当前位置:文档之家› 画PCB时应该注意事项

画PCB时应该注意事项

画PCB时应该注意事项
画PCB时应该注意事项

画PCB时应该注意事项

去耦电容不是一般称的滤波电容,滤波电容指电源系统用的,去藕电容则是分布在器件附近或子电路处主要用于对付器件自身或外源性噪声的特殊滤波电容,故有特称——去耦电容,去耦指“去除(噪声)耦合”之意.

1、去耦电容的一般配置原则

● 电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗干扰效果会更好.

● 为每个集成电路芯片配置一个0.01uF的陶瓷电容器.如遇到印制电路板空间小而装不下时,可每4~10个芯片配置一个1~10uF钽电解电容器,这种器件的高频阻抗特别小,在500kHz~20MHz范围内阻抗小于1Ω,而且漏电流很小(0.5uA以下).

● 对于噪声能力弱、关断时电流变化大的器件和ROM、RAM等存储型器件,应在芯片的电源线(Vcc)和地线(GND)间直接接入去耦电容.

● 去耦电容的引线不能过长,特别是高频旁路电容不能带引线.

● 在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须RC 电路来吸收放电电流.一般R 取1 ~ 2K,C取2.2 ~ 47UF.

● CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源.

● 设计时应确定使用高频低频中频三种去耦电容,中频与低频去耦电容可根据器件与PCB功耗决定,可分别选47-1000uF和470-3300uF;高频电容计算为: C=P/V*V*F.

● 每个集成电路一个去耦电容.每个电解电容边上都要加一个小的高频旁路电容.

● 用大容量的钽电容或聚酷电容而不用电解电容作电路充放电储能电容.使用管状电时,外壳要接地.

由于大部分能量的交换也是主要集中于器件的电源和地引脚,而这些引脚又是独立的直接和地电平面相连接的.这样,电压的波动实际上主要是由于电流的不合理分布引起.但电流的分布不合理主要是由于大量的过孔和隔离带造成的.这种情况下的电压波动将主要传输和影响到器件的电源和地线引脚上.

为减小集成电路芯片电源上的电压瞬时过冲,应该为集成电路芯片添加去耦电容.这可以有效去除电源上的毛刺的影响并减少在印制板上的电源环路的辐射.

当去耦电容直接连接在集成电路的电源管腿上而不是连接在电源层上时,其平滑毛刺的效果最好.这就是为什么有一些器件插座上带有去耦电容,而有的器件要求去耦电容距器件的距离要足够的小.

2、配置电容的经验值

好的高频去耦电容可以去除高到1GHZ的高频成份.陶瓷片电容或多层陶瓷电容的高频特性较好.设计印刷线路板时,每个集成电路的电源,地之间都要加一个去耦电容.

去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成电路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声.

数字电路中典型的去耦电容为0.1uF的去耦电容有5nH分布电感,它的并行共振频率大约在7MHz左右,也就是说对于10MHz以下的噪声有较好的去耦作用,对40MHz以上的噪声几乎不起作用.

1uF,10uF电容,并行共振频率在20MHz以上,去除高频率噪声的效果要好一些.在电源进入印刷板的地方放一个1uF或10uF的去高频电容往往是有利的,即使是用电池供电的系统也需要这种电容.

每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10uF.最好不用电解电容,电解电容是两层溥膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使

用胆电容或聚碳酸酝电容.去耦电容值的选取并不严格,可按C=1/f计算;即10MHz取0.1uF.

由于不论使用怎样的电源分配方案,整个系统会产生足够导致问题发生的噪声,额外的过滤措施是必需的.这一任务由旁路电容完成.一般来说,一个1uF-10uF的电容将被放在系统的电源接入端,板上每个设备的电源脚与地线脚之间应放置一个0.01uF-0.1uF的电容.旁路电容就是过滤器.放在电源接入端的大电容(约10uF)用来过滤板子产生的低频(比如60Hz线路频率).板上工作中的设备产生的噪声会产生从100MHz到更高频率间的合共振(harmonics).每个芯片间都要放置旁路电容,这些电容比较小,大约0.1uF左右。

网址:https://www.doczj.com/doc/4517238985.html,/html/pcbjishu/20081027/786.html

磁珠

磁珠专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。磁珠是用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDR SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过错50MHZ。

磁珠的功能主要是消除存在于传输线结构(电路)中的RF噪声,RF能量是叠加在直流传输电平上的交流正弦波成分,直流成分是需要的有用信号,而射频RF能量却是无用的电磁干扰沿着线路传输和辐射(EMI)。要消除这些不需要的信号能量,使用片式磁珠扮演高频电阻的角色(衰减器),该器件允许直流信号通过,而滤除交流信号。通常高频信号为30MHz 以上,然而,低频信号也会受到片式磁珠的影响。

片式磁珠由软磁铁氧体材料组成,构成高体积电阻率的独石结构。涡流损耗同铁氧体材料的电阻率成反比。涡流损耗随信号频率的平方成正比。使用片式磁珠的好处:小型化和轻量化在射频噪声频率范围内具有高阻抗,消除传输线中的电磁干扰。闭合磁路结构,更好地消除信号的串绕。极好的磁屏蔽结构。降低直流电阻,以免对有用信号产生过大的衰减。显著的高频特性和阻抗特性(更好的消除RF能量)。在高频放大电路中消除寄生振荡。有效的工作在几个MHz到几百MHz的频率范围内。

要正确的选择磁珠,必须注意以下几点:

1、不需要的信号的频率范围为多少;

2、噪声源是谁;

3、需要多大的噪声衰减;

4、环境条件是什么(温度,直流电压,结构强度);

5、电路和负载阻抗是多少;

6、是否有空间在PCB板上放置磁珠;

前三条通过观察厂家提供的阻抗频率曲线就可以判断。在阻抗曲线中三条曲线都非常重要,即电阻,感抗和总阻抗。总阻抗通过ZR22πfL()2+:=fL来描述。通过这一曲线,选择在希望衰减噪声的频率范围内具有最大阻抗而在低频和直流下信号衰减尽量小的磁珠型号。片式磁珠在过大的直流电压下,阻抗特性会受到影响,另外,如果工作温升过高,或者外部磁场过大,磁珠的阻抗都会受到不利的影响。使用片式磁珠和片式电感的原因:是使用片式磁珠还是片式电感主要还在于应用。在谐振电路中需要使用片式电感。而需要消除不需要的EMI噪声时,使用片式磁珠是最佳的选择。片式磁珠和片式电感的应用场合:

片式电感:射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车,蜂窝电话,寻呼机,音频设备,PDAs(个人数字助理),无线遥控系统以及低压供电模块等。

片式磁珠:时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口,并口,键盘,鼠标,长途电信,本地局域网),射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS),电视系统和手提电话中的EMI噪声抑止。

磁珠由氧磁体组成,电感由磁心和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去。磁珠对高频信号才有较大阻碍作用,一般规格有100欧/100MHZ ,它在低频时电阻比电感小得多。电感的等效电阻可有Z=2X3.14xf 来求得。铁氧体磁珠(Ferrite Bead) 是目前应用发展很快的一种抗干扰元件,廉价、易用,滤除高频噪声效果显著。在电路中只要导线穿过它即可(我用的都是象普通电阻模样的,导线已穿过并胶合,也有表面贴装的形式,但很少见到卖的)。当导线中电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大衰减作用。高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个元件的值都与磁珠的长度成比例。

磁珠种类很多,制造商应提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。

有的磁珠上有多个孔洞,用导线穿过可增加元件阻抗(穿过磁珠次数的平方),不过在高频时所增加的抑制噪声能力不可能如预期的多,而用多串联几个磁珠的办法会好些。

铁氧体是磁性材料,会因通过电流过大而产生磁饱和,导磁率急剧下降。大电流滤波应采用结构上专门设计的磁珠,还要注意其散热措施。

铁氧体磁珠不仅可用于电源电路中滤除高频噪声(可用于直流和交流输出),还可广泛应用于其他电路,其体积可以做得很小。特别是在数字电路中,由于脉冲信号含有频率很高的高次谐波,也是电路高频辐射的主要根源,所以可在这种场合发挥磁珠的作用。

铁氧体磁珠还广泛应用于信号电缆的噪声滤除。以常用于电源滤波的HH-1H3216-500为例,其型号各字段含义依次为:HH 是其一个系列,主要用于电源滤波,用于信号线是HB系列;1 表示一个元件封装了一个磁珠,若为4则是并排封装四个的;H 表示组成物质,H、C、M为中频应用(50-200MHz),T低频应用(<50MHz),S高频应用(>200MHz);3216 封装尺

电阻分类

1、实芯碳质电阻器

用碳质颗粒壮导电物质、填料和粘合剂混合制成一个实体的电阻器。

特点:价格低廉,但其阻值误差、噪声电压都大,稳定性差,目前较少用。

2、绕线电阻器

用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。

绕线电阻具有较低的温度系数,阻值精度高,稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。

3、薄膜电阻器

用蒸发的方法将一定电阻率材料蒸镀于绝缘材料表面制成。主要如下:

3.1 碳膜电阻器

将结晶碳沉积在陶瓷棒骨架上制成。碳膜电阻器成本低、性能稳定、阻值范围宽、温度系数和电压系数低,是目前应用最广泛的电阻器。

3.2 金属膜电阻器。

用真空蒸发的方法将合金材料蒸镀于陶瓷棒骨架表面。

金属膜电阻比碳膜电阻的精度高,稳定性好,噪声,温度系数小。在仪器仪表及通讯设备中大量采用。

3.3 金属氧化膜电阻器

在绝缘棒上沉积一层金属氧化物。由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强。

3.4 合成膜电阻

将导电合成物悬浮液涂敷在基体上而得,因此也叫漆膜电阻。由于其导电层呈现颗粒状结构,所以其噪声大,精度低,主要用他制造高压,高阻,小型电阻器。

4、金属玻璃铀电阻器

将金属粉和玻璃铀粉混合,采用丝网印刷法印在基板上。耐潮湿,高温,温度系数小,主要应用于厚膜电路。

5、贴片电阻SMT

片状电阻是金属玻璃铀电阻的一种形式,他的电阻体是高可靠的钌系列玻璃铀材料经过高温烧结而成,电极采用银钯合金浆料。体积小,精度高,稳定性好,由于其为片状元件,所以高频性能好。

6、敏感电阻

敏感电阻是指器件特性对温度,电压,湿度,光照,气体,磁场,压力等作用敏感的电阻器。敏感电阻的符号是在普通电阻的符号中加一斜线,并在旁标注敏感电阻的类型,如:t. v等。

6.1、压敏电阻

主要有碳化硅和氧化锌压敏电阻,氧化锌具有更多的优良特性。

6.2、湿敏电阻

由感湿层,电极,绝缘体组成,湿敏电阻主要包括氯化锂湿敏电阻,碳湿敏电阻,氧化物湿敏电阻。氯化锂湿敏电阻随湿度上升而电阻减小,缺点为测试范围小,特性重复性不好,受温度影响大。碳湿敏电阻缺点为低温灵敏度低,阻值受温度影响大,由老化特性,较少使用。氧化物湿敏电阻性能较优越,可长期使用,温度影响小,阻值与湿度变化呈线性关系。有氧化锡,镍铁酸盐,等材料。

6.3、光敏电阻

光敏电阻是电导率随着光量力的变化而变化的电子元件,当某种物质受到光照时,载流子的浓度增加从而增加了电导率,这就是光电导效应。

6.4、气敏电阻

利用某些半导体吸收某种气体后发生氧化还原反应制成,主要成分是金属氧化物,主要品种有:金属氧化物气敏电阻、复合氧化物气敏电阻、陶瓷气敏电阻等。

6.5、力敏电阻

力敏电阻是一种阻值随压力变化而变化的电阻,国外称为压电电阻器。所谓压力电阻效应即半导体材料的电阻率随机械应力的变化而变化的效应。可制成各种力矩计,半导体话筒,压力传感器等。主要品种有硅力敏电阻器,硒碲合金力敏电阻器,相对而言,合金电阻器具有更高灵敏度。

压敏电阻

压敏电阻标称参数

所谓压敏电压,即击穿电压或阈值电压。指在规定电流下的电压值,大多数情况下用1mA直流电流通入压敏电阻器时测得的电压值,其产品的压敏电压范围可以从10-9000V不等。可根据具体需要正确选用。

压敏电阻用字母“MY”表示,如加J为家用,后面的字母W、G、P、L、H、Z、B、C、N、K分别用于稳压、过压保护、高频电路、防雷、灭弧、消噪、补偿、消磁、高能或高可靠等方面。压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。压敏电阻的选

用,一般考虑标称压敏电压V1mA和通流容量两个参数。

1、所谓压敏电压,即击穿电压或阈值电压。指在规定电流下的电压值,大多数情况下用1mA直流电流通入压敏电阻器时测得的电压值,其产品的压敏电压范围可以从10-9000V不等。可根据具体需要正确选用。一般V1mA=1.5Vp=2.2VAC,式中,Vp为电路额定电压的峰值。VAC为额定交流电压的有效值。ZnO压敏电阻的电压值选择是至关重要的,它关系到保护效果与使用寿命。如一台用电器的额定电源电压为220V,则压敏电阻电压值V1mA=1.5Vp=1.5××220V=476V,V1mA=2.2VAC=2.2×220V=484V,因此压敏电阻的击穿电压可选在470-480V之间。

2、所谓通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超过± 10%时的最大脉冲电流值。为了延长器件的使用寿命,ZnO压敏电阻所吸收的浪涌电流幅值应小于手册中给出的产品最大通流量。然而从保护效果出发,要求所选用的通流量大一些好。在许多情况下,实际发生的通流量是很难精确计算的,则选用2-20KA的产品。如手头产品的通流量不能满足使用要求时,可将几只单个的压敏电阻并联使用,并联后的压敏电不变,其通流量为各单只压敏电阻数值之和。要求并联的压敏电阻伏安特性尽量相同,否则易引起分流不均匀而损坏压敏电阻。

压敏电阻是一种限压型保护器件。利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。压敏电阻的主要参数有:压敏电压、通流容量、结电容、响应时间等。

压敏电阻的响应时间为ns级,比空气放电管快,比TVS管稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。压敏电阻的结电容一般在几百到几千pF的数量级范围,很多情况下不宜直接应用在高频信号线路的保护中,应用在交流电路的保护中时,因为其结电容较大会增加漏电流,在设计防护电路时需要充分考虑。压敏电阻的通流容量较大,但比气体放电管小。

压敏电阻的压敏电压(min(U1mA))、通流容量是电路设计时应重点考虑的。在直流回路中,应当有:min(U1mA) ≥(1.6~2)Udc,式中Udc为回路中的直流额定工作电压。在交流回路中,应当有:min(U1mA) ≥(2.2~2.5)Uac,式中Uac 为回路中的交流工作电压的有效值。上述取值原则主要是为了保证压敏电阻在电源电路中应用时,有适当的安全裕度。在信号回路中时,应当有:min(U1mA)≥(1.2~1.5)Umax,式中Umax为信号回路的峰值电压。压敏电阻的通流容量应根据防雷电路的设计指标来定。一般而言,压敏电阻的通流容量要大于等于防雷电路设计的通流容量。

选用压敏电阻器前,应先了解以下相关技术参数:

●标称电压(即压敏电压)是指在规定的温度和直流电流下,压敏电阻器两端的电压值。

●漏电流:指在25℃条件下,当施加最大连续直流电压时,压敏电阻器中流过的电流值。

●等级电压是指压敏电阻中通过8/20等级电流脉冲时在其两端呈现的电

压峰值。

●通流量是表示施加规定的脉冲电流(8/20μs)波形时的峰值电流。

●浪涌环境参数包括最大浪涌电流Ipm(或最大浪涌电压Vpm和浪涌源阻抗Zo)、浪涌脉冲宽度Tt、相邻两次浪涌的最小时间间隔Tm以及在压敏电阻器的预定工作寿命期内,浪涌脉冲的总次数N等。

a.压敏电压的选取

一般地说,压敏电阻器常常与被保护器件或装置并联使用,在正常情况下,压敏电阻器两端的直流或交流电压应低于标称电压,即使在电源波动情况最坏时,也不应高于额定值中选择的最大连续工作电压,该最大连续工作电压值所对应的标称电压值即为选用值。对于过压保护方面的应用,压敏电压值应大于实际电路的电压值,一般应使用下式进行选择:

VmA=av/bc

式中:a为电路电压波动系数,一般取1.2;v为电路直流工作电压(交流时为有效值);b为压敏电压误差,一般取0.85;c为元件的老化系数,一般取0.9;

这样计算得到的VmA实际数值是直流工作电压的1.5倍,在交流状态下还要考虑峰值,因此计算结果应扩大1.414倍。另外,选用时还必须注意:(1)必须保证在电压波动最大时,连续工作电压也不会超过最大允许值,否则将缩短压敏电阻的使用寿命;

(2)在电源线与大地间使用压敏电阻时,有时由于接地不良而使线与地之间电压上升,所以通常采用比线与线间使用场合更高标称电压的压敏电阻器。

b.通流量的选取

通常产品给出的通流量是按产品标准给定的波形、冲击次数和间隙时间进行脉冲试验时产品所能承受的最大电流值。而产品所能承受的冲击数是波形、幅值和间隙时间的函数,当电流波形幅值降低50%时冲击次数可增加一倍,所以在实际应用中,压敏电阻所吸收的浪涌电流应小于产品的最大通流量。

c.应用

图1所示是采用压敏电压器进行电路浪涌和瞬变防护时的电路连接图。对于压敏电阻的应用连接,大致可分为四种类型:

第一种类型是电源线之间或电源线和大地之间的连接,如图1(a)所示。作为压敏电阻器,最具有代表性的使用场合是在电源线及长距离传输的信号线遇到雷击而使导线存在浪涌脉冲等情况下对电子产品起保护作用。一般在线间接入压敏电阻器可对线间的感应脉冲有效,而在线与地间接入压敏电阻则对传输线和大地间的感应脉冲有效。若进一步将线间连接与线地连接两种形式组合起来,则可对浪涌脉冲有更好的吸收作用。

第二种类型为负荷中的连接,见图1(b)。它主要用于对感性负载突然开闭引起的感应脉冲进行吸收,以防止元件受到破坏。一般来说,只要并联在感性负

载上就可以了,但根据电流种类和能量大小的不同,可以考虑与R-C串联吸收电路合用。

第三种类型是接点间的连接,见图1(c)。这种连接主要是为了防止感应电荷开关接点被电弧烧坏的情况发生,一般与接点并联接入压敏电阻器即可。

第四种类型主要用于半导体器件的保护连接,见图1(d)。这种连接方式主要用于可控硅、大功率三极管等半导体器件,一般采用与保护器件并联的方式,以限制电压低于被保护器件的耐压等级,这对半导体器件是一种有效的保护。

TVS器件

TVS器件的特点、电特性和主要电参数

一、 TVS器件的特点

瞬态(瞬变)电压抑制二级管简称TVS器件,在规定的反向应用条件下,当承受一个高能量的瞬时过压脉冲时,其工作阻抗能立即降至很低的导通值,允许大电流通过,并将电压箝制到预定水平,从而有效地保护电子线路中的精密元器件免受损坏。TVS能承受的瞬时脉冲功率可达上千瓦,其箝位响应时间仅为1ps (10-12S)。TVS允许的正向浪涌电流在TA=250C,T=10ms条件下,可达50~200A 。双向TVS可在正反两个方向吸收瞬时大脉冲功率,并把电压箝制到预定水平,双向TVS适用于交流电路,单向TVS一般用于直流电路。

二、 TVS器件的电特性

1、单向TVS的V-I特性

如图1-1所示,单向TVS的正向特性与普通稳压二极管相同,反向击穿拐点近似“直角”为硬击穿,为典型的PN结雪崩器件。从击穿点到VC值所对应的曲线段表明,当有瞬时过压脉冲时,器件的电流急骤增加而反向电压则上升到箝位电压值,并保持在这一水平上。

2、双向TVS的V-I特性

如图1-2所示,双向TVS的V-I特性曲线如同两只单向TVS“背靠背”组合,其正反两个方向都具有相同的雪崩击穿特性和箝位特性,正反两面击穿电压的对称关系为:0.9≤V(BR)(正)/V(BR)(反)≤1.1,一旦加在它两端的干扰电压超过箝位电压VC就会立刻被抑制掉,双向TVS在交流回路应用十分方便。

三、TVS器件的主要电参数

1、击穿电压V(BR)

器件在发生击穿的区域内,在规定的试验电流I(BR)下,测得器件两端的电压称为击穿电压,在此区域内,二极管成为低阻抗的通路。

2、最大反向脉冲峰值电流IPP

在反向工作时,在规定的脉冲条件下,器件允许通过的最大脉冲峰值电流。IPP与最大箝位电压VC(MAX)的乘积,就是瞬态脉冲功率的最大值。

使用时应正确选取TVS,使额定瞬态脉冲功率PPR大于被保护器件或线路可能出现的最大瞬态浪涌功率。

当瞬时脉冲峰值电流出现时,TVS被击穿,并由击穿电压值上升至最大箝位电压值,随着脉冲电流呈指数下降,箝位电压亦下降,恢复到原来状态。因此,TVS能抑制可能出现的脉冲功率的冲击,从而有效地保护电子线路。

峰值电流波形

A、正弦半波

B、矩形波C 、标准波(指数波形) D、三角波 TVS峰值电流的试验波形采用标准波(指数波形),由TR/TP决定。

峰值电流上升时间TR:电流从0.1IPP开始达到0.9IPP的时间。

半峰值电流时间TP:电流从零开始通过最大峰值后,下降到0.5IPP值的时间。

下面列出典型试验波形的TR/TP值:

A、EMP波:10ns /1000ns

B、闪电波:8μs /20μs

C、标准波:10μs /1000μs

3、最大反向工作电压VRWM(或变位电压)

器件反向工作时,在规定的IR下,器件两端的电压值称为最大反向工作电压VRWM。通常VRWM=(0.8~0.9)V(BR)。在这个电压下,器件的功率消耗很小。使用时,应使VRWM不低于被保护器件或线路的正常工作电压。

4、最大箝位电压VC(max )

在脉冲峰值电流Ipp 作用下器件两端的最大电压值称为最大箝位电压。使用时,应使VC(max )不高于被保护器件的最大允许安全电压。最大箝位电压与击穿电压之比称为箝为系数。

即:箝位系数=VC(max )/V(BR)

一般箝位系数为1.3左右。

5、反向脉冲峰值功率PPR

TVS的PPR取决于脉冲峰值电流IPP和最大箝位电压VC(max ),除此以外,还和脉冲波形、脉冲时间及环境温度有关。

当脉冲时间Tp 一定时,PPR=K1??????K2?VC(max )?Ipp

式中K1为功率系数,K2为功率的温度系数。

典型的脉冲持续时间tp 为1MS,当施加到瞬态电压抑制二极管上的脉冲时间tp 比标准脉冲时间短时,其脉冲峰值功率将随tp 的缩短而增加。

TVS的反向脉冲峰值功率PPR与经受浪涌的脉冲波形有关,用功率系数K1表示

E=∫i(t)?V(t)dt

式中:i(t)为脉冲电流波形,V(t) 为箝位电压波形。

这个额定能量值在极短的时间内对TVS是不可重复施加的。但是,在实际的应用中,浪涌通常是重复地出现,在这种情况下,即使单个的脉冲能量比TVS

器件可承受的脉冲能量要小得多,但若重复施加,这些单个的脉冲能量积累起来,在某些情况下,也会超过TVS器件可承受的脉冲能量。因此,电路设计必须在这点上认真考虑和选用TVS器件,使其在规定的间隔时间内,重复施加脉冲能量的累积不至超过TVS器件的脉冲能量额定值。

6、电容CPP

TVS的电容由硅片的面积和偏置电压来决定,电容在零偏情况下,随偏置电压的增加,该电容值呈下降趋势。电容的大小会影响TVS器件的响应时间。

7、漏电流IR

当最大反向工作电压施加到TVS上时,TVS管有一个漏电流IR,当TVS用于高阻抗电路时,这个漏电流是一个重要的参数。

第二章 TVS选用原则

在选用TVS时,必须考虑电路的具体条件,一般应遵循以下原则:

一、大箝位电压VC(MAX)不大于电路的最大允许安全电压。

二、最大反向工作电压(变位电压)VRWM不低于电路的最大工作电压,一般可以选VRWM等于或略高于电路最大工作电压。

三、额定的最大脉冲功率,必须大于电路中出现的最大瞬态浪涌功率。

下面是TVS在电路应用中的典型例子:

TVS用于交流电路:见图2-1,这是一个双向TVS在交流电路中的应用,可以有效地抑制电网带来的过载脉冲,从而起到保护整流桥及负载中所有元器件的作用。TVS的箝位电压不大于电路的最大允许电压。图2-2所示,是用单向TVS并联于整流管旁侧,以保护整流管不被瞬时脉冲击穿,选用TVS必须是和整流管相匹配。图2-3所示电路中,单向TVS1和TVS2反接并联于电源变压器输出端或选用一个双向TVS,用以保护整流电路及负载中的元器件。TVS3保护整流以后的线路元件,如电源变压器输出端电压为36伏时一般TVS1和TVS2的工作电压VR

应根据36× 来选择,其它参数依据电路中的具体条件而下。

TVS用于直流电路,图2-4所示TVS并联于输出端,可有效地保护控制系统。TVS的反向工作电压应等于或略高于直流供电电压,其它参数根据电路的具体条件而定。图2-5所示为两个单向TVS连接在电源线路中,用以防止直流电源反接或电源通、断时产生的瞬时脉冲使集成电路损坏。当电路连接有感性负载,如电机、断电器线圈、螺线管时,会产生很高的瞬时脉冲电压。

图2-6中的TVS可以保护晶体管及逻辑电路,从而省去了较复杂的电阻/电容保护网络。

图2-7电路中TVS起保护和电压限制的作用。

直流电中选用举例:

整机直流工作电压12V,最大允许安全电压25V(峰值),浪涌源的阻抗50MΩ,其干扰波形为方波,TP=1MS,最大峰值电流50A。

选择:1、先从工作电压12V选取最大反向工作电压VRWM为13V,则击穿电压V (BR)= =15.3V;

2、从击穿电压值选取最大箝位电压VC(MAX)=1.30×V(BR)=19.89V,取VC=20V;

3、再从箝位电压VC和最在峰值电流IP计算出方波脉冲功率:

PPR=V C×IP=20×50=1000W

4、计算折合为TP=1MS指数波的峰值功率,折合系数K1=1.4,

PPR=1000W÷1.4=715W

从手册中可查到1N6147A其中PPR=1500W,变位电压VRWM=12.2V,击穿电压V(BR)=15.2V,最大箝位电压VC=22.3V,最大浪涌电流IP=67.3A。可满足上述设计要求,而且留有一倍的余量,不论方波还是指数波都适用。

交流电路应用举例:

直流线路采用单向瞬变电压抑制二极管,交流则必须采用双向瞬变电压抑制二极管。交流是电网电压,这里产生的瞬变电压是随机的,有时还遇到雷击(雷电感应产生的瞬变电压)所以很难定量估算出瞬时脉冲功率PPR。但是对最大反向工作电压必须有正确的选取。一般原则

是交流电压乘1.4倍来选取TVS管的最大反向工作电压。直流电压则按1.1—1.2倍来选取TVS管的最在反向工作电压VRWM。

图2-8给出了一个微机电源采用TVS作线路保护的原理图,由图可见:

1、在进线的220V~处加TVS管抑制220V~交流电网中尖峰干扰。

2、在变压器进线加上干扰滤波器,滤除小尖峰干扰。

3、在变压输出端V~=20V处又加上TVS管,再一次抑制干扰。

4、到了直流10V输出时还加上TVS管抑制干扰。

其中:双向TVS管D1的VRWM=220V~×1.4=308V左右

双向TVS管D2的VRWM=20V~×1.4=28V左右

单向TVS管D3的VRWM=10V~×1.2=12V左右

经过如上四次抑制,变成所谓的“净化电源”,还可以加上其它措施,更有效地抑制干扰,防止干扰进入计算机的CPU及存贮器中,从而提高微机系统的应用可靠性。

从失效统计概率可知:微机系统产生100次故障,其中90次来自电源,10次是微机本身,可见电源的可靠性最重要,要提高整机可靠性,首先应提高电源的可靠性。

第三章 TVS应用实例

TVS在美国应用十分广泛,特别是在军事电子装备中非常重视,美国军标不但出牌了不少TVS器件的标准,同时在线路应用方面也有军标,如MIL-HDBK-978B 《宇航用电子元器件手册》中第4.8节为“双极型瞬变电压抑制器”,文中列出不少TVS的应用实例。MIL-HDBK-338B《电子设备可靠性手册》中第7.4.4节为“瞬态和过应力保护”,文中也谈到了TVS的应用。

TVS在国内的应用,正处于推广应用的阶段,为了加深电路设计人员对TVS的认识,提高国产整机的可靠性,现将上述两个美国军标中译出的部分资料整理成文,推荐给广大电路设计人员参考使用。

一、 TVS在微机中的应用实例

一个典型的微机系统,通过电源线、输入线、输出线进入的各种干扰或瞬变电压,可能使微机误动作出故障,特别是来自开关电源,微机近旁的电动机的开与关、交流电源电压的浪涌和瞬变、静电放电等场合都可能使系统产生误动作,严重时还可能损坏器件。将瞬变电压抑制二极管接到微机的电源线输入和输出线上,可防止瞬变电压进入“微机”总线,加强微机对外界干扰的抵抗能力,保证微机正常工作,提高其应用可靠性。,使用TVS管的量是很多的。

二、 TVS管保护开关电源实例

对开关电源设计师来讲,必须对影响开头电源的三种瞬变类型进行保护:

1、由负载变化引起的瞬变电压(电感负载);

2、由电源线引入的瞬变电压;

3、由开关电源内部发生的瞬变电压。

由于电源中需要保护的典型元器件有:

1、高反压开关晶体管(VMOS管)

2、高压整流器(高压流整流二极管)

3、输出整流器(输出大电流整流二极管)

4、内部控制电路(脉宽调制器等)

典型开关电源中应用TVS的实例,由图可见共有八个TVS管,各自保护自已的对象,当然八个TVS管的特性也不同,从“击穿电压”、“最大脉冲峰值功率”、“脉冲峰值电流”到“箝位电压”等都有区别。美国HP公司某仪器使用的开关电源,从图中可以看到该电源中所有瞬变电压抑制二极管的数量及情况。

国外应用TVS是非常普遍的,而且数量也是很多的,可见TVS对提高整机应用可靠性是至关重要的。

三、 TVS保护直流稳压电源实例

一个直流稳压电源,并有扩大电流输出的晶体管,在其稳压输出端加上瞬变电压抑制二极管,可以保护使用该电源的仪器设备,同时还可以吸收电路中晶体管的集电极到发射极间的峰值电压,保护晶体管。建设在每个稳压源输出端增加一个TVS管,可大幅度提高整机应用可靠性。

四、 TVS保护晶体管实例

各种瞬变电压能使晶体管EB结或CE结击穿而损坏,特别是晶体管集电极有电感性(线圈、变压器、电动机)负载时,会产生高压反电势,往往使晶体管损坏。建设采用TVS管作为保护器。

五、 TVS保护集成电路实例

由于集成电路集成度越来越高,其耐压越来越低,容易受到瞬变电压的冲击而损坏,必须采取保护措施。例如CMOS电路在其输入端及输出端都有保护网路,为了更可靠起见,在各整机对外接口处还增加各种保护网络。

六、 TVS保护可控硅实例

可控硅可能误触发导致误动作,可控硅控制极电流不能太大,电压不能过高,必须采用各种保护措施。

七、 TVS保护继电器实例

继电器有驱动线圈,当用大功率晶体管驱动时,应采取保护措施,如图5

所示。有时也采用图8所示方法来抑制线圈中的高压反电势保护晶体管,哪个方案更好应根据实际情况决定。图中二极管允许的电源应比晶体管的工作电流大一倍左右,例如继电器线圈的最大电流IA,则二极管额定电流选2-3A左右,耐压则应大于电源电压的2倍左右,例如电源电压27V,则二极管耐压应为60V以上。

继电器的触点往往用大电流去开关电动机等大电流电感负载,而电感在开关时有很高的反电势,而且有较大的能量,往往把触点烧坏或击穿产生电弧等,必须对触点采取保护,抑制电弧的产生,以保护继电器。但是这种电弧产生的浪涌电流很大,过去采用电容或者用电容串联电阻、二极管、二极管串联电阻等抑制方案,现在采用瞬变电压抑制二极管方案效果更好。

美国军标举例说明TVS管的选取方法:

已知:TVS管的箝位电压VC,负载电感L和电阻RL

计算:由图3-10可见:最大峰值电流IP =

最大脉冲峰值功率PPR = IP × VC

脉冲时间TP = = =

瞬变电压抑制二极管的脉冲峰值功率与持续时间有一定关系,否则会烧坏TVS 管。

八、 TVS保护集成运放

集成运放对外界电应力非常敏感,在使用运放的过程中,如果因操作失误或采取了不正常的工作条件,出现了过大的电压或电流,特别是浪涌和静电脉冲,就很容易使运放受损或换效。在运放差模输入端采取的过压损伤保护方法。积分电路中,如果电容充放电到高电位,然后切断电源电压,就会在输入端产生瞬态电压,交出现大的放电电流,导致运放受损。如果电容值较大(如大于0.1μF),这种效应将会十分显著。采用简单的保护电路,就能有效地防止差模电压过大,导致运放内部的电路失效。

九、 TVS抑制电磁脉冲干扰实例

美国哈里期公司对电子元器件抗辐射的论文中,谈及核爆炸引发强大的电磁脉冲,这种电脉冲在导线中引起感应电压,如果感应电压超过器件的击穿电压,就可能使元器件击穿失效,特别长线传输时,更能感应而产生较高的电压。

用瞬变电压抑制二极管并联在信号线及电源线上,可以吸收电磁脉冲引起的感应电压,保证系统的可靠性,避免辐射损坏元器件。

十、用TVS防止感应雷电损坏微机系统实例

广州深圳海关计算机中上瞬变电压抑制器,提高了应用可靠性,受到用户好评。

南方打雷很多,雷电感应电压常常把计算机网中的部分计算机的集成电路击穿。每年有不少联网计算机因雷击而损坏,原因是分机与主机这间有200米以上的电缆,电缆中因雷电感应产生瞬态高压把计算机中的元器件击穿而损坏,产生较大的损失,在微机中加装很多瞬变电压抑制二级管后不再损坏。实践说明瞬变电压抑制二极管很实用,能提高整机应用可靠性,会产生较大的经济效益。

还有很多应用,例如对VMOS大功率三极管,在栅极与源机之间中上瞬变电压抑制二极管,可以防止栅极击穿,提高VMOS功率管的应用可靠性

附录一、常用电阻阻值表&常用电容容值

电阻本身的阻值常用的有161种

1,1.1,1.2,1.3,1.5,1.6,1.8

2,2.2,2.4,2.7,

3,3.3,3.6,3.9

4.3,4.7

5.1,5.6

6.2,6.8

7.5

8.2

9.1

10,11,12,13,15,16,18

20,22,24,27

30,33,36,39

43,47

51,56

62,68

75

82,81

100,110,120,130,150 ,160,180 200,220,240,270

300,330,360,390

430,470

510,560

620,680

750

820

910

1K,1.1K,1.2K,1.3K,1.5K,1.6K,1.8K 2K,2.2K,2.4K,2.7K

3K,3.3K,3.6K,3.9K

4.3K,4.7K

5.1K,5.6K

6.2K,6.8K,

7.5K

8.2K

9.1K

10K,11K,12K,13K,15K,16K,18K

20K,22K,24K,27K

30K,33K,36K,39K

43K,47K

51K,56K

62K,68K

75K

82K

91K

100K,110K,120K,130K,150K,160K,180K 200K,220K,240K,270K,

300K,330K,360K,390K

430K,470K

510K,560K

620K,680K

750K,

820K

910K

1M,1.1M,1.2M,1.3M,1.5M,1.6M,1.8M 2M,2.2M,2.4M,2.7M

3M,3.3M,3.6M,3.9M

4.4M,4.7M

常用电容容值

【单位pF】

39 P 43 P 47 P 51 P 56 P 62 P 68 P 75 P 82 P 91 P

100 P 120 P 150 P

180 P 200 P 220 P 240 P 270 P 300 P 330 P 360 P 390 P

470 P 560 P 620 P

680 P 750 P

【单位nF】

1.0 1.2 1.5 1.8

2.2 2.7

3.3 3.9

4.7

5.6 10 15 18 22 27 33

39 56 68 82

【单位uF】

0.10.15 0.22 0.33 0.47 1.0 (1.5) 2.2

常用的固定电容工作电压有6.3V、10V、16V、25V、50V、63V、100V、2500V、400V、500V、630V、1000V。

常用固定电容允许误差的等

允许误差

±2%±5%±10% ±20%(+20% -30%)(+50% -20%)(+100%-10%)

级别

02 I II III IV V VI

PCB电路板设计注意事项

作为一个电子工程师设计电路是一项必备的硬功夫,但是原理设计再完美,如果电路板设计不合理性能将大打折扣,严重时甚至不能正常工作。根据我的经验,我总结出以下一些PCB设计中应该注意的地方,希望能对您有所启示。 不管用什么软件,PCB设计有个大致的程序,按顺序来会省时省力,因此我将按制作流程来介绍一下。(由于protel界面风格与windows视窗接近,操作习惯也相近,且有强大的仿真功能,使用的人比较多,将以此软件作说明。) 原理图设计是前期准备工作,经常见到初学者为了省事直接就去画PCB板了,这样将得不偿失,对简单的板子,如果熟练流程,不妨可以跳过。但是对于初学者一定要按流程来,这样一方面可以养成良好的习惯,另一方面对复杂的电路也只有这样才能避免出错。 在画原理图时,层次设计时要注意各个文件最后要连接为一个整体,这同样对以后的工作有重要意义。由于,软件的差别有些软件会出现看似相连实际未连(电气性能上)的情况。如果不用相关检测工具检测,万一出了问题,等板子做好了才发现就晚了。因此一再强调按顺序来做的重要性,希望引起大家的注意。 原理图是根据设计的项目来的,只要电性连接正确没什么好说的。下面我们重点讨论一下具体的制板程序中的问题。 l、制作物理边框 封闭的物理边框对以后的元件布局、走线来说是个基本平台,也对自动布局起着约束作用,否则,从原理图过来的元件会不知所措的。但这里一定要注意精确,否则以后出现安装问题麻烦可就大了。还有就是拐角地方最好用圆弧,一方面可以避免尖角划伤工人,同时又可以减轻应力作用。以前我的一个产品老是在运输过程中有个别机器出现面壳PCB板断裂的情况,改用圆弧后就好了。 2、元件和网络的引入 把元件和网络引人画好的边框中应该很简单,但是这里往往会出问题,一定要细心地按提示的错误逐个解决,不然后面要费更大的力气。这里的问题一般来说有以下一些:元件的封装形式找不到,元件网络问题,有未使用的元件或管脚,对照提示这些问题可以很快搞定的。 3、元件的布局 元件的布局与走线对产品的寿命、稳定性、电磁兼容都有很大的影响,是应该特别注意的地方。一般来说应该有以下一些原则: 3.l放置顺序 先放置与结构有关的固定位置的元器件,如电源插座、指示灯、开关、连接件之类,这些器件放置好后用软件的LOCK功能将其锁定,使之以后不会被误移动。再放置线路上的特殊元件和大的元器件,如发热元件、变压器、IC等。最后放置小器件。 3.2注意散热

pcb设计注意事项(精)

pcb设计注意事项 一.焊盘重叠 焊盘(除表面贴装焊盘外)的重叠,也就是孔的重叠放置,在钻孔时会因为在一处多钻孔导致断钻头、导线损伤。 二.图形层的滥用 1. 违反常规设计,如元件面设计在BOTTOM层,焊接面设计在TOP,造成文件编辑时正反面错误。 2. PCB板内若有需铣的槽,要用KEEPOUT LAYER 或BOARD LAYER层画出,不应用其它层面,避免误铣或没铣。 三.异型孔 若板内有异型孔,用KEEPOUT 层画出一个与孔大小一样的填充区即可。异形孔的长/宽比例应≥2:1,宽度应>1.0mm,否则,钻床在加工异型孔时极易断钻,造成加工困难。 四.字符的放置 1.字符遮盖焊盘SMD焊片,给印制板的通断测试及元件的焊接带来不便。 2.字符设计的太小,造成丝网印刷的困难,使字符不够清晰。 五.单面焊盘孔径的设置 1.单面焊盘一般不钻孔,若钻孔需标注,其孔径应设计为零。如果设计了数值,这样在产生钻孔数据时,其位就会钻出孔,轻则会影响板面美观,重则板子报废。 2.单面焊盘若要钻孔就要做出特殊标注。 六.用填充区块画焊盘 用填充块画焊盘在设计线路时能够通过DRC检查,但对于加工是不行的,因此类焊盘不能直接生成阻焊数据,上阻焊剂时,该填充块区域将被阻焊剂覆盖,导致器件焊接困难。 七.设计中的填充块太多或填充块用极细的线填充 1.产生光绘数据有丢失的现象,光绘数据不完全。 2.因填充块在光绘数据处理时是用线一条一条去画的,因此产生的光绘数据量相当大,增加了数据处理难度。 八.表面贴装器件焊盘太短 这是对于通断测试而言,对于太密的表面贴装器件,其两脚之间的间距相当小,焊盘也相当细,安装测试须上下(右左)交错位置,如焊盘设计的太短,虽然不影响器件贴装,但会使测试针错不开位。 九.大面积网格的间距太小 组成大面积网格线同线之间的边缘太小(小于0.30mm),在印制过程中会造成短路。 十.大面积铜箔距外框的距离太近 大面积铜箔外框应至少保证0.20mm以上的间距,因在铣外形时如铣到铜箔上容易造成铜箔翘及由其引起焊剂脱落问题。

PCB电路板设计注意事项教学内容

P C B电路板设计注意 事项

作为一个电子工程师设计电路是一项必备的硬功夫,但是原理设计再完美,如果电路板设计不合理性能将大打折扣,严重时甚至不能正常工作。根据我的经验,我总结出以下一些PCB设计中应该注意的地方,希望能对您有所启示。 不管用什么软件,PCB设计有个大致的程序,按顺序来会省时省力,因此我将按制作流程来介绍一下。(由于protel界面风格与windows视窗接近,操作习惯也相近,且有强大的仿真功能,使用的人比较多,将以此软件作说明。) 原理图设计是前期准备工作,经常见到初学者为了省事直接就去画PCB板了,这样将得不偿失,对简单的板子,如果熟练流程,不妨可以跳过。但是对于初学者一定要按流程来,这样一方面可以养成良好的习惯,另一方面对复杂的电路也只有这样才能避免出错。 在画原理图时,层次设计时要注意各个文件最后要连接为一个整体,这同样对以后的工作有重要意义。由于,软件的差别有些软件会出现看似相连实际未连(电气性能上)的情况。如果不用相关检测工具检测,万一出了问题,等板子做好了才发现就晚了。因此一再强调按顺序来做的重要性,希望引起大家的注意。 原理图是根据设计的项目来的,只要电性连接正确没什么好说的。下面我们重点讨论一下具体的制板程序中的问题。 l、制作物理边框 封闭的物理边框对以后的元件布局、走线来说是个基本平台,也对自动布局起着约束作用,否则,从原理图过来的元件会不知所措的。但这里一定要注意精确,否则以后出现安装问题麻烦可就大了。还有就是拐角地方最好用圆弧,一方面可以避免尖角划伤工人,同时又可以减轻应力作用。以前我的一个产品老是在运输过程中有个别机器出现面壳PCB板断裂的情况,改用圆弧后就好了。 2、元件和网络的引入 把元件和网络引人画好的边框中应该很简单,但是这里往往会出问题,一定要细心地按提示的错误逐个解决,不然后面要费更大的力气。这里的问题一般来说有以下一些:元件的封装形式找不到,元件网络问题,有未使用的元件或管脚,对照提示这些问题可以很快搞定的。 3、元件的布局 元件的布局与走线对产品的寿命、稳定性、电磁兼容都有很大的影响,是应该特别注意的地方。一般来说应该有以下一些原则: 3.l放置顺序 先放置与结构有关的固定位置的元器件,如电源插座、指示灯、开关、连接件之类,这些器件放置好后用软件的LOCK功能将其锁定,使之以后不会被误移动。再放置线路上的特殊元件和大的元器件,如发热元件、变压器、IC等。最后放置小器件。 3.2注意散热

PCB绘制时注意事项-1

PCB绘制时注意事项 1.原理图常见错误: (1)ERC报告管脚没有接入信号: a. 创建封装时给管脚定义了I/O属性; b.创建元件或放置元件时修改了不一致的grid属性,管脚与线没有连上; c. 创建元件时pin方向反向,必须非pin name端连线 (2)元件跑到图纸界外:没有在元件库图表纸中心创建元件. (3)创建的工程文件网络表只能部分调入pcb:生成netlist时没有选择为global. (4)当使用自己创建的多部分组成的元件时,千万不要使用annotate. 2.PCB中常见错误: (1)网络载入时报告NODE没有找到: a. 原理图中的元件使用了pcb库中没有的封装; b. 原理图中的元件使用了pcb库中名称不一致的封装; c. 原理图中的元件使用了pcb库中pin number不一致的封装.如三极管:sch中pin number 为e,b,c, 而pcb中为1,2,3. (2)打印时总是不能打印到一页纸上: a. 创建pcb库时没有在原点; b. 多次移动和旋转了元件,pcb板界外有隐藏的字符.选择显示所有隐藏的字符, 缩小pcb, 然后移动字符到边界内. (3)DRC报告网络被分成几个部分: 表示这个网络没有连通,看报告文件,使用选择CONNECTED COPPER查找.另外提醒朋友尽量使用WIN2000, 减少蓝屏的机会; 多几次导出文件,做成新的DDB文件, 减少文件尺寸和PROTEL僵死的机会.如果作较复杂得设计,尽量不要使用自动布线.在PCB 设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的, 在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大.PCB布线有单面布线、双面布线及多层布线.布线的方式也有两种:自动布线及交互式布线,在自动布线之前, 可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行, 以免产生反射干扰.必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合. 自动布线的布通率,依赖于良好的布局,布线规则可以预先设定, 包括走线的弯曲次数、导通孔的数目、步进的数目等.一般先进行探索式布经线,快速地把短线连通, 然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线. 并试着重新再布线,以改进总体效果. 对目前高密度的PCB设计已感觉到贯通孔不太适应了, 它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用, 还省出许多布线通道使 布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的 过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会, 才能得到其中的真谛. 1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率.所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量.对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因, 现只对降低式抑制噪音作以表述:众所周知的是在电源、地线之间加上去耦电容.尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可 达0.05~0.07mm,电源线为1.2~2.5 mm对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用.或是做成多层板,电源,地线各占用一层. 2、数字电路与模拟电路的共地处理

PCB LAYOUT安规设计注意事项

安规设计注意事项 1.零件选用 (1)在零件选用方面,要求掌握: a .安规零件有哪些?(见三.安规零件介绍) b.安规零件要求 安规零件的要求就是要取得安规机构的认证或是符合相关安规标准; c.安规零件额定值 任何零件均必须依MANUFACTURE规定的额定值使用; I 额定电压; II 额定电流; III 温度额定值; (2). 零件的温升限制 a. 一般电子零件: 依零件规格之额定温度值,决定其温度上限 b. 线圈类: 依其绝缘系统耐温决定 Class A ΔT≦75℃ Class E ΔT≦90℃ Class B ΔT≦95℃ Class F ΔT≦115℃ Class H ΔT≦140℃ c. 人造橡胶或PVC被覆之线材及电源线类: 有标示耐温值T者ΔT≦(T-25)℃ 无标示耐温值T者ΔT≦50℃ d. Bobbin类: 无一定值,但须做125℃球压测试; e. 端子类: ΔT≦60℃ f. 温升限值 I. 如果有规定待测物的耐温值(Tmax),则: ΔT≦Tmax-Tmra II. 如果有规定待测物的温升限值(ΔTmax),则: ΔT≦ΔTmax+25-Tmra 其中Tmra=制造商所规定的设备允许操作室温或是25℃ (3).使用耐然零件: a.PCB: V-1以上; b.FBT, CRT, YOKE :V-2以上; c.WIRING HARNESS:V-2以上; d.CORD ANONORAGE: HB以上; e.其它所有零件: V-2以上或HF-2以上; f.例外情形: 下述零件与电子零件(限会在失误状况下,因温度过高而引燃的电子零件)若相隔13mm以上,或是相互间以至少V-1等级之障碍物隔开,则其耐燃等级要求如下: I.小型的齿轮,凸轮,皮带,轴承及其它小零件,不须防火证明; II.空气载液的导管,粉状物容器及发泡塑料零件,防火等级为HB以上或HBF以上 g.下述件不须防火证明: I.胶带;

PCB电路设计流程

PCB电路设计流程(2011-10-28 11:14) 分类:开关电源 1 推荐 PCB的设计流程分为网表输入、规则设置、元器件布局、布线、检查、复查、输出六个步骤. 1. 网表输入 网表输入有两种方法,一种是使用PowerLogic的OLE PowerPCB Connection功能,选择Send Netlist,应用OLE功能,可以随时保持原理图和PCB图的一致,尽量减少出错的可能。另一种方法是直接在PowerPCB中装载网表,选择File->Import,将原理图生成的网表输入进来。 2.规则设置 如果在原理图设计阶段就已经把PCB的设计规则设置好的话,就不用再进行设置 这些规则了,因为输入网表时,设计规则已随网表输入进PowerPCB了。如果修改了设计规则,必须同步原理图,保证原理图和PCB的一致。除了设计规则和层定义外,还有一些规则需要设置,比如Pad Stacks,需要修改标准过孔的大小。如果设计者新建了一个焊盘或过孔,一定要加上Layer 25。 注意:PCB设计规则、层定义、过孔设置、CAM输出设置已经作成缺省启动文件,名称为Default.stp,网表输入进来以后,按照设计的实际情况,把电源网络和地分配给电源层和地层,并设置其它高级规则。在所有的规则都设置好以后,在PowerLogic中,使用OLE PowerPCB Connection的Rules From PCB功能,更新原理图中的规则设置,保证原理图和PCB图的规则一致。 3. 元器件布局 网表输入以后,所有的元器件都会放在工作区的零点,重叠在一起,下一步的工作就是把这些元器件分开,按照一些规则摆放整齐,即元器件布局。PowerPCB提供了两种方法,手工布局和自动布局。 ①、手工布局 A. 工具印制板的结构尺寸画出板边(Board Outline)。 B. 将元器件分散(Disperse Components),元器件会排列在板边的周围。 C. 把元器件一个一个地移动、旋转,放到板边以内,按照一定的规则摆放整齐。 ②、自动布局 PowerPCB提供了自动布局和自动的局部簇布局,但对大多数的设计来说,效果并不理想,不推荐使用。 ③、注意事项 a. 布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起 b. 数字器件和模拟器件要分开,尽量远离 c. 去耦电容尽量靠近器件的VCC d. 放置器件时要考虑以后的焊接,不要太密集 e. 多使用软件提供的Array和Union功能,提高布局的效率

印刷电路板图设计注意事项

印刷电路板图设计注意事项 一台性能优良的仪器,除选择高质量的元器件,合理的电路外,印刷线路板的组件布局和电气联机方向的正确结构设计是决定仪器能否可靠工作的一个关键问题,对同一种组件和参数的电路,由于组件布局设计和电气联机方向的不同会产生不同的结果,其结果可能存在很大的差异。因而,必须把如何正确设计印刷线路板组件布局的结构和正确选择布线方向及整体仪器的工艺结构三方面联合起来考虑,合理的工艺结构,既可消除因布线不当而产生的噪声干扰,同时便于生产中的安装、调试与检修等。 下面我们针对上述问题进行讨论,由于优良“结构”没有一个严格的“定义”和“模式”,因而下面讨论,只起抛砖引玉的作用,仅供参考。每一种仪器的结构必须根据具体要求(电气性能、整机结构安装及面板布局等要求),采取相应的结构设计方案,并对几种可行设计方案进行比较和反复修改。 印刷板电源、地总线的布线结构选择----系统结构:模拟电路和数字电路在组件布局图的设计和布线方法上有许多相同和不同之处。模拟电路中,由于放大器的存在,由布线产生的极小噪声电压,都会引起输出信号的严重失真,在数字电路中,TTL噪声容限为0.4V~0.6V,CMOS噪声容限为Vcc的0.3~0.45倍,故数字电路具有较强的抗干扰的能力。 良好的电源和地总线方式的合理选择是仪器可靠工作的重要保证,相当多的干扰源是通过电源和地总线产生的,其中地线引起的噪声干扰最大。 一、印刷电路板图设计的基本原则要求 1.印刷电路板的设计,从确定板的尺寸大小开始,印刷电路板的尺寸因受机箱外壳大小限制,以能恰好安放入外壳内为宜,其次,应考虑印刷电路板与外接元器件(主要是电位器、插口或另外印刷电路板)的连接方式。印刷电路板与外接组件一般是通过塑料导线或金属隔离线进行连接。但有时也设计成插座形式。即:在设备内安装一个插入式印刷电路板要留出充当插口的接触位置。 对于安装在印刷电路板上的较大的组件,要加金属附件固定,以提高耐振、耐冲击性能。 2.布线图设计的基本方法 首先需要对所选用组件器及各种插座的规格、尺寸、面积等有完全的了解;对各部件的位置安排作合理的、仔细的考虑,主要是从电磁场兼容性、抗干扰的角度,走线短,交叉少,电源,地的路径及去耦等方面考虑。各部件位置定出后,就是各部件的联机,按照电路图连接有关引脚,完成的方法有多种,印刷线路图的设计有计算机辅助设计与手工设计方法两种。 最原始的是手工排列布图。这比较费事,往往要反复几次,才能最后完成,这在没有其它绘图设备时也可以,这种手工排列布图方法对刚学习印刷板图设计者来说也是很有帮助的。计算机辅助制图,现在有多种绘图软件,功能各异,但总的说来,绘制、修改较方便,并且可以存盘贮存和打印。 接着,确定印刷电路板所需的尺寸,并按原理图,将各个元器件位置初步确定下来,然后经过不断调整使布局更加合理,印刷电路板中各组件之间的接线安排方式如下:

PCB设计规则__个人.

1. 原理图绘制 (3 1.1. SCH首选项 tools->performance (3 1.2. SCH绘图默认选项tools->performance->default primitives (3 1.3. SCH project 首选项 project options (3 1.4. 原理图基本grid单位设置(tools->document option (3 1.5. 原理图库绘制 (3 1.6. 特殊指令 (3 1.7. 快速查看功能 (3 1.8. 元器件重命名 (3 1.9. 引脚交换(pin swap (3 1.10. 生成project直接依赖库文件 (3 1.11. 打印smart PDF (3 1.1 2. 原理图DRC (3 1.13. 注意事项 (3 1.14. 其他特殊指令 (3 2. 印制板绘制 (4 2.1. PCB首选项tools->performance。 (4 2.2. PCB元素默认选项tools->performance->default。 (4 2.3. 定义零点(org Edit->origion->set。 (4

2.4. 设置PCB board基本信息 (Design->board options (4 2.5. 边框绘制 (4 2.6. 固定位置放置 (4 2.7. 设置叠层 (4 2.8. 设置AD6规则(rule (4 2.8.1. electrical->clearance,routing->width (4 2.8.2. VIA和PAD设计规则 (5 2.8. 3. 表贴焊盘设计原则(机器焊接 (7 2.8.4. 布线布局要求 (9 2.8.5. routing->routing priority, routing Topology,routing layers,conrner (10 2.8.6. routing via style (10 2.8.7. Fanout control (11 2.8.8. Mask->solder mask ,Paste mask (11 2.8.9. plane常数 (11 2.8.10. 制造过孔尺寸 (11 2.8.11. 设置放置空间placement->room definition (11 2.8.12. 设置元器件放置常数placement->component clearance (11 2.8.1 3. 其他规则 (11 2.9. 导入网络表(design->import.... (11

电路板设计时的注意事项

电路板设计时的注意事项 1.确定电路板的大概尺寸,根据大概尺寸购买合适的外壳,再根据外壳的尺寸画出电路板的外形图,电路板的外形由数控铣床加工,因此可以根据要求设计出比较复杂的形状; 2.标准元件库中没有的封装一定要自己去做,不要图省事对付画上; 3.注意DIP封装的元器件焊盘的尺寸,外径应为62mil,内径应为35mil,Protel99中的默认尺寸不恰当,应注意修改; 4.注意SIP(单列直插元器件)的焊盘尺寸,外径应为62mil,内径因为39mil,内径太小的话,插针有可能插不进去; 5.注意封装为RB-.2/.4或RAD0.2的铝电解电容或电感的焊盘尺寸,外径应为65mil以上,内径因为39mil,内径太小的话,引脚可能插不进去; 6.普通贴片电阻和贴片电容的封装选择0805; 7.注意电源线和地线的宽度不要小于20mil,电流特别大的走线宽度要加大到30mil或50mil,或者更大,100mil以上,对于专门设计的电源电路还要将覆铜加厚; 8.注意线路板上的元器件不要干涉,互相影响,要考虑到焊接、装配的方便; 9.CPU附近不要有很高的元器件,否则会影响仿真器的使用(仿真器插不进去); 10.注意对地线覆铜,覆铜时注意和已有线路的间距,要在15mil以上,太小的话,万一加工工艺不好会导致线路短路; 11.对于高频信号线,走线应尽量短,线路太长的话会增加分部电容,导致信号错误; 12.注意各安装孔的内径、外径尺寸,太大、太小都会影响安装; 13.布线完毕后,将PCB图安装1:1的比例打印出来,对于不太把握的元器件可以放到打印出来的图纸上比较,看位置、尺寸是否合适,有时标准库中的封装不一定就和实际使用的元器件一致; 以上几点内容需要在布线时仔细对比检查,看看线路板上有没有错误。蓝色标出的是需要重点检查的内容。 两边的边界线要修改为TopOverlay否则将切槽。

电路板设计报告要求

封面:***电路板设计报告 **姓名,年级专业,日期等 主要内容: 1.电路原理图(原理图的截图) 工作频率:40HZ~20KHZ 额定输出功率:(P>1W8Ω、1KHZ) 主要用途:对输入的交流信号就行功率放大 电路性质:纯模拟电路 工作原理:利用运放NE555构成同向比例放大电路对输入信号的电压进行放大;运放的输出信号经过经过两级互补功率放大器;T1和T2、T3和T4组成互补 对称功率输出级。功率管T1为NPN,功率管T2为PNP,它们参数相等,互为对偶关系,均采用发射极输出模式,放大输入信号的电流。两个二极管VD2 和VD3给T1和T2一定的正偏压,使两个三极管在静态时处于微导通状态, 以克服交越失真。当运放的输出信号大于0时,T1管导通,T2管截止。T1管 以射极输出方式将正半周期的信号传递给下一级,此时正电源+12供电;当运 放的输出信号小于0时,T1管截止,T2管以射极输出方式将正半周期的信号 传递给下一级,此时负电源-12供电。这样,T1和T2管以互补的方式交替工作,正、负电源交替供电。T3、T4管的工作原理原理与T2、T1工作原理相同,进 一步对输入信号的电流进行了放大。 关键操作步骤:1.从元件库找到设计电路需要的元件并放置;当原

可以观察出此功率放大电路的工作频率范围。当波特图的幅值下降3DB时,所 对应的输入信号的频率就是该功率放大电路稳定工作的频率。 2.参数扫描: 参数扫描分析用来研究电路中某个元件的参数在一定范围内变化时对电路性能的影响。选择图1中电阻R1为参数扫描分析元件,分析其阻值变化对电路输出波形的影响。图1功率放大电路设置为交流信号输入方式,设置正弦波输入信号频率为1kHz、幅值为1V,依次执行Simulate/Analyses/Parametet Sweep(参数扫描)命令,设置扫描方式为Linear(线性扫描),设置电阻Re扫描起始值为20kΩ,扫描终值为100kΩ,扫描点数为3,设置输出节点为10,得到如图3(a)所示参数扫描分析结果。当R1=20kΩ时,其输出的波形的幅值约为1V;R1=100kΩ时,其输出的波形的幅值约为5V;由此可知R1影响电路的电压放大倍数;与理论上同向比例放大电路计算的结果差不多。

画pcb的注意事项

PCB设计基础教程目录 1.高速PCB设计指南之一 2.高速PCB设计指南之二 3.PCB Layout指南(上) 4.PCB Layout指南(下) 5.PCB设计的一般原则 6.PCB设计基础知识 7.PCB设计基本概念 8.pcb设计注意事项 9.PCB设计几点体会 10.PCB LAYOUT技术大全 11.PCB和电子产品设计 12.PCB电路版图设计的常见问题 13.PCB设计中格点的设置 14.新手设计PCB注意事项 15.怎样做一块好的PCB板 16.射频电路PCB设计 17.设计技巧整理 18.用PROTEL99制作印刷电路版的基本流程 19.用PROTEL99SE 布线的基本流程 20.蛇形走线有什么作用 21.封装小知识 22.典型的焊盘直径和最大导线宽度的关系

23.新手上路认识PCB 24.新手上路认识PCB<二> 高速PCB设计指南之一 高速PCB设计指南之一 第一篇 PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。 自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2 数字电路与模拟电路的共地处理

硬件电路板设计方案规范

0目录 0目录 (2) 1概述 (4) 1.1适用范围 (4) 1.2参考标准或资料 (4) 1.3目的 (5) 2PCB设计任务的受理和计划 (5) 2.1PCB设计任务的受理 (5) 2.2理解设计要求并制定设计计划 (6) 3规范内容 (6) 3.1基本术语定义 (6) 3.2PCB板材要求: (7) 3.3元件库制作要求 (8) 3.3.1原理图元件库管理规范: (8) 3.3.2PCB封装库管理规范 (9) 3.4原理图绘制规范 (11) 3.5PCB设计前的准备 (12) 3.5.1创建网络表 (12) 3.5.2创建PCB板 (13) 3.6布局规范 (13) 3.6.1布局操作的基本原则 (13) 3.6.2热设计要求 (14) 3.6.3基本布局具体要求 (16) 3.7布线要求 (24) 3.7.1布线基本要求 (27) 3.7.2安规要求 (30)

3.8丝印要求 (32) 3.9可测试性要求 (33) 3.10PCB成板要求 (34) 3.10.1成板尺寸、外形要求 (34) 3.10.2固定孔、安装孔、过孔要求 (36) 4PCB存档文件 (37)

1概述 1.1 适用范围 本《规范》适用于设计的所有印制电路板(简称PCB); 规范之前的相关标准、规范的内容如与本规范的规定相抵触的,以本规范为准。 1.2 参考标准或资料 下列标准包含的条文,通过在本标准中引用而构成本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨,使用下列标准最新版本的可能性: GB/4588.3—88 《印制电路板设计和使用》 Q/DKBA-Y001-1999《印制电路板CAD工艺设计规范》 《PCB工艺设计规范》 IEC60194 <<印制板设计、制造与组装术语与定义>> (Printed Circuit Board design manufacture and assembly-terms and definitions) IPC—A—600F <<印制板的验收条件>> (Acceptably of printed board) IEC60950 安规标准 GB/T 4677.16-1988 印制板一般检验方法

画PCB注意事项

1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电源、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: 众所周知的是在电源、地线之间加上去耦电容。 尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) 用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2、数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。 3、信号线布在电(地)层上 在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。 4、大面积导体中连接腿的处理 在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易造成虚焊点。所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。 5、布线中网络系统的作用 在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来支持布线的进行。 标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。 6、设计规则检查(DRC) 布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面: 线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。

PCB画板心得及画板注意事项

电路板设计规则 在PCB 设计中,布线是完成产品设计的重要步骤,PCB 布线有单面布线、双面布线和多层布线。为了避免输入端与输出端的边线相邻平行而产生反射干扰和两相邻布线层互相平行产生寄生耦合等干扰而影响线路的稳定性,甚至在干扰严重时造成电路板根本无法工作,在PCB 布线工艺设计中一般考虑以下方面: 1 .考虑PCB 尺寸大小 PCB 尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;尺寸过小,则散热不好,且邻近线条易受干扰。应根据具体电路需要确定PCB 尺寸。 2 .确定特殊组件的位置 确定特殊组件的位置是PCB 布线工艺的一个重要方面,特殊组件的布局应主要注意以下方面: ● 尽可能缩短高频元器件之间的联机,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互离得太近,输入和输出组件应尽量远离。 ● 某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。 ● 重量超过15g 的元器件、应当用支架加以固定,然后焊

接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏组件应远离发热组件。 ● 对于电位器、可调电感线圈、可变电容器、微动开关等可调组件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。应留出印制板定位孔及固定支架所占用的位置。 3 .布局方式 采用交互式布局和自动布局相结合的布局方式。布局的方式有两种:自动布局及交互式布局,在自动布线之前,可以用交互式预先对要求比较严格的线进行布局,完成对特殊组件的布局以后,对全部组件进行布局,主要遵循以下原则: ● 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。 ● 以每个功能电路的核心组件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB 上。尽量减少和缩短各元器件之间的引线和连接。 ● 在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观,而且装焊容易,易于批量生产。 ● 位于电路板边缘的元器件,离电路板边缘一般不小于

PCB设计中的注意事项

PCB设计中的注意事项 作为一个电子工程师设计电路是一项 必备的硬功夫,但是原理设计再完美,如果电路板设计不合理性能将大打折扣,严重时甚至不能正常工作。根据我的经验,我总结出以下一些PCB设计中应该注意的地方,希望能对您有所启示。 不管用什么软件,PCB设计有个大致的程序,按顺序来会省时省力,因此我将按制作流程来介绍一下。 原理图设计是前期准备工作,经常见到初学者为了省事直接就去画PCB板了,这样将得不偿失,对简单的板子,如果熟练流程,不妨可以跳过。但是对于初学者一定要按流程来,这样一方面可以养成良好的习惯,另一方面对复杂的电路也只有这样才能避免 出错。 在画原理图时,层次设计时要注意各个文件最后要连接为一个整体,这同样对以后的工作有重要意义。由于,软件的差别有些软件

会出现看似相连实际未连的情况。如果不用相关检测工具检测,万一出了问题,等板子做好了才发现就晚了。因此一再强调按顺序来做的重要性,希望引起大家的注意。 原理图是根据设计的项目来的,只要电性连接正确没什么好说的。下面我们重点讨论一下具体的制板程序中的问题。 l、制作物理边框 封闭的物理边框对以后的元件布局、走线来说是个基本平台,也对自动布局起着约束作用,否则,从原理图过来的元件会不知所措的。但这里一定要注意精确,否则以后出现安装问题麻烦可就大了。还有就是拐角地方最好用圆弧,一方面可以避免尖角划伤工人,同时又可以减轻应力作用。以前我的一个产品老是在运输过程中有个别机器出现面壳PCB板断裂的情况,改用圆弧后就好了。 2、元件和网络的引入 把元件和网络引人画好的边框中应该很简单,但是这里往往会出问题,一定要细心地按提示的错误逐个解决,不然后面要费更大

PCB设计注意事项(新版本)

PCB设计注意事项
(以Protel软件为例)
2005-8-11
广州杰赛科技股份有限公司
1

? 目的: ? ? ? ? ? 满足功能上的要求; 符合可制造性要求; 尽可能降低生产成本 提高生产效率; 改善产品的质量。
2005-8-11
广州杰赛科技股份有限公司
2

1 、大面积铺铜网格 1.1 构成大面积网格的线与线之间的净空(网格中无铜的小方块)尺寸 ≥10mil×10 mil(0.254mm×0.254mm),否则在加工过程中此处的 感光膜附着力较差,容易脱落而出现多余或缺少图形的现象。另外, 建议其表面涂覆绿油而不要采用喷锡。若需要大面积铜箔表面喷锡尽 量采用实心的铜块,以免影响喷锡表面的平整度。另外,设置网格的 线宽时,不要设置得太小,否则数据量会大增。
12mil s
10mil s
2005-8-11
广州杰赛科技股份有限公司
3

1.2 隔离环大小: 铺实心铜或铜网格时,应注意其与焊盘边缘(以下简称隔离环)的间 隙,一般要大于10mils。如果隔离环太小,则在加工过程中为了保证线 宽及孔径的大小,一般对线路及孔径都有一定的补偿,这就造成间距太 小,加工难度大;同时对于多层板,层间叠加及钻孔都有一定的偏差, 如果隔离环不够则可能会产生短路现象。
黑圈:代表隔离环,一般 要大于10mils
2005-8-11
广州杰赛科技股份有限公司
4

2、 在允许的情况下尽量使对称层(如四层板,第一层与第四层、第 二层与第三层之间)的图形分布得较一致,如果设计不允许情况下尽 可能优先选择:第一层与第三层、第二层与第四层之间图形分布一 致。如果存在较大的无图形部分,则建议在此区域铺些铜网格或实心 铜,可适当地避免成品板翘曲的产生。另外,如果在孤立线路周围覆 些铜网络或实心铜,可避免产生线路烧焦、线表面因铜厚加剧导致夹 膜,产生短路。
可在此孤立的区域铺铜(网格或实心 铜)
TOP层
2005-8-11 广州杰赛科技股份有限公司
BOTTOM层
5

电源PCB设计注意事项及经验

我的PCB设计经验 ------------------------------------------------------------------------------ 作为一个电子工程师设计电路是一项必备的硬功夫,但是原理设计再完美,如果电路板设计不合理性能将大打折扣,严重时甚至不能正常工作。根据我的经验,我总结出以下一些PCB设计中应该注意的地方,希望能对您有所启示。 不管用什么软件,PCB设计有个大致的程序,按顺序来会省时省力,因此我将按制作流程来介绍一下。(由于protel界面风格与windows视窗接近,操作习惯也相近,且有强大的仿真功能,使用的人比较多,将以此软件作说明。) 原理图设计是前期准备工作,经常见到初学者为了省事直接就去画PCB板了,这样将得不偿失,对简单的板子,如果熟练流程,不妨可以跳过。但是对于初学者一定要按流程来,这样一方面可以养成良好的习惯,另一方面对复杂的电路也只有这样才能避免出错。 在画原理图时,层次设计时要注意各个文件最后要连接为一个整体,这同样对以后的工作有重要意义。由于,软件的差别有些软件会出现看似相连实际未连(电气性能上)的情况。如果不用相关检测工具检测,万一出了问题,等板子做好了才发现就晚了。因此一再强调按顺序来做的重要性,希望引起大家的注意。 原理图是根据设计的项目来的,只要电性连接正确没什么好说的。下面我们重点讨论一下具体的制板程序中的问题。 1.制作物理边框 封闭的物理边框对以后的元件布局、走线来说是个基本平台,也对自动布局起着约束作用,否则,从原理图过来的元件会不知所措的。但这里一定要注意精确,否则以后出现安装问题麻烦可就大了。还有就是拐角地方最好用圆弧,一方面可以避免尖角划伤工人,同时又可以减轻应力作用。以前我的一个产品老是在运输过程中有个别机器出现面壳PCB板断裂的情况,改用圆弧后就好了。 2.元件和网络的引入 把元件和网络引人画好的边框中应该很简单,但是这里往往会出问题,一定要细心地按提示的错误逐个解决,不然后面要费更大的力气。这里的问题一般来说有以下一些: 元件的封装形式找不到,元件网络问题,有未使用的元件或管脚,对照提示这些问题可以很快搞定的。 3.元件的布局 元件的布局与走线对产品的寿命、稳定性、电磁兼容都有很大的影响,是应该特别注意的地方。一般来说应该有以下一些原则:

画PCB时应该注意事项

画PCB时应该注意事项 去耦电容不是一般称的滤波电容,滤波电容指电源系统用的,去藕电容则是分布在器件附近或子电路处主要用于对付器件自身或外源性噪声的特殊滤波电容,故有特称——去耦电容,去耦指“去除(噪声)耦合”之意. 1、去耦电容的一般配置原则 ● 电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗干扰效果会更好. ● 为每个集成电路芯片配置一个0.01uF的陶瓷电容器.如遇到印制电路板空间小而装不下时,可每4~10个芯片配置一个1~10uF钽电解电容器,这种器件的高频阻抗特别小,在500kHz~20MHz范围内阻抗小于1Ω,而且漏电流很小(0.5uA以下). ● 对于噪声能力弱、关断时电流变化大的器件和ROM、RAM等存储型器件,应在芯片的电源线(Vcc)和地线(GND)间直接接入去耦电容. ● 去耦电容的引线不能过长,特别是高频旁路电容不能带引线. ● 在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须RC 电路来吸收放电电流.一般R 取1 ~ 2K,C取2.2 ~ 47UF. ● CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源. ● 设计时应确定使用高频低频中频三种去耦电容,中频与低频去耦电容可根据器件与PCB功耗决定,可分别选47-1000uF和470-3300uF;高频电容计算为: C=P/V*V*F. ● 每个集成电路一个去耦电容.每个电解电容边上都要加一个小的高频旁路电容. ● 用大容量的钽电容或聚酷电容而不用电解电容作电路充放电储能电容.使用管状电时,外壳要接地. 由于大部分能量的交换也是主要集中于器件的电源和地引脚,而这些引脚又是独立的直接和地电平面相连接的.这样,电压的波动实际上主要是由于电流的不合理分布引起.但电流的分布不合理主要是由于大量的过孔和隔离带造成的.这种情况下的电压波动将主要传输和影响到器件的电源和地线引脚上. 为减小集成电路芯片电源上的电压瞬时过冲,应该为集成电路芯片添加去耦电容.这可以有效去除电源上的毛刺的影响并减少在印制板上的电源环路的辐射. 当去耦电容直接连接在集成电路的电源管腿上而不是连接在电源层上时,其平滑毛刺的效果最好.这就是为什么有一些器件插座上带有去耦电容,而有的器件要求去耦电容距器件的距离要足够的小. 2、配置电容的经验值 好的高频去耦电容可以去除高到1GHZ的高频成份.陶瓷片电容或多层陶瓷电容的高频特性较好.设计印刷线路板时,每个集成电路的电源,地之间都要加一个去耦电容. 去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成电路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声. 数字电路中典型的去耦电容为0.1uF的去耦电容有5nH分布电感,它的并行共振频率大约在7MHz左右,也就是说对于10MHz以下的噪声有较好的去耦作用,对40MHz以上的噪声几乎不起作用. 1uF,10uF电容,并行共振频率在20MHz以上,去除高频率噪声的效果要好一些.在电源进入印刷板的地方放一个1uF或10uF的去高频电容往往是有利的,即使是用电池供电的系统也需要这种电容. 每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10uF.最好不用电解电容,电解电容是两层溥膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使

相关主题
文本预览
相关文档 最新文档