当前位置:文档之家› 冶金回转窑安装,检修维护,冶金回转窑温度高造成的危害

冶金回转窑安装,检修维护,冶金回转窑温度高造成的危害

冶金回转窑安装,检修维护,冶金回转窑温度高造成的危害
冶金回转窑安装,检修维护,冶金回转窑温度高造成的危害

冶金回转窑安装,检修维护,冶金回转窑温度高造成的危害冶金化工窑,其主要用于冶金行业钢铁厂贫铁矿磁化焙烧;铬、镍铁矿氧化焙烧;耐火材料厂焙烧高冶金矿和铝厂焙烧熟料、氢氧化铝;化工厂焙烧铬矿砂和铬矿粉等类矿物。冶金回转窑主要用于冶金行业钢铁厂贫铁矿磁化焙烧;铬、镍铁矿氧化焙烧,被广泛用于冶金、化工、建材等。

一、冶金回转窑安装工作

河南省荥阳市矿山机械制造厂根据几十年生产和安装经验,对冶金回转窑的安装有着深刻的理论基础,冶金回转窑的安装步骤大致有以下几点要求:

1.设备应安装在水平的混凝土基础上,用地脚螺栓固定。

2、安装时应注意主机体与水平的垂直。

3、安装后检查各部位螺栓有无松动及主机仓门是否紧固,如有请进行紧固。

4、按设备的动力配置电源线和控制开关。

5、检查完毕,进行空负荷试车,试车正常即可进行生产。

二、冶金回转窑安装维护工作

根据冶金回转窑检修的工作量的大小来看,又可以分为小修、中修和大修三类。各个厂根据冶金回转窑的使用以及检修维护情况也都制定了小修、中修、大修的计划。小修以及中修才是主要的。一般来说检修工作是在回转窑更换窑衬的时候进行比较合适,因为只有传动装置的检修才能够在砌砖工作结束以后来进行,因此要在这段时间内迅速完成检修工作。对于大修来说曾需要较长的时间。

而且还要更换回转窑内的所有有磨损零件,检查以及调整整个设备,如回转窑筒体段节的更换、拖轮还有窑尾的密封部件等,但是在检修时要特别注意的是,在即将停窑检修之前,为了缩短检修时所用的时间,荥矿机械提示广大用户,必须将所有窑更换的零部件以及要用的工具都准备齐全。只有这样才能够在不影响冶金回转窑设备的正常工作的情况下来使其内部的部件得到充分的检修并恢复其性能,得到高质量的工作以及产量。

三、冶金回转窑中温度过高造成的危害

一座宏伟矗立的高楼大厦的崩塌,往往是由一颗小小的螺丝钉引起的。不要以为由于操作失误或控制的不当使冶金回转窑的窑内温度过高没有什么,这是很严重的,将会引发一连锁的恶性反应,引发的反应主要有:

1、回转窑内温度高,因此也导致石膏脱水成半水石膏,甚至成硫酸钙,并且水泥假凝结为水,影响水泥的质量,更有些水泥被发送进入机舱结块,从工厂交付水泥的温度不得超过123--154℃,如果温度高的水泥,包装袋可能会变脆,破坏率会增加。

2、窑内温度高对冶金回转窑本身并不好。例如,如果轴承的温度上升,其润滑效果将降低,另一方面,圆柱体可能会产生一些热应力,这样可能破坏了衬板螺钉。

3、为了控制冶金回转窑内的温度,荥矿技术人员认为,首先应控制的物料被输送进入回转窑的温度。控制适合室温相同温度的材料,它是最好的不超过63℃。如果材料的温度高时,材料会带来大量的热量进入回转窑,相结合在冶金回转窑中的材料,大部分的机械能变换在窑里温度将因此升高。出于这个原因,水泥将静电吸引和凝聚,并且,如果聚结是非常系列,水泥会粘到回转窑介质和衬板,降低回转窑效率。

4、需要注意的另一件事,是在烧窑过程中会产生热量,为冶金回转窑制造水泥时,高细度的要求,甚至送入回转窑熟料温度,它会导致回转窑内温度不适合烧窑。

爆炸极限的影响因素

爆炸极限的影响因素 Revised final draft November 26, 2020

爆炸极限的影响因素 【大纲考试内容要求】: 1.了解爆炸极限的影响因素; 2.了解爆炸反应浓度的计算; 【教材内容】: 爆炸极限值不是一个物理常数,它是随实验条件的变化而变化,在判断某工艺条件下的爆炸危险性时,需根据危险物品所处的条件来考虑其爆炸极限,如在火药、起爆药、炸药烘干工房内可燃蒸气的爆炸极限与其他工房在正常温度下的极限是不一样的,在受压容器和在正常压力下的爆炸极限亦有所不同;其他因素如点火源的能量,容器的形状、大小,火焰的传播方向,惰性气体与杂质的含量等均对爆炸极限有影响。 1.温度的影响 混合爆炸气体的初始温度越高,爆炸极限范围越宽,则爆炸下限降低,上限增高,爆炸危险性增加。这是因为在温度增高的情况下,活化分子增加,分子和原子的动能也增加,使活化分子具有更大的冲击能量,爆炸反应容易进行,使原来含有过量空气(低于爆炸下限)或可燃物(高于爆炸上限)而不能使火焰蔓延的混合物浓度变成可以使火焰蔓延的浓度,从而扩大了爆炸极限范围。例如丙酮的爆炸极限受温度影响的情况见表2—1。 2.压力的影响 混合气体的初始压力对爆炸极限的影响较复杂,在~ MPa的压力下,对爆炸下限影响不大,对爆炸上限影响较大;当大于 MPa时,爆炸下限变小,爆炸上限变大,爆炸范围扩大。这是因为在高压下混合气体的分子浓度增大,反应速度加快,放热量增加,且在高气压下,热传导性差,热损失小,有利于可燃气体的燃烧或爆炸。甲烷混合气初始压力对爆炸极限的影响见表2 —2。 值得重视的是当混合物的初始压力减小时,爆炸极限范围缩小,当压力降到某一数值时,则会

温度控制器的工作原理

温度控制器的工作原理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID模糊控制技术 *用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、

常见气体的爆炸极限完整版

常见气体的爆炸极限 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

常见气体的爆炸极限 气体名称化学分子式/在空气中的爆炸极限 (体积分数) / % 下限(V/V) 上限(V/V) 乙烷 C2H6 乙醇 C2H5OH 19 乙烯 C2H4 32 氢气 H2 75 硫化氢 H2S 45 甲烷 CH4 15 甲醇 CH3OH 44 丙烷 C3H8

甲苯 C6H5CH3 7 二甲苯 C6H5(CH3)2 乙炔 C2H2 100 氨气 NH3 15 苯 C6H6 8 丁烷 C4H10 一氧化碳 CO 74 丙烯 C3H6 丙酮 CH3COCH3 13 苯乙烯 C6H5CHCH2

炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。可燃性混合物有一个发生燃烧和爆炸的浓度范围,即有一个最低浓度和最高浓度,混合物中的可燃物只有在其之间才会有燃爆危险。可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、氧含量、能量等影响,可燃粉尘的爆炸极限受分散度、湿度、温度和惰性粉尘等影响。可燃气体和蒸气爆炸极限是以其在混合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为12.5%~80%。可燃粉尘的爆炸极限是以其在混合物中所占的比重(g/m3)来表示的,例如,木粉的爆炸下限为409/m3,煤粉的爆炸下限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少涉及。例如,糖粉的爆炸上限为135009/m3,煤粉的爆炸上限为135009/m3,一般场合不会出现。可燃性混合物处于爆炸下限和爆炸上限时,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当量浓度(表中的30%)时,具有最大的爆炸威力。反应当量浓度可根据燃烧反应式计算出来。可燃性混合物的爆炸极限范围越宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限越低,少量可燃物(如可燃气体稍有泄漏)就会形成爆炸条件;爆炸上限越高,则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴、漏和严格限制外部空气渗入容器与管道内等安全措施。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。(二)爆炸反应当量浓度的计算爆炸性混合物中的可燃物质和助燃物质的浓度比例恰好能发生完全化合反应时,爆炸所析出的热量最多,产生的压力也最大,实际的

温度控制器的设计与制作共13页

温度控制器的设计与制作 一、功能要求 设计并制作一个温度控制器,用于自动接通或断开室内的电加热设备,从而使室内温度达到设定温度要求,并能实时显示室内温度。当室内温度大于等于设定温度时,控制器断 ?时,控制器接通电加热设备。 开电加热设备;当室内温度比设定温度小2C 控温范围:0~51C? 控温精度:≤1C? 二、硬件系统设计 1.硬件系统由七部分组成,即单片机及看门狗电路、温度检测电路、控制输出电路、键盘电路、显示电路、设置温度储存电路及电源电路。 (1)单片机及看门狗电路 根据设计所需的单片机的内部资源(程序存储器的容量、数据存储器的容量及I/O口数量),选择AT89C51-24PC较合适。为了防止程序跑飞,导致温度失控,进而引起可怕的后果,本设计加入了硬件看门狗电路IMP813L,如果它的WDI脚不处于浮空状态,在1.6秒内WDI不被触发(即没有检测到上什沿或下降沿),就说明程序已经跑飞,看门狗输出端WDO将输出低电平到手动复位端,使复位输出端RST发出复位信号,使单片机可靠复位,即程序重新开始执行。(注:如果选用AT89S51,由于其内部已具有看门狗电路,就不需外加IMP813L) (2)温度检测电路 温度传感器采用AD590,它实际上是一个与绝对温度成正比的电流源,它的工作电压为4~30V,感测的温度范围为-550C~+1500C,具有良好的线性输出,其输出电流与温度成正比,即1μA/K。因此在00C时的输出电流为273.2μA,在1000C时输出电流为373.2μA。温度传感器将温度的变化转变为电流信号,通过电阻后转变电压信号,经过运算放大器JRC4558运算处理,处理后得到的模拟电压信号传输给A/D转换部分。A/D转换器选用ADC0804,它是用CMOS集成工艺制成的逐次逼近型模数转换芯片,分辨率8位,转换时间100μs,基准电压0~5V,输入模拟电压0~5V。 (3)控制输出电路 控制信号由单片机的P1.4引脚输出,经过光耦TLP521-1隔离后,经三极管C8550直接驱动继电器WJ108-1C-05VDC,如果所接的电加热设备的功率≤2KW,则可利用继电器的常开触点直接控制加热设备,如果加热设备的功率>2KW,可以继电器控制接触器,由接触器直接控制加热设备。 (4)键盘电路 键盘共有四个按键,分别是S1(设置)、S2(+)、S3(-)、S4(储存)。通过键盘来设置室内应达到的温度,键盘采用中断方式控制。 (5)显示电路 显示电路由两位E10501_AR数码管组成,由两片74LS164驱动,实现静态显示,74LS164所需的串行数据和时钟由单片机的P3.0和P3.1提供。对于学过“串行口”知识的班级,实习时,可以采用串行口工作于方式0,即同步移位寄存器的输出方式,通过串行口输出显示数据(实时温度值或设置温度值);对于没学过“串行口”知识的班级,实习时,可以采用模拟串行口的输出方式,实现显示数据的串行输出。 (6)设置温度存储电路 为了防止设定温度在电源断电后丢失,此设计加入了储存电路,储存器选用具有I2C总线功能的AT24C01或FM24C01均可。每次通过键盘设置的室内设定温度都通过储存器储存起来,即使是电源断电,储存器存储的设定温度也不丢失,在电源来电后,单片机自动将设

爆炸极限范围

爆炸极限的意义 可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或。例如与空气混合的爆炸极限为%~80%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响爆炸极限的因素 混合系的组分不同,爆炸极限也不同。同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等的都能使爆炸极限发生变化。一般规律是:混合系原始温度升高,则爆炸极限范围增大,即下限降低、上限升高。因为系统温度升高,增加,使原来不燃的混合物成为可燃、可爆系统。系统压力增大,爆炸极限范围也扩大,这是由于系统压力增高,使分子间距离更为接近,碰撞几率增高,使燃烧反应更易进行。压力降低,则爆炸极限范围缩小;当压力降至一定值时,其上限与下限重合,此时对应的压力称为混合系的。压力降至临界压力以下,系统便不成为爆炸系统(个别气体有反常现象)。混合系中所含惰性气体量增加,爆炸极限范围缩小,惰性气体浓度提高到某一数值,混合系就不能爆炸。容器、管子直径越小,则爆炸范围就越小。当管径(火焰通道)小到一定程度时,单位体积火焰所对应的固体冷却表面散出的就会大于产生的热量,火焰便会中断熄灭。火焰不能传播的最大管径称为该混合系的临界直径。点火能的强度高、热表面的面积大、点火源与混合物的接触时间不等都会使爆炸极限扩大。除上述因素外,混合系接触的封闭外壳的材质、机械杂质、光照、表面活性物质等都可能影响到爆炸极限范围。 与可燃物的危害 可燃性混合物的爆炸极限范围越宽、爆炸下限越低和爆炸上限越高时,其爆炸危险性越大。这是因为爆炸极限越宽则出现爆炸条件的机会就多;爆炸下限越低则可燃物稍有泄漏就会形成爆炸条件;爆炸上限越高则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器或管道里逸出,重新接触空气时却能燃烧,仍有发生着火的危险。 表示 爆炸极限的表示方法 气体或蒸汽爆炸极限是以可燃性物质在混合物中所占体积的百分比(%)来表示的,如氢与空气混合物的爆炸极限为4%~75%。可燃粉尘的爆炸极限是以可燃性物质在混合物中所

回转窑安全规范

仅供参考[整理] 安全管理文书 回转窑安全规范 日期:__________________ 单位:__________________ 第1 页共12 页

回转窑安全规范 职 责: 负责回转窑点检、所属设备现场运转及维护,清扫所管理的设备和区域,学习回转窑运转业务,提高自身技能。工作要求:n 遵守社规,勤奋工作。n 工作前必须按规定穿戴劳动保护用品。n 交接班时,必须详细了解上班设备运转情况。n 接班后,首先对上班交代有问题的设备进行检查确认,并报告值班班长。修理完后,要在现场确认;如不能及时保修,应视具体情况增加点检频次,避免发生故障。n 每班至少对所属所有设备认真点检一遍,下班前做好记录,并向下班人员详细交代。n 现场运转设备之前,要确认该设备的安全防护设备(防护罩,振动、跑偏等保护开关,紧急制动开关等)齐全有效,设备无人作业,设备及周围无妨碍物件,润滑状态良好。n 中控室操作员运转设备之前,必须要由现场点检人员现场确认以后方可启动。n 如遇人身或设备出现即将损伤等紧急情况时,立即启动现场急停开关,并报告CCR操作员和值班班长。n 所属设备发生事故或人员受伤,应在当天填写《事故报告》。在进行事故调查时,应如实说明当时情况,积极配合查找原因,尽快消除隐患。n 接受CCR操作员的指令,听从值班班长安排,协调好与其他岗位人 第 2 页共 12 页

员的合作。n 所属设备的润滑按《回转窑设备润滑表》规定的周期进行。 n 保持现场设备及周围环境整洁。安全通用安全要求原则 n 机器设备是根据工艺状况和公认的安全规则制造的,但这并不能防止对其他使用者生命和肢体的伤害,也不能防止对该设备和/或其他财产的伤害。n 负责机器设备运输,安装,试车,运转,维护以及拆卸和销毁的所有人员都必须明了这些安全说明。要求作业人员要获得其本人阅读和弄懂这些安全说明的书面证明。n 机器设备应该在技术维护条件下使用。作业中要牢记该机器设备指导书指出的安全和可能的危险。维护条件包括整个工作区域整洁。 n 要确保遵守其他所有事故预防和环境保护的地区法规。 n 要确保机器设备上的警告和安全说明完整清晰。n 要确保在工作现场随时能拿到为该机器设备使用者准备的完整的技术文件。职员n 只有经过培训和授权的人员才能运转该机器设备。n 运转和维护人员必须穿戴必要的防护服如安全靴,布料结实的衣服,安全手套和安全帽。作为该机器设备的运转者,有责任确保达到这些要求。要确保明了所有适用的地区法规。n 运转人员至少每班检查一次机器设备是否有看得见的损坏或故障。 第 3 页共 12 页

温控器的分类【大全】

温控器的分类 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 以温控器制造原理来分,温控器分为: 一.突跳式温控器:各种突跳式温控器的型号统称KSD,常见的如KSD301,KSD302等,该温控器是双金属片温控器的新型产品,主要作为各种电热产品具过热保护时,通常与热熔断器串接使用,突跳式温控器作为一级保护。热熔断器则在突跳式温控器失娄或失效导致电热元件超温时,作为二级保护自,有效地防止烧坏电热元件以及由此而引起的火灾事故。 二,液涨式温控器:是当被控制对象的温度发生变化时使温控器感温部内的物质(一般是液体)产生相应的热胀冷缩的物理现象(体积变化),与感温部连通一起的膜盒产生膨胀或收缩。以杠杆原理,带动开关通断动作,达到恒温目的液胀式温控器具有控温准确,稳定可靠,开停温差小,控制温控调节范围大,过载电流大等性能特点。液涨式温控器主要用于家电行业,电热设备,制冷行业等温度控制场合用。 三,压力式温控器,改温控器通过密闭的内充感温工质的温包和毛细管,把被控温度的变化转变为空间压力或容积的变化,达到温度设定值时,通过弹性元件和快速瞬动机构,自动关闭触头,以达到自动控制温度的目的。它由感温部、温度设定主体部、执行开闭的微动开关或自动风门等三部分组成。压力式温控器适用于制冷器具(如电冰箱冰柜等)和制热器等场合。以上几种是常见的机械式温控器。 四,电子式温控器,电子式温度控制器(电阻式)是采用电阻感温的方法来测量的,一般采用白金丝、铜丝、钨丝以及热敏电阻等作为测温电阻,这些电阻各有其优确点。一般家用空调

设备维护培训方案与计划

设备维护培训方案与计划 为进一步提高订单计划生产的及时性,保障设备的良好、正常运行,改善装置维护人员的维护能力和专业知识结构,根据包装装置生产线运行特点、设备使用情况,结合关联交易维护中存在的不足,提出装置设备维护培训方案。 一、设备维修维护模式 包装装置生产线的维护人员由两部分组成: 1.维修公司仪表二车间:承担灌装生产线及附属设备在运行中机械、仪电、自控部分的故障处理,配件准备。 2.装置设备维护组:由装置设备口管理,负责灌装设备在运行中的紧固、润滑、调整及计量器具、灌装卡具、配件管理等,负责灌装设备小故障的紧急处理与生产线的保运工作,配合装置设备口做好日常运行管理。 由于灌装设备的运行特点,维修维护力量均不做周期性的停机大检修。 二、培训的目的 随着灌装设备技术进步与自控技术的提高,装置设备维护组作为保证装置设备正常运行、维护不可缺少的一部分,技术力量比较薄弱,根据灌装线的有效运行情况,结合设备生产厂及设备结构特点,建议采取请进来、走出去的办法,对装置维护人员外委培训,提高装置维护人员的设备维修维护保障能力,提高设备有效利用和生产效率,达到快速保障的目的。

三、培训方案 我厂的灌装设备主要由意大利奥克梅包装设备有限公司,北京航天斯达新技术有限公司和北京恒拓包装设备有限公司生产,上述三家生产的设备也是装置主要灌装生产设备,安排如下培训方式: 1.每年邀请设备生产厂技术人员进行一次系统的故障诊断与故障处理,对我方管理维护人员进行理论与现场操作、维修维护培训一次。 2.建立国产灌装设备的质保、维修维护合同关系,针对不同设备的正常使用年限、磨损情况,不定期的进行现场服务与配件的更换,每年一次。 3.装置维护人员外委培训,送到灌装设备生产厂或相关中石化及外资润滑油厂学习。 4.针对灌装线主机的电气控制系统与程序软件系统进行学习,了解设备的大概程序编辑原来与逻辑关系,学习电气控制系统的控制原理与电气原件的工作原理;理解设备电脑操作屏幕内程序界面中的各项操作选项的作用;以上内容需要设备生产厂家相关人员进行讲解; 5.学习设备的基本设计原理,理解设备的运行方式,以便在设备出现故障时,能懂得如何去查找故障原因; 6.通过去相关厂家与专业学校进行学习,学习配件的机械结构和工作原理,方便在日常设备维护中正确的对配件关键部位进

爆炸极限的影响因素

爆炸极限的影响因素 【大纲考试内容要求】: 1.了解爆炸极限的影响因素; 2.了解爆炸反应浓度的计算; 【教材内容】: 爆炸极限值不是一个物理常数,它是随实验条件的变化而变化,在判断某工艺条件下的爆炸危险性时,需根据危险物品所处的条件来考虑其爆炸极限,如在火药、起爆药、炸药烘干工房内可燃蒸气的爆炸极限与其他工房在正常温度下的极限是不一样的,在受压容器和在正常压力下的爆炸极限亦有所不同;其他因素如点火源的能量,容器的形状、大小,火焰的传播方向,惰性气体与杂质的含量等均对爆炸极限有影响。 1.温度的影响 混合爆炸气体的初始温度越高,爆炸极限范围越宽,则爆炸下限降低,上限增高,爆炸危险性增加。这是因为在温度增高的情况下,活化分子增加,分子和原子的动能也增加,使活化分子具有更大的冲击能量,爆炸反应容易进行,使原来含有过量空气(低于爆炸下限)或可燃物(高于爆炸上限)而不能使火焰蔓延的混合物浓度变成可以使火焰蔓延的浓度,从而扩大了爆炸极限范围。例如丙酮的爆炸极限受温度影响的情况见表2—1。 2.压力的影响 混合气体的初始压力对爆炸极限的影响较复杂,在~ MPa的压力下,对爆炸下限影响不大,对爆炸上限影响较大;当大于 MPa时,爆炸下限变小,爆炸上限变大,爆炸范围扩大。这是因为在高压下混合气体的分子浓度增大,反应速度加快,放热量增加,且在高气压下,热传导性差,热损失小,有利于可燃气体的燃烧或爆炸。甲烷混合气初始压力对爆炸极限的影响见表2 —2。值得重视的是当混合物的初始压力减小时,爆炸极限范围缩小,当压力降到某一数值时,则会出现下限与上限重合,这就意味着初始压力再降低时,不会使混合气体爆炸。把爆炸极限范围缩小为零的压力称为爆炸的临界压力。甲烷在3个不同的初始温度下,爆炸极限随压力下降而缩小的

宏科瑞达_回转窑健康维护管理资料_1.1

回转窑的健康维护管理要领 (一、椭圆度管理) 北京宏科瑞达工程技术有限公司https://www.doczj.com/doc/4217494835.html, 回转窑的健康维护管理要领 1、回转窑椭圆度管理的意义。 2、回转窑热态中心找出的意义。 3、轮带/托轮在线动态打磨的效果。https://www.doczj.com/doc/4217494835.html,

1、回转窑椭圆度管理的意义 椭圆度的测定意义 ?作为窑在运转中的一种机械状况评价方法 ?当超过容许范围则对耐火砖寿命造成严重影响 椭圆度的改善对策及预期效果 ?通过调整轮带垫板缩小同轮带的最大间 隙,从而改善椭圆度。 ?通过减轻来自筒体的应力和稳定窑皮, 消除耐火砖的短命故障。 https://www.doczj.com/doc/4217494835.html, 1.1 筒体椭圆度的定义 窑在回转时产生的筒体曲 率变化。 如果窑不回转的话,就不会产生 椭圆度概念,故须在动态下检测。 https://www.doczj.com/doc/4217494835.html,

筒体的椭圆度概念 筒体椭圆度(ω)=2(a-b) 水平方向和垂直方向的直径之差 https://www.doczj.com/doc/4217494835.html, 热态椭圆度检测仪的测量 1952年Kareby为 了测定影响耐火 砖寿命的筒体变 动而开发。 用1m长的测定 装置中间点来测 量计算筒体的变 动量。 尽管变形对于筒体不是大问题,但当超过容 许范围时,则对耐火砖的寿命造成重大影响。https://www.doczj.com/doc/4217494835.html,

热态椭圆度检测仪的外观 中央部有千分表,测定变形量并储存数据。用磁铁固定在运转中的筒体上。 https://www.doczj.com/doc/4217494835.html, 椭圆度检测仪的安装情况https://www.doczj.com/doc/4217494835.html,

控制器三种类型简介

因此平均时间是不同的。在大部分比例控制器中,循环时间和/或比例带是可调的,以便控制器可以更好地与特定过程匹配。除机电和固态继电器输出之外,比例控制器也可用于比例模拟输出,例如4 ~ 20 mA 或0 ~ 5 Vdc 。通过这些输出,实际输出级别是不同的,而不仅仅是打开和关闭时间,如同使用继电器输出控制器。比例控制的一大优点是操作简便。它可能会需要操作员进 行少量调整(手动复位)以便在初始启动时设置设定值温 度,或在过程条件发生显著变化时进行调整。易发生大范围温度循环的系统也需要使用比例控制器。要根据所需的过程和精度来确定需要简单的比例控制,还是 需要具有PID 的比例控制。滞后时间长且最大上升率大的过程(例如热交换器)需要大范围的比例带才能消除振荡。大范围的比例带可能会导致随负载的变化产生大的偏移。要消除这些偏移,可使用自动复位(积分)。微分(速率)操作可用于长时间延迟 的过程中,加快过程干扰后的恢复速度。PID 控制器 第三种控制器(PID 控制器)可为比例控制器提供积分和微 分控制。该控制器将比例控制与其他两项调整结合在一起,可帮助设备自动补偿系统中的变化。这些调整(积分和微分)以基于时间的单位表示;也可以通过其倒数(分别为 RESET 和RA TE )表示。比例、积分和微分条件必须使用尝试误差法对特定系统单独进行调整或“整定”。三种类型的控制器中,PID 控制器 可提供最准确、最稳定的控制,并且最适合用于具有相对较小质量的系统,这些系统可对添加到过程中的能量变化做出快速反应。在负载经常变化并期望控制器能因设定值、提供的能量或要控制的质量的频繁变化而自动进行补偿的系统中,建议使用PID 控制器。选择控制器时还要考虑其他特性。这些特性包括:自动整定或自整定,在这种情况下仪器将自动计算适合于精密控制的比例带、比率值和复位值;串行通信,在这种情况下控制器可与主机“对话”,以进行数据存储、分析和整定; 警报,警报可以是闭锁式(手动复位)或非闭锁式(自动复位),可设置警报以在流程温度偏高或偏低时触发,也 可在察觉到与设定值发生偏离时触发;定时器/事件指示 器,可用于标记经过的时间或事件的结束/开始。此外,继电器或可控硅触发输出控制器可与外部开关(例如SSR 固态继电器或磁性接触器)配合使用,以切换高达75 A 的大负载。有三种基本类型的控制器:开关控制器、比例控制器和PID 控制器。根据要控制的系统,操作员将能够使用一种类型或其他类型的控制器来控制过程。开关控制器 开关控制器是最简单的一种温度控制设备。该设备的输出只有“开”和“关”两种状态,没有任何中间状态。仅当温度超过设定值时,开关控制器才会切换输出。对于加热控制,当温度低于设定值时输出为“开”,高于设定值时输出为“关”。由于温度超过设定值才会更改输出状态,因此过程温度将会不断循环,从低于设定值变为高于设定值,然后再回到设定 值以下。如果这种循环快速发生,则为防止损坏接触器和 阀,在控制器操作过程中添加了开关差分或“滞后”。这种差分需要温度超过设定值一定的度数后才会再次关闭或打 开。如果在设定值上下非常快地循环,则开关差分可防止输出“反复不断”地切换或快速切换。开关控制通常在不需要精确控制的情况下使用,在无法处理频繁打开和关闭能源的系统中使用,以及在系统非常大,温度变化极其缓慢的情况下使用,或者用于进行温度警报。 开关控制用于警报的一个特殊类型是限制控制器。该控制器使用必须手动复位的闭锁继电器,并且用于在达到特定温度后结束某个过程。 比例控制器 比例控制专用于消除与开关控制关联的循环。比例控制器可在温度接近设定值时减少对加热器的平均电量供应。这能够减慢加热器加热,以便温度不会超过设定值,但会接近设定值并维持在一个稳定的温度。这种比例控制操作可通过在短时间间隔内打开和关闭输出来实现。这种“时间比例控 制”通过“打开”时间和“关闭”时间的比率变化来控制温度。比例控制操作在设定值温度附近的“比例带” 范围内发生。超出这个比例带,该控制器用作开关控制器,输出状态为全开(比例带以下)或全关(比例带以上)。但是,在这个比例带范围内时,根据离设定值的测量差的比率确定输出状态是打开还是关闭。在设定值处(比例带的中点),输出的开:关比率为1:1;也就是说,打开时间和关闭时间是相等的。如果温度离设定值较远,则打开时间和关闭时间会因温度差比例的不同而有所不同。如果温度低于设定值,则打开的时间更长;如果温度太高,则关闭的时间更长。比例带通常表示为全比例的百分比或度数。也可以被称为增益,增益是比例带的倒数。请注意,在时间比例控制过程中,加热器要应用全功率,但在打开和关闭之间循环,

网络管理与设备维护培训心得体会

网络管理与设备维护培训 心得体会 Prepared on 22 November 2020

网络管理与设备维护培训心得体会 2014年11月4日我参加了信息办组织的网络管理与设备维护培训。本次培训,我受益良多,现总结心得如下: 马主任首先强调了“智力储备”。在新的信息技术快速发展的时代,提前储备了足够的知识,就占领了技术的前沿,这是我今后努力的方向。李主任讲得精简干练,但让我认识到要有作为就要有目标,有思路,有方法,要有管理方案。黄老师语重心长的告诉我们,我们要作为一名管理者,而不是维修工,更让我们的工作有了主体方向。 接下来工程师为我们着重讲解了操作系统、应用软件等相关知识。Win7系统要留够50GB的空间,尽量使用纯净版系统进行安装,惭愧的说,我日常用的系统都是Ghost版本,里面总是或多或少有一些广告软件等等,往往给系统的稳定性带来不良后果。这是今后应该注意的地方了。 还学到了一个很有用的dos命令:ipcongfig /all >d:\这个命令用来备份维修机的IP地址十分方便,要记住,要常用。 对于电脑故障的排查,工程师介绍了计算机系统故障的判断思路和方法:1、先软件后硬件。2、先电源后负载。3、先表面后里面。4、先外设后主机。 5、先一般故障后特殊故障。 6、先公共性故障后局部性故障。 7、先主要性故障后次要性故障。这些方法十分有助于我理清思路,找到真正的故障所在,能有效的提高工作效率。 工程师还重点介绍了Ghost这个工具软件的使用。尤其是Ghost Explorer 这个小软件的运用是我以前较少使用的。经过学习我了解到:它是一款可以对

ghost生成的映像文件进行解压、查看以及编辑程序,利用他可以非常简单的对 GHOST 映像文件进行编辑,可以按自己的意愿向映像文件里添加、删除文件,也可以将需要的文件提取出来。这样,以后再维修无法开机的电脑时就能为老师们最大限度的保留数据了。 关于网络管理工作,山东卓智软件有限公司的技术总监徐鹏老师,讲得深入浅出,Ipconfig 命令,Netstat,Nslookup 命令还有用于检查路由的tracert 命令等都十分的实用。他还通过分析一些网络故障实例教会我们一些更实际的运用。还给我们讲解了科来网络分析系统的功能和使用方法。 在培训中,我们相互讨论,相互学习,共同进步,希望以后能有更多这样的培训机会。

影响气体混合物爆炸极限的因素

影响气体混合物爆炸极限的因素 :可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为,或。例如与空气混合的爆炸极限为12.5%~74%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响气体混合物爆炸极限的因素:温度、氧含量、惰性介质、压力、容器或管道直径、着火源(点火能量) 1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。 (2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。 (3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显着,因为惰性气体浓度加大,表示氧的浓度相对减小,而在上限中氧的浓度本来已经很小,故惰性气体稍为增加一点,即产生很大影响,而使爆炸上限剧烈下降。 (4)压力。混合物的原始压力对爆炸极限有很大影响,压力增大,爆炸极限范围也扩大,尤其是爆炸上限显着提高。值得重视的是当混合物的原始压力减小时,爆炸极限范围缩小,压力降至某一数值时,下限与上限合成一点,压力再降低,混合物即变成不可爆。爆炸极限范围缩小为零的压力称为爆炸的临界压力。临界压力的存在表明,在密闭的设备内进行减压操作,可以免除爆炸的危险。 (5)容器或管道直径。容器或管道直径越小,火焰在其中越难蔓延,混合物的爆炸极限范围则越小。当容器直径小到某一数值时,火焰不能蔓延,可消除爆炸危险,这个直径称为临界直径。如甲烷的临界直径为0.4~0.5mm,氢和乙炔为0.1~0.2mm等。容器直径大小对爆炸极限的影响,可以用链式反应理论解释。燃烧是自由基产生的一系列链锁反应的结果,管径减小时,游离基与管壁的碰撞几率相应增大,当管径减小到一定程度时,即因碰撞造成游离基的销毁的反应速度大于游离基产生的反应速度,燃烧反应便不能继续进行。 (6)着火源。能源的性质对爆炸极限范围的影响是:能源强度越高,加热面积越大,作用时间越长,爆炸极限范围越宽。以甲烷为例,100V·A的电火花不引起曝炸,2V·A的电火花可引起爆炸,爆炸极限为5.9%~13.6%,3V·A的电火花则爆炸极限扩大为5.85%~14.8%。 各种爆炸性混合物都有一个最低引爆能量,即点火能量,它是指能引起爆炸性混合物发生爆炸的最小火源所具有的能量,它也是混合物爆炸危险性的一项重要的性能参数。爆炸性混合物的点火能量越小,其燃爆危险性就越大。 火花的能量、热表面的面积、火源和混合物的接触时间等,对爆炸极限均有影响。此外,光对爆炸极限也有影响,如前所述,氢和氯混合,在避光黑暗处反应十分缓慢,但在强光照射下则发生剧烈反应(链锁反应)并导致爆炸。

影响气体混合物爆炸极限的因素

影响气体混合物爆炸极 限的因素 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

影响气体混合物爆炸极限的因素 :可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为,或。例如与空气混合的爆炸极限为%~74%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响气体混合物爆炸极限的因素:温度、氧含量、惰性介质、压力、容器或管道直径、着火源(点火能量) 1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。 (2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。 (3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显着,因为惰性气体浓度加大,表示氧的浓度相对减小,

温度控制器的工作原理

精心整理温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID模糊控制技术*用先进的数码技术通过Pvar、Ivar、Dvar (比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。

要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控时,很多人会放弃自动控制而采用调压器来代替温度控制器。当然,在电压稳定工作的速度不变、外界气温不变和空气流动速度不变的情况下,这样做是完全可以的,但要清楚地知道,以上的环境因素是不断改变的,同时,用调压器来代替温度控制器时,必须在很大程度上靠人力调节,随着工作环境的变化而用人手调好所需温度的度数,然后靠相对稳定的电压来通电加热,勉强运作,但这决不是自动控温。当需要控温的关键很多时,就会手忙脚乱。这样,调压器就派不上用场,因为靠人手不能同时调节那么多需要温控的关键,只有采用PID模糊控制技术,才能解决这个问题,使操作得心应手,运行畅顺。例如烫金机,其温度要求比较稳定,通常在正负2℃以内才能较好运作。高速烫金机烫制同一种产品图案时,随着速度加快,加热速度也要相应提高。这时,传统的温度控制器方式和采用调压器操作就不能胜任,产品的质量就不能保证,因为烫金之前必须要把烫金机的运转速度调节适当,用速度来迁就温度控制器和调压器的弱点。但是,如果采用PID模糊控制的温度控制器,就能解决以上的问题,因为PID中的P,即Pvar功率变量控制,能随着烫金机工作速度加快而加大功率输出的百分量。 有机械式的和电子式的, 机械式的采用两层热膨胀系数不同金属亚在一起,温度改变时,他的弯曲度会发生改变,当弯曲到某个程度是,接通(或断开)回路,使得制冷(或加热)设备工作。电子式的通过热电偶、铂电阻等温度传感装置,把温度信号变换成电信号,通过单片机、PLC等电路控制继电器使得加热(或制冷)设备工作(或停止)

设备维护保养培训

设备维护保养 1.设备维护保养的目的:为了确保设备长期在最佳状态运行,延长设备的寿命。提高设备作业率,保证生产顺行。 2.设备维护保养的内容:保持设备清洁、整齐、润滑良好、安全顺行,包括及时紧固松动的紧固件,调整活动部分的间隙等。实践证明,设 备的寿命在很大程度上决定于维护保养的好坏。 维护保养分为:日常保养、一级保养、二级保养、三级保养。 日常保养 .日常保养,又称例行保养。其主要内容是: a清理、清洁,保证设 备见本色。 b 润滑,按照设备的润滑标准进行润滑。c点检,对设备 进行巡查,确保设备各零部件完好。d修理,会处理小的设备隐患。 一级保养 .其主要内容是:普遍的进行拧紧、清洁、润滑、紧固,还要进行部分调整。 二级保养.其主要内容是:内部清洁、润滑、局部解体检查和调整。 三级保养 .其主要内容是:对设备主体部位进行解体检查,必要时对达到磨损限度的零件进行更换。此外,还要对主要零部件的磨损情况测量、记录。3设备维护保养的十字方针:调整紧固清洁润滑防腐 岗位操作人员的基本要求:三好四懂四会 三好:管好、用好、修好 ?管好:管好设备,指管好自己操作的设备,工器具和附件要按定制 管理的要求存放,保持防护装置和管线的完整和可靠。 ?用好:用好设备,指严格遵守操作规程,执行维护保养制度,正确 合理使用设备,不带病运行,不超负荷使用。 ?修好:修好设备,按期完成一级保养,配合维修人员做好二级保养,设备大修时要参与,熟悉设备结构性能,掌握一般修理技术。 四懂:懂结构、懂原理、董性能、懂用途 四会:会使用、会检查、会保养、会排除故障。 会使用:熟悉设备结构,掌握设备的技术性能和操作方法,并熟悉加 工工艺,不超负荷使用设备。 会检查:熟悉设备的注意事项、基本知识、检查标准和项目;正确使用仪器测量设备是否正常。 会保养:熟悉设备的油眼,油孔、油杯位置,知道操作设备润滑的油质、油量、换油周期;按规定做好润滑和冷却。

什么是爆炸极限

什么是爆炸极限 (一)定义 可燃物质(可燃气体、蒸气、粉尘或纤维)与空气(氧气或氧化剂)均匀混合形成爆炸性混合物,其浓度达到一定的范围时,遇到明火或一定的引爆能量立即发生爆炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。 可燃性混合物有一个发生燃烧和爆炸的浓度范围,即有一个最低浓度和最高浓度,混合物中的可燃物只有在其之间才会有燃爆危险。 可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、氧含量、能量等影响,可燃粉尘的爆炸极限受分散度、湿度、温度和惰性粉尘等影响。 可燃气体和蒸气爆炸极限是以其在混合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为12.5%~80%。可燃粉尘的爆炸极限是以其在混合物中所占的比重(g/m3)来表示的,例如,木粉的爆炸下限为409/m3,煤粉的爆炸下限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少涉及。例如,糖粉的爆炸上限为135009/m3,煤粉的爆炸上限为135009/m3,一般场合不会出现。可燃性混合物处于爆炸下限和爆炸上限时,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当量浓度(表中的30%)时,具有最大的爆炸威力。反应当量浓度可根据燃烧反应式计算出来。 可燃性混合物的爆炸极限范围越宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限越低,少量可燃物(如可燃气体稍有泄漏)就会形成爆炸条件;爆炸上限越高,则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴、漏和严格限制外部空气渗入容器与管道内等安全措施。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。 (二)爆炸反应当量浓度的计算 爆炸性混合物中的可燃物质和助燃物质的浓度比例恰好能发生完全化合反应时,爆炸所析出的热量最多,产生的压力也最大,实际的反应当量浓度稍高于计算的反应当量浓度。当混合物中可燃物质超过化学反应当量浓度时,空气就会不足,可燃物质就不能全部燃尽,于是混合物在爆炸时所产生的热量和压力就会随着可燃物质在混合物中浓度的增加而减小;如

相关主题
文本预览
相关文档 最新文档