当前位置:文档之家› 霍尼韦尔之自动控制系统中比例积分微分作用

霍尼韦尔之自动控制系统中比例积分微分作用

霍尼韦尔之自动控制系统中比例积分微分作用

霍尼韦尔之自动控制系统中比例、积分、微分作用自动控制系统中什么是比例、积分、微分调节规律?在自动控制中各起什么作用?

自动控制系统为了克服干扰,稳定工况系统,把各种干扰分解成比例、微分、积分等规律,为了克服这些干扰,相应提出了比例、积分、微分等控制规律。

比例调节规律是调节器输出与被测参数的偏差值成比例的调节规律。比例调节规律在时间上没有延迟,调节及时。特征常数为比例度,比例度越小调节作用越强,调节作用太强会引起振荡,但调节作用太小又起不到应有的调节作用。

积分调节规律是调节器输出的变化量与偏差随时间的积分成比例。它是用来消除余差。特征常数为积分时间,积分时间越小,积分作用越强,积分作用太强会引起振荡。

微分调节规律是调节器的输出与输入偏差变化的速度成比例。它是用来克服调节对象的在时间常数和容量滞后的影响。特征常数为微分时间,微分时间越大,微分作用越强,太大也会引起振荡。

PID-比例积分微分控制方法:原理浅释及相关资料搜集

PID-比例积分微分控制方法:原理浅释及相关资料搜集 2010-05-13 21:39:22| 分类:软件技术编程开| 标签:|字号大中小订阅 PID原理和调节(转贴) 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。 一个控制系统包括控制器﹑传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。 不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。 目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PI D控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。 1、开环控制系统 开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(cont roller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 2、闭环控制系统 闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。 3、阶跃响应 阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后﹐系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的﹔准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差﹔快是指控制系统响应的快速性,通常

PID比例积分微分

尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。这几种控制规律可以单独使用,但是更多场合是组合使用。如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。 比例(P)控制 单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。实际应用中,比例度的大小应视具体情况而定,比例度太小,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太大,控制作用太强,容易导致系统的稳定性变差,引发振荡。 对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。 单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。工业生产中比例控制规律使用较为普遍。 比例积分(PI)控制 比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用。但是,不能最终消除余差的缺点限制了它的单独使用。克服余差的办法是在比例控制的基础上加上积分控制作用。 积分控制器的输出与输入偏差对时间的积分成正比。这里的“积分”指的是“积累”的意思。积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。所以,积分控制可以消除余差。积分控制规律又称无差控制规律。 积分时间的大小表征了积分控制作用的强弱。积分时间越小,控制作用越强;反之,控制作用越弱。 积分控制虽然能消除余差,但它存在着控制不及时的缺点。因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。所以,实用中一般不单独使用积分控制,而是和比例控制作用结合起来,构成比例积分控制。这样取二者之长,互相弥补,既有比例控制作用的迅速及时,又有积分控制作用消除余差的能力。因此,比例积分控制可以实现较为理想的过程控制。 比例积分控制器是目前应用最为广泛的一种控制器,多用于工业生产中液位、压力、流量等控制系统。由于引入积分作用能消除余差,弥补了纯比例控制的缺陷,获得较好的控制质量。但是积分作用的引入,会使系统稳定性变差。对于有较大惯性滞后的控制系统,要尽量避免使用。 比例微分(PD)控制

控制系统组成及作用

第四章控制系统 4.1 控制系统的组成及其作用 控制系统的组成(5部分) (1)数字控制装置 作用:程序译码执行;状态信号输入采集处理,产生输出控制信号和状态显示信息 (2)输入装置 作用:接受现场状态信息和操作命令,(专为可识别的信息格式)(3)输出装置(输出设备) 作用:接受来自数字控制装置的控制命令,转化并执行相应命令信息, 产生调解、改变系统工作状态的操作和动作 (4)输入输出接口 作用:连接数字控制装置和输入输出设备的信息桥梁,完成I/O信号的电平转换,隔离,信号方式转换,滤波,锁存和缓冲等功能(5)功率放大电路 作用:将输出接口的输出控制信号进行功率放大,以足够的功率驱动输出执行设备(输出装置),完成系统的运行

控制系统的组成实例1: 控制系统的组成实例2:

作业: 1.简述机电一体化控制系统的构成 2.简述机电一体化控制系统各功能部件的作用 第四章控制系统 4.2 控制系统的设计要求 控制系统的设计要求包括10个部分: (1)功能实用性:指功能,性能,精度,应用范围及特点等技术指标概况 (2)系统可靠性:指系统在给定条件,预定时间内能够正常工作的概率(评价:无故障工作时间和故障的排出时间(含永久性和偶发性故障)) (3)运行稳定性:系统的输入量变化或受到外界干扰时,输出量被迫离开原来的稳定值过渡到另一个新的稳定状态的过程中,输出量发生超出规定限度或 发生非收敛性变化的概率(包括超调,振荡,滞后,静态误差等)(4)操作宜人性:人机工程概念内容,有助于提高效率,速度,质量和可靠性(5)人机安全性:监测,自动保护,报警,显示,急停,极限保护等 (6)环境保护水平:不产生环境污染 (7)技术经济性:包括机电一体化设备制造的性价比和运行的性价比 (8)结构工艺性:设计应满足加工,装配,检测,包装,安装,维护的最佳工艺性(9)造型艺术性:系统外形,比率,形体结构,色彩符合工业设计要求和时代美感(10)成果规范性:设计遵从相关法规,符合相关技术标准和技术规范 附: ※对工业控制计算机系统的基本要求

PID 调节比例积分微分作用的特点和规律总结

(一) 在自动控制系统中,P、I、D调节是比例调节,积分调节和微分调节作用。调节控制质量的好坏取决于控制规律的合理选取和参数的整定。在控制系统中总是希望被控参数稳定在工艺要求的范围内。但在实际中被控参数总是与设定值有一定的差别。调节规律的选取原则为:调节规律有效,能迅速克服干扰。 比例、积分、微分之间的联系与相匹配使用效果 比例调节简单,控制及时,参数整定方便,控制结果有余差。因此,比例控制规律适应于对象容量大负荷变化不大纯滞后小,允许有余差存在的系统,一般可用于液位、次要压力的控制。 比例积分控制作用为比例及时加上积分可以消除偏差。积分会使控制速度变慢,系统稳定性变差。比例积分适应于对象滞后大,负荷变化较大,但变化速度缓慢并要求控制结果没有余差。广泛使用于流量,压力,液位和那些没有大的时间滞后的具体对象。 比例微分控制作用:响应快、偏差小,能增加系统稳定性,有超前控制作用,可以克服对象的惯性,控制结果有余差。适应于对象滞后大,负荷变化不大,被控对象变化不频繁,结果允许有余差的系统。 在自动调节系统中,E=SP-PV。其中,E为偏差,SP为给定值,PV为测量值。当SP 大于PV时为正偏差,反之为负偏差。 比例调节作用的动作与偏差的大小成正比;当比例度为100时,比例作用的输出与偏差按各自量程范围的1:1动作。当比例度为10时,按lO:l动作。即比例度越小。比例作用越强。比例作用太强会引起振荡。太弱会造成比例欠调,造成系统收敛过程的波动周期太多,衰减比太小。其作用是稳定被调参数。 积分调节作用的动作与偏差对时间的积分成正比。即偏差存在积分作用就会有输出。它起着消除余差的作用。积分作用太强也会引起振荡,太弱会使系统存在余差。 微分调节作用的动作与偏差的变化速度成正比。其效果是阻止被调参数的一切变化,有超前调节的作用。对滞后大的对象有很好的效果。但不能克服纯滞后。适用于温度调节。使用微分调节可使系统收敛周期的时间缩短。微分时间太长也会引起振荡。 参数设定的方法一般是,先比例次积分后微分的顺序进行。看曲线调参数,从调节品质的曲线逐步找到最佳参数. 在随动系统中,采用数字PI控制可以达到控制精度高、无超调、响应快、曲线拟合精度高等优点,并简化了控制电路。传统的位置式PI算法一般是可以达到基本控制要求,但必须有一个前提:控制周期要足够小。如果控制周期过长,曲线拟合差,要达到15%的曲线拟合误差有点困难,甚至可能会造成系统失控,并造成对机械设备的损伤。因此,针对本文所提到的控制系统,不能简单的采用位置式PI算法,而应该对其进行改进,以适应该控制系统的要求。 比例系数K是和每次采样的偏差值有直接关系,因此提高Kp能使系统响应较快;同时积分系数Ⅸ尾和前面所有的采样偏差值有关,由于采样周期长,每次采样的

积分、微分、比例运算电路

模拟电路课程设计报告 题目:积分、微分、比例运算电路 一、设计任务与要求 ①设计一个可以同时实现积分、微分和比例功能的运算电路。 ②用开关控制也可单独实现积分、微分或比例功能 ③用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V),为运算电路提供偏置电源。此电路设计要求同时实现比例、积分、微分运算等功能。即在一个电路中利用开关或其它方法实现这三个功能。

方案一: 用三个Ua741分别实现积分、微分和比例功能,在另外加一个Ua741构成比例求和运算电路,由于要单独实现这三个功能,因此在积分、微分和比例运算电路中再加入三个开关控制三个电路的导通与截止,从而达到实验要求。 缺点:开关线路太多,易产生接触电阻,增大误差。此运算电路结构复杂,所需元器件多,制作难度大,成本较高。并且由于用同一个信号源且所用频率不一样,因此难以调节。 流程图如下: 图1 方案二: 用一个Ua741和四个开关一起实现积分、微分和比例功能,并且能够单独实现积分、微分或比例功能。 优点:电路简单,所需成本较低。 电路图如下: 积分运算电路 微分运算电路 比例运算电路 比例求和运算电路

图2 三、单元电路设计与参数计算 1、桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V )。 其流程图为: 图3 直流电源电路图如下: 电源变 压器 整流电路 滤波电路 稳压电路

V1220 Vrms 50 Hz 0?? U11_AMP T1 7.32 1D21N4007 D3 1N4007D4 1N4007 C13.3mF C23.3mF C3220nF C4220nF C5470nF C6470nF C7220uF C8220uF U2LM7812CT LINE VREG COMMON VOLTAGE U3LM7912CT LINE VREG COMMON VOLTAGE D51N4007D61N4007 LED2 LED1 R11k|?R21k|?23 4 5 D1 1N400715 16 6 7 14 17 图4 原理分析: (1)电源变压器: 由于要产生±12V 的电压,所以在选择变压器时变压后副边电压应大于24V,由现有的器材可选变压后副边电压为30V 的变压器。 (2)整流电路: 其电路图如下: 图5 ①原理分析: 桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,

工业机器人控制系统组成及典型结构

工业机器人控制系统组成及典型结构 一、工业机器人控制系统所要达到的功能机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: 1、记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 2、示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 3、与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。 4、坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 5、人机接口:示教盒、操作面板、显示屏。 6、传感器接口:位置检测、视觉、触觉、力觉等。 7、位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。 8、故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。 二、工业机器人控制系统的组成 1、控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32 位、64 位等如奔腾系列CPU 以及其他类型CPU 。 2、示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的 CPU 以及存储单元,与主计算机之间以串行通信方式实现信息交互。 3、操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。 4、硬盘和软盘存储存:储机器人工作程序的外围存储器。 5、数字和模拟量输入输出:各种状态和控制命令的输入或输出。 6、打印机接口:记录需要输出的各种信息。 7、传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 8、轴控制器:完成机器人各关节位置、速度和加速度控制。 9、辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。 10 、通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。 11 、网络接口 1) Ethernet 接口:可通过以太网实现数台或单台机器人的直接PC 通信,数据传输速率高达 10Mbit/s ,可直接在PC 上用windows 库函数进行应用程序编程之后,支持TCP/IP 通信协议,通过Ethernet 接口将数据及程序装入各个机器人控制器中。

机器人控制系统组成、分类及要求

机器人控制系统 一、工业机器人控制系统应具有的特点 工业机器人控制系统的主要任务是控制工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等项。其中有些项目的控制是非常复杂的,这就决定了工业机器人的控制系统应具有以下特点: (1)工业机器人的控制与其机构运动学和动力学有着密不可分的关系,因而要使工业机器人的臂、腕及末端执行器等部位在空间具有准确无误的位姿,就必须在不同的坐标系中描述它们,并且随着基准坐标系的不同而要做适当的坐标变换,同时要经常求解运动学和动力学问题。 (2)描述工业机器人状态和运动的数学模型是一个非线性模型,随着工业机器人的运动及环境而改变。又因为工业机器人往往具有多个自由度,所以引起其运动变化的变量不止个,而且各个变量之间般都存在耦合问题。这就使得工业机器人的控制系统不仅是一个非线性系统,而且是一个多变量系统。 (3)对工业机器人的任一位姿都可以通过不同的方式和路径达到,因而工业机器人的控制系统还必须解决优化的问题。 二、对机器人控制系统的一般要求 机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: ?记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 ?示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教

两种。 ?与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。?坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 ?人机接口:示教盒、操作面板、显示屏。 ?传感器接口:位置检测、视觉、触觉、力觉等。 ?位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。?故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。 三、机器人控制系统的组成(图1) (1)控制计算机控制系统的调度指挥机构。一般为微型机、微处理器有32位、64位等,如奔腾系列CPU以及其他类型CPU。 (2)示教盒示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。 (3)操作面板由各种操作按键、状态指示灯构成,只完成基本功能操作。(4)硬盘和软盘存储存储机器人工作程序的外围存储器。 (5)数字和模拟量输入输出各种状态和控制命令的输入或输出。 (6)打印机接口记录需要输出的各种信息。 (7)传感器接口用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 (8)轴控制器完成机器人各关节位置、速度和加速度控制。

PID中比例积分微分经验调节要点

PID中比例积分微分的经验调节 PID调节经验 Kp: 比例系数 ----- 比例带(比例度)P:输入偏差信号变化的相对值与输出信号变化的相对值之比的百分数表示(比例系数的倒数) T:采样时间 Ti: 积分时间 Td: 微分时间 温度T: P=20~60%,Ti=180~600s,Td=3-180s 压力P: P=30~70%,Ti=24~180s, 液位L: P=20~80%,Ti=60~300s, 流量L: P=40~100%,Ti=6~60s。 (1)一般来说,在整定中,观察到曲线震荡很频繁,需把比例带增大以减少震荡;当曲线最大偏差大且趋于非周期过程时,需把比例带减少 (2)当曲线波动较大时,应增大积分时间;曲线偏离给定值后,长时间回不来,则需减小积分时间,以加快消除余差。

(3)如果曲线震荡的厉害,需把微分作用减到最小,或暂时不加微分;曲线最大偏差大而衰减慢,需把微分时间加长而加大作用 (4)比例带过小,积分时间过小或微分时间过大,都会产生周期性的激烈震荡。积分时间过小,震荡周期较长;比例带过小,震荡周期较短;微分时间过大,震荡周期最短 (5)比例带过大或积分时间过长,都会使过渡过程变化缓慢。比例带过大,曲线如不规则的波浪较大的偏离给定值。积分时间过长,曲线会通过非周期的不正常途径,慢慢回复到给定值。 注意:当积分时间过长或微分时间过大,超出允许的范围时,不管如果改变比例带,都是无法补救的 1. PID调试步骤 没有一种控制算法比PID调节规律更有效、更方便的了。现在一些时髦点的调节器基本源自PID。甚至可以这样说:PID调节器是其它控制调节算法的吗。 为什么PID应用如此广泛、又长久不衰? 因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。 由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。这就给使用者带来相当的麻烦,特别是对初学者。下面简单介绍一下调试PID参数的一般步骤: 1.负反馈 自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。 2.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。

自动控制系统组成

自动控制系统的组成及功能实现 自动控制系统作为目前工业领域控制的核心,已经为大家所熟悉。自动控制系统是指在无人直接参与下可使生产过程或其他过程按期望规律或预定程序进行的控制系统。自动控制系统是实现自动化的主要手段,其组建了整个系统的大脑及神经网络。自动控制系统的组成一般包括控制器,被控对象,执行机构和变送器四个环节组成。 一、自动控制系统的分类 自动控制系统按控制原理主要分为开环控制系统和闭环控制系统。 (一)开环控制系统 在开环控制系统中,系统输出只受输入的控制,控制精度和抑制干扰的特性都比较差。开环控制系统中,基于按时序进行逻辑控制的称为顺序控制系统;由顺序控制装置、检测元件、执行机构和被控工业对象所组成。主要应用于机械、化工、物料装卸运输等过程的控制以及机械手和生产自动线。 (二)闭环控制系统 闭环控制系统是建立在反馈原理基础之上的,利用输出量同期望值的偏差对系统进行控制,可获得比较好的控制性能。闭环控制系统又称反馈控制系统。 自动控制系统按给定信号分类,可分为恒值控制系统、随动控制系统和程序控制系统。(三)恒值控制系统 给定值不变,要求系统输出量以一定的精度接近给定希望值的系统。如生产过程中的温度、压力、流量、液位高度、电动机转速等自动控制系统属于恒值系统。 (四)随动控制系统 给定值按未知时间函数变化,要求输出跟随给定值的变化。如跟随卫星的雷达天线系统。(五)程序控制系统 给定值按一定时间函数变化。如程控机床。 在我们的工业领域中,因控制的工艺流程复杂、生产数多、对产品质量控制严格,所以一般控制系统均为闭环控制系统。 二、控制系统各部分的功能 (一)控制器 目前控制系统的控制器主要包括PLC、DCS、FCS等主控制系统。在底层应用最多的就是PLC控制系统,一般大中型控制系统中要求分散控制、集中管理的场合就会采用DCS 控制系统,FCS系统主要应用在大型系统中,它也是21世纪最具发展潜力的现场总线控制系

PID(比例微分积分)

PID(比例微分积分)调节口诀 PID(比例微分积分)调节口诀(转贴) 1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1, 2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 3.PID控制的原理和特点 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID 调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。 PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-stat e Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 微分控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性

比例 积分 微分

就是一种控制方式,通常叫做PID,在网上一搜一大堆, 比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。 但积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,为了使系统在进入稳态后无稳态误差,通常采用比例+积分(PI)控制器,微分(D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。 形象点:比例跟偏差成正比,决定响应速度;积分的作用是使系统稳定后没有静差(如:你要得到输出是10,积分就能使最后结果是10,静差为0也即没有静差);微分的作用使输出快速的跟定输入,也就是说你输入偏差变大,我“立刻”变化是你变小,抑制你。 在控制领域,PID是一种经典的调节方法。在实际的过程控制与运动控制系统中,PID 家族占有相当的地位,据统计,工业控制的控制器中PID类控制器占有90%以上(K J ?str?m and T. H?gglund. PID Controllers: Theory,Design and Tuning. Instrument Society of America, 1995)。PID控制器是最早出现的控制器类型,因为其结构简单,各个控制器参数有着明显的物理意义,调整方便,所以这类控制器很受工程技术人员的喜爱。 更专业的只是你就要查看自动化的专业课:自动控制原理,过程控制原理等。 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

一、控制系统的组成

4.2控制系统的组成和描述习题 一、判断题 (1)控制器肯定是控制系统中最先动作的构件。()(2)执行器是能直接对被控对象起控制作用的装置。()(3)被控对象是连动过程中最后动作的构件。()(4)存在比较器的控制系统一定是闭环控制系统。()二、判断下列关于楼道灯声控开关电路的说法是否正确。(1)它是一个闭环控制系统。() (2)它能自动纠正控制误差。() (3)灯是被控对象。() (4)控制量是控制灯的亮灭。() 二、选择题 1.下列控制系统中,属于开环控制系统的是() A 电冰箱的温度控制 B 计算机的CPU上的风扇的转速控制 C 现代化农业温室的温度控制 D 家用缝纫机的缝纫速度控制 2 .下面控制系统中,属于闭环控制的有() A 电风扇机械定时开关控制系统 B 电子门铃控制系统 C 电磁炉温度自动控制系统 D 自行车制动系统 3.下列控制现象属于自动控制的是()

A 电风扇 B 洗衣机 C 红绿灯定时转换 D 电子词典 4.下列属于闭环控制系统的是() A 楼道里的防盗报警控制系统 B 火灾自动报警系统 C 公园音乐喷泉自动控制系统 D 电冰箱的温度控制系统 5.下列各项中,属于开环控制系统的是() A 家用电风扇的转速调节系统 B 电冰箱温度控制系统 C 汽车自动档位控制系统 D 抽水马桶水位的控制系统 6.“皮影戏”是我国的传统的民间艺术,演员只要在屏幕和灯光之间抖动如栓在“小兔”身上的细线,屏幕上就能出现生动活泼的小兔形象,这是一种控制现象,其控制对象是() A 细线 B “小兔” C 屏幕 D 灯光 7.普通高压锅使用过程中,当锅内压力达到一定值时,压力阀会浮起并放气,使锅内压力维持在预定值水平。该压力控制系统是( ) ①人工系统②自然系统③人工(手动)控制④自动控制 A ①③ B ①④ C ②③ D ②④ 8.闭环控制系统由下列各个环节组成() ①控制器②执行器③被控对象④检测装置 A ①②③ B ①③④

PID(比例-积分-微分)控制器

PID控制——简而优秀 当今的自动控制技术都是基于反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。 这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。 PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。 PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。其输入e (t)与输出u (t)的关系为

因此它的传递函数为: 它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ki和Kd)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。 首先,PID应用范围广。虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。 其次,PID参数较易整定。也就是,PID参数Kp,Ki和Kd可以根据过程的动态特性及时整定。如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。 第三,PID控制器在实践中也不断的得到改进,下面两个改进的例子。

在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰。PID参数自整定就是为了处理PID参数整定这个问题而产生的。现在,自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准。 在一些情况下针对特定的系统设计的PID控制器控制得很好,但它们仍存在一些问题需要解决: 如果自整定要以模型为基础,为了PID参数的重新整定在线寻找和保持好过程模型是较难的。闭环工作时,要求在过程中插入一个测试信号。这个方法会引起扰动,所以基于模型的PID参数自整定在工业应用不是太好。 如果自整定是基于控制律的,经常难以把由负载干扰引起的影响和过程动态特性变化引起的影响区分开来,因此受到干扰的影响控制器会产生超调,产生一个不必要的自适应转换。另外,由于基于控制律的系统没有成熟的稳定性分析方法,参数整定可靠与否存在很多问题。 因此,许多自身整定参数的PID控制器经常工作在自动整定模式而不是连续的自身整定模式。自动整定通常是指根据开环状态确定的简单过程模型自动计算PID 参数。 但仍不可否认PID也有其固有的缺点: PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作地不是太好。最重要的是,如果PID控制器不能控制复杂过程,无论怎么调参数都没用。 虽然有这些缺点,PID控制器是最简单的有时却是最好的控制器。

PID控制——比例控制、积分控制、微分控制

PID控制——比例控制、积分控制、微分控制 比例控制 TITLE:比例控制(P) (Proportional control action) 比例控制(P)是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。根据设备有所不同,比例带一般为2~10%(温度控制)。但是,仅仅是P控制的话,会产生下面将提到的off set (稳态误差),所以一般加上积分控制(I),以消除稳态误差。 比例带与比例控制(P)输出的关系如图所示。用MVp运算式的设定举例: 图1

图2:比例带与输出的关系。 稳态误差(Off set) 比例控制中,经过一定时间后误差稳定在一定值时,此时的误差叫做稳态误差(off set)。仅用比例控制的时候,根据负载的变动及设备的固有特性不同,会出现不同的稳态误差。负载特性与控制特性曲线的交点和设定值不一致是产生稳态误差的原因。比例带小时不会产生。为消除稳态误差,我们设定手动复位值--manual reset值(MR),以消除控制误差。 图3:比例控制产生的off set。 手动复位(Manual reset)

式1:MR: manual reset值。 如前所述,仅用比例控制不能消除稳态误差。为此,将 MR(manual reset值)设为可变,则可自由整定(即调整)调节器的输出。只要手动操作输出相当于off set的量,就能与目标值一致。这就叫做手动复位(manual reset),通常比例调节器上 配有此功能。在实际的自动控制中,每次发生off set时以手动进行reset的话,这样并不实用。在后面将叙述的积分控制功能,能自动消除稳态误差。 图4 积分控制 积分控制(I) (Integral control action) 所谓积分控制(I),就是在出现稳态误差时自动的改变输出量,使其与手动复位动作的输出量相同,达到消除稳态误差的目的。当系统存在误差时,进行积分控制,根据积分时间的大小调节

自动控制系统的基本组成与分类

自动控制系统的基本组成与分类 自动控制系统的基本组成 如前所述,自动控制系统(即反馈控制系统)由被控对象和控制装置两大部分组成, 根 据其功能,后者又是由具有不同职能的基本元部件组成的。图1.12是一个典型的自 动控制 系统的基本组成示意图,图中组成系统的各基本环节及其功能如下。 1.被控对象 如前所述,被控对象是指对其莱个特定物理量进行控制的设备或过程 出即为系统的输出员,即被控量,通常以c(r)(或y(f))表示。 2.阁量元件 测量元件用于对输出量进行测量,并将其反馈至输入端。如果输出量与输入量的物 理 单位不同,有时还要进行相应的量纲转换*例如,温度测量装置(热电偶)用于团量湿度并 转换为电压(见固1.2),测速发电机用于测量电动机轴转速井转换为电压(见田1.9)。 3.给定元件 根据控制日的,给定元件将给定量转换为与期望输出相对应的系统治入量(通常以 r(‘)表示),作为系统的控制依据。例如,图1.9中,给定电压M2的电位器即为给 定元件。 4.比较元件 比较元件对输入量与测量元件测得的输出量进行比较,并产生偏差信号

中的电压比较电路。通常,比较元件输出的偏差信号以‘(2)表示。 5.放大元件 放大元件是特比较元件结出的(檄弱的)偏差信号进行放大(必要时还要进行物理量的转换)。例如,图1.9中的ATMEL代理放大器和晶闸管整流装置等。 6.执行元件 执行元件的功能是,根据放大元件放大后的偏差信号,推动执行元件去控制被控对 象,使其被控量按照设定的要求变化。通常,电动机、液压马达等都可作为执行元件。7.校正元件 校正元件又称补偿元件,用于改善系统的性能,通常以串联或反馈的方式连接在系 统中。 在图1.12中,作用信号从输入端沿箭头方向到达输出端的传输通路称为前向通路;系 统治出量经测旦元件反馈到输入端的传输通路称为主反馈通路;前向通路和主反馈通 路构 成的回路称为主反馈回路,简称主回路。除此之外,还有局部反馈通路以及局部反馈 回路 等*将只包含一个主反馈通路的系统称为单回路系统,将包含两个或两个以上反馈通路的 系统称为多回路系统。 1.4.2 自动控制系统的分类 如前所述,自动控制系统的组成千差万别,所完成的控制任务也不尽相同,但可以 按 不同的分类方法,将其分为各种不同的类别。例如,按控制方式可分为开环控制系统、闭 环控制系统和复合控制系TI代理统;按元件类型可分为机械系统、电气系统、机电系统、液压系

PID(比例积分微分)控制器

PID(比例积分微分)英文全称为Proportion Integration Differentiation,它是一个数学物理术语。 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC 系统等等。 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制: 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制: 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。微分(D)控制: 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

1简述数控系统的组成及其作用

1简述数控系统的组成及其作用? 答:数控系统一般有输入、输出装置、数控装置、伺服系统装置和辅助控制装置四部分组成,作用:输入/输出装置的作用是进行数控加工或运动控制程序、加工与控制数据、机床参数以及坐标轴位置、检测开关的状态等数据的输入、输出。键盘和显示器是任何数控设备都必备的最基本的输入/输出装置。数控装置是数控系统的核心。它由输入/输出接口线路、控制器、运算器和存储器等部分组成。数控装置的作用是将输入装置输入的数据,通过内部的逻辑电路或控制软件进行编译、运算和处理,并输出各种信息和指令,以控制机床的各部分进行规定的动作伺服驱动通常由伺服放大器(亦称驱动器、伺服单元)和执行机构等部分组成。在数控机床上,目前一般都采用交流伺服电动机作为执行机构;在先进的高速加工机床上,已经开始使用直线电动机。辅助控制装置是介于数控装置和机床机械、液压部分之间的控制装置,通过可编程序控制起来实现。 2数控系统的信息流程? 答:加工程序的处理过程按输入-译码-进给速度处理-插补-位置控制的顺序来完成。 3何为插补? 答:所谓插补就是指数据密化的过程。在对数控系统输入有限坐标点的情况下,计算机根据线段的特征,运用一定的算法,自动地在这些特征点之间插入一系列的中间点,即所谓数据密化,从而对各坐标轴进行脉冲分配,完成整个曲线的轨迹运行,以满足加工精度的要求。4CNC装置的工作过程? 答:CNC装置的工作过程即在硬件的支持下完成软件的过程。包括输入、译码处理、数据处理、插补运算与位置控制、I/O处理、显示和诊断7个环节。 5伺服系统的作用? 答:驱动伺服系统具有放大控制信号的能力。根据CNC发出的控制信息对机床移动部件的位置和速度进行控制。 6步进电动机的主要特性? 答:(1)步距角θs和步距误差Δθs(2)静态转矩和距角特征(3)最大启动转矩Mq(4)最高启动频率fq(5)连续运行的最高工作频率fmax(6)矩频特征。 7交流伺服电动机的调速? 答:改变磁极对数有级调速通过对定子绕组接线的切换来实现,改变转差率调速对异步电机转差功率的处理而获得的调速方式,变频调速通过平滑改变定子供电电压频率而转速平滑变速的调速方法这种先进的调速方法。 8检查装置的作用和要求? 答:(1)在机床工作台移动范围内,能满足精度和速度的要求。(2)工作可靠,抗干扰能力强,并能长期保持精度。(3)使用、维护简单方便,成本低。 9PLC的信息交换和PLC的功能? 答:PLC、CNC、和MT之间的信息交换包括以下四个部分1CNC传送给PLC 2PLC传送给CNC 3PLC传送给MT 4MT传送给PLC 功能:一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程

相关主题
文本预览
相关文档 最新文档