23) 3.3.零序过流动作边界测试 (25) 附录A “IEC61850配置”页面参数说明 (29) 附录B保护测试仪常见问题汇总 (34)

PCS-931G–D超高压线路成套保护装置调试大纲 一、线路保护概述: PCS-931系列为由微机实现的数字式超高压线路成套快速保护装置,可用作220KV及以上电压等级输电线路的主保护及后备保护。 PCS-931包括以分相电流差动和零序电流差动为主体的快速主保护,由工频变化量距离元件构成的快速I段保护,由三段式相间和接地距离及多个零序方向过流构成的全套后备保护,PCS-931可分相出口,配有自动重合闸功能,对单或双母线接线的开关实现单相重合、三相重合和综合重合闸。 1、通道类型可选:“0:专用光纤”、“1:复用光纤”、“2:复用载波”、“3: 收发信机” 二、试验接线与参数配置 1、试验接线 测试仪光网口A1接保护装置SV直采口,光网口B1接保护装置GOOSE直跳口,光网口B2接保护装置组网口。 2、IEC61850参数设置 打开测试软件主界面,点击“光数字测试”模块,进入“IEC-61850配置(SMV-GOOSE)” 菜单:

110kV线路保护 技术规范书

新疆天业集团自备热电厂2×300MW机组工程系统继电保护设备招标 110kV 线路保护技术规范书

1、总则 1、1 引言 提供设备的厂家,应获得ISO-9001资格认证书或具备等同质量认证证书,必须已经生产过三台以上类似或高于本招标书技术规范的设备,并在有相同或更恶劣的运行条件下持续运行三年以上的成功经验。提供的线路保护装置应在中国部级检测中心通过动模试验。 投标厂商应满足原国电公司《国家电网公司发电厂重大反事故措施(试行)》与《国家电网公司十八项电网重大反事故措施(试行)》。 提供的产品应有部级鉴定文件或等同有效的证明文件。 卖方应提供设备近三年运行业绩表。 1.1.1本规范书提出了110kV线路保护设备的功能设计、结构、性能、安装与试验等方面的技术要求。 1、1、2本规范书提出的就是最低限度的要求,并未对一切技术细节作出规定,也未充分引述有关标准与规范的条文,卖方应提供符合本规范书与工业标准的优质产品。 1、1、3 如果卖方没有以书面形式对本规范书的条文提出异议,则表示卖方提供的设备完全符合本规范书的要求;如有异议,应在报价书中以“对规范书的意见与同规范书的差异”为标题的专门章节中加以详细描述。 1、1、4本规范书所使用的标准如遇与卖方所执行的标准不一致按较高的标准执行。 1、1、5本规范书经买、卖双方确认后作为订货合同的技术附件,与合同正文具有同等效力。 1、2 供方职责 供方的工作范围将包括下列内容,但不仅仅限于此内容。 1.2.1 提供标书内所有设备及设计说明书及制造方面的说明。 1.2.2 提供型式试验与常规试验数据,以便确认供货设备能否满足所有的性能要求。 1.2.3 提供设备安装、使用的说明书。 1.2.4 提供试验与检验的标准,包括试验报告与试验数据。 1.2.5提供图纸,制造与质量保证过程的一览表以及标书规定的其它资料。 1.2.6提供设备管理与运行所需有关资料。 1.2.7 所提供设备应发运到规定的目的地。 1.2.8 如标准、规范与本标书的技术规范有明显的冲突,则供方应在制造设备前,用书面形式将冲突与解决办法告知买方,并经买方确认后,才能进行设备制造。 1.2.9 在更换所用的准则、标准、规程或修改设备技术数据时,供方有责任接受需方的选择。 1、2、10 现场服务 2、供货范围表 见招标范围 3、技术资料、图纸与说明书

220kV线路保护配置及运行方式

220kV 线路保护配置及运行方式 概况 220kV 踏九线线路保护装置由两套独立的、配置相同保护功能的保护装置组成。两套装置配置了光纤差动保护、零序保护、距离保护。两套装置都带有重合闸功能,其中2号保护装置单相重合闸启用。 光纤差动保护 输电线路保护采用光纤通道后由于通信容量很大所以往往做成分相式的电流纵差保护。输电 线路分相电流纵差保护本身有选相功能,哪一相纵差保护动作那一相就是故障相。输电线路两侧的电流信号通过编码成码流形式然后转换成光的信号经光纤输出。传送的信号可以是包含了幅值和相位信息在内的该侧电流的瞬时值,保护装置收到输入的光信号后先转换成电信号再与本侧的电流信号构成纵差保护。 纵联电流差动继电器的原理 I 0dz K=0.6I CD I f K=0.752 1 3 dz I 许继差动特性 四方差动特性 本装置差动保护由故障分量差动、稳态量差动及零序差动保护组成。 差动保护采用每周波96点采样,由于高采样率,差动保护可以进行短窗相量算法实现快速 动作,使典型动作时间小于20ms 。故障分量差动保护灵敏度高,不受负荷电流的影响,具有很强的耐过渡电阻能力,对于大多数故障都能快速出口;稳态量差动及零序差动则作为故障分量差动保护的补充。 比例制动特性动作方程如下: CDset N M I I I ?+. . (3)

N M N M I I K I I . ...-?+ (4) ***************************************************************************** 讲解例子 设流过两侧保护的电流M I 、N I 以母线流向被保护的线路方向规定为其正方向,如图中箭头方向所示。 以两侧电流的相量和作为继电器的动作电流d I ,N M d I I I +=。该电流有时也称做差动电流。另以两侧电流的相量差作为继电器的制动电流r I ,N M r I I I -=。纵联电流差动继电器的动作特性一般如图(b )所示,阴影区为动作区,非阴影区为不动作区。这种动作特性称做比率制动特性,是差动继电器(线路、变压器、发电机、母线差动保护中用的差动继电器)常用的动作特性。图中qd I 为起动电流,r K 是制动系数。 当差动继电器的动作电流d I 和制动电流r I 满足两个动作方程时,它们对应的工作点位于阴影 区,继电器动作。 当线路内部短路时,如图 (c)所示,两侧电流的方向与规定的正方向相同。此时 K N M d I I I I =+= ,动作电流等于短路点的电流K I ,动作电流很大。而制动电流r I 较小,N K N N M N M r I I I I I I I I 22-=-+=-=,小于短路点的电流K I 。如果两侧电流幅值相等的话,制动电流甚至就为零。因此工作点落在动作特性的动作区,差动继电器动作。当正常运行或线路外部短路时,如图 (d)所示,线路上流的是穿越性电流,N 侧流的电流与规定的正方向相反。 (a) 系统图I r I (b) 动作特性 图2-29 纵联电流差动保护原理 (c) 内部短路N (d) 外部短路

kV纵联差动线路保护调试要求

220kV纵联差动保护调试要求(讨论稿) 1初步检查 1.1 外观检查 1.1.1检查记录保护装置的包括额定交流电流、交流电压、直流电压、通信方式、出厂日期、出厂编号、制造厂家、装置型号等数据。(注:通信方式指采用专用光纤或复用2M的方式) 1.1.2 检查保护装置插件上元器件的外观质量、焊接质量良好,所有芯片应插紧。插拔芯片、插件前应检查保护装置已断电,并戴好防静电手环、手套,使用专用工具。 1.1.3 检查保护装置的背板接线有无断线、短路和焊接不良等现象。 1.1.4 检查保护装置及屏柜各部件固定良好,无松动现象,装置外形无明显损坏及变形,切换开关、按钮、键盘、快分开关等操作灵活,标示清晰正确。 1.2 刷灰 1.2.1使用带绝缘手柄的毛刷将保护插件、背板及端子排等部件的灰尘清扫干净;对保护装置插件进行清扫时应戴好防静电手环、手套。 1.3紧螺丝 1.3.1 检查保护屏柜、端子箱及机构箱内端子排接线及连接片牢固可靠,重点检查电流、电压二次回路及跳合闸回路。

1.4 绝缘检查 1.4.1 检查确认保护装置电源、控制电源、信号电源空气开关处于断开位置。检查确认启动失灵、安稳装置(远联切屏)、录波回路二次电缆芯线已解开。 1.4.2 检查前应断开线路保护用电流回路中性线接地点,并将芯线金属裸露部分用黑色防护端头套好。 1.4.3 检查前在本屏柜采取拉开空气开关或解线的方式断开UA、UB、UC、UN及开口三角电压回路,并将芯线金属裸露部分用黑色防护端头套好。 1.4.4 用1000V兆欧表测量电流回路中性线对地绝缘电阻,其值应大于10MΩ。1.4.5用1000V兆欧表测量电压回路中性线对地绝缘电阻,其值应大于10MΩ。1.4.6用1000V兆欧表逐一测量直流强电回路对地绝缘电阻,其值应大于10MΩ;用500V兆欧表测量直流弱电回路(24V)对地绝缘电阻,其值应大于20MΩ。 1.4.7 用1000V兆欧表测量跳合闸正电源与出口压板下端头之间(保护装置出口接点)绝缘电阻,其值应大于50MΩ。 1.4.8 每完成一项绝缘测量工作后,应立即将被测回路对地放电。 2. 基本电气性能检查 2.1上电检查 2.1.1 合上保护装置直流电源空气开关,对保护装置通电,面板上的运行灯点亮,

习赤线线路保护装置运行规程

习赤线208线路保护装置运行规程 习赤线208线路采用光纤分相纵差和高频通道速动保护双重 化配置。分别是PRSC53主I保护屏,PRC02A-22主II保护屏。 一.主I保护装置 1.PRS-753光差保护装置概述 PRS-753S 装置为全数字式的超高压线路保护,主要适用于220kV 及以上电压等级、需选相跳闸的输电线路保护。PRS-753S 装置以分相电流差动元件为全线速动的主保护,并配有零序电流差动元件的后备差动段。装置还集成了全套的距离及零序保护作后备保护。后备保护包括三段式相间距离、三段式接地距离保护、两段零序电流保护、一段零序反时限保护、三相不一致保护等,并配有灵活的自动重合闸功能。 2.PRS-753光差保护装置原理 2.1启动元件 装置启动采用以下方案:对分立的主、后备保护板配置相同的启动元件,其动作分别用于开放对方板出口继电器的正电源。对方板启动元件和本板保护元件动作的出口组成"与"逻辑,它们共同动作决定本板保护继电器的出口跳闸。装置的启动元件分为四部分:突变量启动、相过流启动、零序过流启动和电压启动。任一启动条件满足则确认保护启动。 2.2差动元件 2.2.1基本原理 本装置差动主保护设计的出发点,是利用两侧电流的大小及故障时间依分段分时的原则选择差动继电器的动作判据。各差动继电器对每种判据均分相设置,同时包含一个独立的零序差动继电器。分别是相差电流差动保护、突变量电流比率差动、稳态量电流差动和零序电流比率差动。 需要说明,相差差动判据由于采用的是电流瞬时值做判断,因此故障初始时刻对于判据开始的累加结果会产生一定的影响,但通过定值和时限(内部固定)可以正确反映特大故障电流的动作特性。另外,该判据从原理上不能反映空投故障、单端电源及弱馈线故障等情况;但是该装置的其他差动判据能够克服该弱点。 2.2.2特性分析 (相差电流差动保护): 本装置中采用相关电流差动新判据的作用是快速切除对系统稳定威胁较大的大电流内部故障。 a.具有反时限的动作特性。 b.内外部故障的选择性好。

500kV线路保护介绍

500kV线路保护介绍 目录 1 前言┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(1) 2 500kV线路保护介绍┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(1) 2.1 保护配置要求┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(1) 2.2 高频保护的介绍┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(4) 3 500kV线路保护运行说明┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (8) 3.1 线路保护正常运行状态说明┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(8) 3.2. 500kV线路保护停役注意点┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(9) 4、500kV线路保护的相关技术问题讨论┄┄┄┄┄┄┄┄┄┄┄ (10) 4.1 暴露出的主要问题┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(10) 4.2 保护应对措施和需改进要点┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(11) 5 结语┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(12) 6 参考文献┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (12)

1 前言 线路分相电流差动保护具有原理简单、工作可靠、选择性好等突出优点,目前在华东电网广泛应用。2008年1月的冰灾中,许多线路覆冰远远超出线路承受的能力,造成大面积断线或倒塔。架设在输电线路上的OPGW光缆和ADSS光缆,也遭到极大的破坏。电网多条线路OPGW光缆(分相电流差动保护通道)因覆冰严重而断线,500kV线路上的光纤电流差动保护因光纤通道中断而被迫退出运行。对于同时配置两套分相电流差动保护的线路,OPGW光缆断线后,相当于线路两套主保护同时失去。在这种情况下,如主保护通道无法快速迂回,线路极有可能被迫拉停。 2 500kV线路保护介绍 2.1保护配置要求 2.1.1 500kV线路保护配置基本要求 对于500kV线路,应装设两套完整、独立的全线速动它保护。线路主保护按原理分三类:方向高频、高频距离和分相电流差动保护。主保护双重化;后备保护配置原则:1)、采用近后备 2)对相间短路,宜用阶段式距离保护;3)对接地短路,应装设接地距离保护并辅以阶段式或反时限零序电流保护。 (1)主保护:满足系统稳定和设备安全要求,能以最快速度有选择地切除故障的保护。500kV保护按双重化原则配置。正常运行时,均有两套完全独立的保护装置同时运行。两套保护分别经不同的跳闸线圈跳闸;两套保护的直流电源分别取自两组完全独立的直流电源; (2)后备保护:当主保护或开关拒动时,用以切除故障的保护。分近后备和远后备。近后备:故障元件自身的后备保护动作切除故障(失灵保护);远后备:相邻元件的保护动作切除故障。 (3)辅助保护:补充主保护和后备保护性能,或当主保护和后备保护退出时用以切除故障的保护。(短线保护、开关临时过流保护)

线路保护装置的调试

项目三:线路保护装置的调试 学习内容 1.不同电压等级的电力线路继电保护装置的配置和原理; 2.线路过流保护功能(含闭锁条件)的调试检验方法; 3.线路距离保护(阻抗保护)的调试检验方法; 4.线路光纤纵差保护(含通道检查)的调试检验方法。 学习目标 1.了解各个电压等级输电线路继电保护的配置和保护原理; 2.掌握微机型继电保护装置保护功能调试的基本思路和方法; 3.能对各种线路保护功能进行校验和评价; 学习指导 电力线路(输电线路)是电力系统中输电环节的重要组成部分,输电线路传输距离长,工作环境复杂,故障几率较高,因此线路保护装置就显得尤为重要。1.输电线路的故障 电力线路中输电线路的故障主要有三种,分别是接地故障,短路故障和断线故障。 (1)接地故障:一般分为单相接地故障,两相接地故障和三相接地故障,其中单相接地故障的发生率最高,约占90%以上。发生接地故障以后,电力线路短时间内表现为线路电流急剧增大,而接地相的线路迅速失压。 (2)短路故障:短路故障一般指相间短路故障,发生短路的两相线路电流均会急剧增大,线路电压也会迅速降低。 (3)断线故障:指电力线路被断开,无法完成输送电能的功能,假如出现单相断线故障,且未发生接地和短路的情况,则可能出现短线相电压升高,而非断

线两相线路电压降低等现象。 2.线路保护的配置 根据输电线路电压等级的不同,保护配置也有所不同,我们分110kV以下输电线路,110kV输电线路,110kV以上输电线路3种配置来进行说明。 (1)110kV以下输电线路保护主要以过流型保护为主,主要是检测输电线路中的电流和电压,以此作为主要判据。主要的保护功能有: 1.三段式电流保护:瞬时电流速断保护、限时电流速断保护、定时限过电流保护一同构成三段式电流保护。具体应用时,可以只取其中两段其作用,也可以三者都配置,通过时限配合辅以复合电压闭锁元件和方向闭锁元件等,可以兼顾保护的选择性和速动性。部分装置的第三段过流保护还可以整定为反时限动作特性。 2.三段式零序电流保护:同三段式电流保护类似,以零序电流和零序电压为主要判据,也可以配置零序电压闭锁和零序方向闭锁。 3.过负荷电流保护:过负荷电流保护监视三相负荷电流,最大相电流超过整定值,并且持续时间超过告警延时定值发过负荷告警,也可通过控制字配置为跳闸,延时一般可以设置为反时限动作特性。 4.电压保护:分为过电压保护和低电压保护两种,监视线路电压变化(一般取线电压值为判据),电压过高或过低时动作。 5.其他保护功能还包括低周减载,低压解列和重合闸功能等。 (2)110kV输电线路保护主要距离保护为主,再辅以110kV以下输电线路保护中配置的过流保护,零序过流保护等其他元件。距离保护也称阻抗保护,是以线路电压与电流之间的比值(称为测量阻抗)作为保护动作的主要判据,当发生线路故障时,一般可表现出线路测量阻抗降低的现象。距离保护一般分为接地距离保护和相间距离保护两种,都可设置为三段式,相互配合。 (3)110kV以上侧高压或超高压输电线路保护主要以线路电流纵联差动保护为主,再辅以距离保护和零序过流保护等其他元件。线路电流纵联差动保护是将线路两侧的线路电流向量进行运算(称为差动电流),并以此作为保护动作的判据。保护数据的传输通道一般选择光纤通道或者载波通道。 3.继电保护逻辑框图 对继电保护功能进行说明,一般采用逻辑框图的方式,通常来说,继电保护

电力线路防护规程

中华人民水利电力部 电力线路防护规程 中华人民水利电力部 关于颁发<<电力线路防护规程>>的通知 (79)水电规字第6号 <<电力线路防护规程>>于一九七六年颁发试行后,对电力线路防护工作起到了一定的指导和提高作用。 为确保供电安全和多快好省地建设电力线路,现将本规程颁发执行。在执行中如遇到问题,请告我部规划设计管局。 一九七九年一月八日 第1条为了在统筹兼顾的原则下,确保供电安全和多快好省地建设电力线路,特制定本规程。 第2条本规程适用于1千伏及以上电力线路的防护,其范围包括架空电力线路、电力电缆线路以及装设在线路杆塔上的开关设备和变电设备。 第3条电力线路经过的机关、工厂、矿山、部队、生产队、学校和居民等有协助保护电力线路的责任。 第4条电力线路的杆塔、拉线、支柱及附属设施本身所占用的土地和为保证基础稳定所需的土地为留用土地。 留用土地应按国务院颁布的“国家建设征用土地办法”及其他有关规定征用。

第5条修建电力线路,如需要拆迁房屋、砍伐树木,应与有关单位协商,并按国务院颁布的“国家建设征用土地办法”及其他有并规定执行。 第6条架空电力线路的防护区为导线边线向两侧延伸一定距离所形成的两平行线内的区域。各级电压线路应延伸的距离规定如下: 1~10千伏----------5米 35~110千伏----------10米 154~330千伏----------15米 架空电力线路经过工厂、矿山、港口、码头、车站、城镇、公社等人口密集的地区,不规定防护区。但导线边线与建筑物之间的距离,在最大计算风偏情况下,不应小于下列数值: 1~10千伏-----------1.5米 35千伏----------3.0米 60~110千伏------------4.0米 154~220千伏------------5.0米 330千伏------------6.0米 在无风情况下,导线与不在规划范围内的城市建筑物之间的水平距离,不应小于上列数值的一半。 注:(1)导线与城市多层建筑物或规划建筑线之间的距离,指水平距离。 (2)导线与不在规划范围内的现有建筑物之间的距离,指净空距离。 第7条水底电缆的防护区为距电缆100米的两平行线内的水域。 第8条架空电力线路的下面,不应修建屋顶为燃烧材料做成的建筑物。修建耐火屋顶的建筑物,应事先与电力线路运行单位协商。线路下面的建筑物与导线之间的垂直距离在导线最大计算弧垂情况下,不应小于下列数值: 1~10千伏-----------3.0米 35千伏---------- 4.0米 60~110千伏---------- 5.0米 154~220千伏---------- 6.0米 330千伏---------- 7.0米

相关主题
文本预览
相关文档 最新文档