当前位置:文档之家› 热电阻测温及其保护电路设计

热电阻测温及其保护电路设计

热电阻测温及其保护电路设计
热电阻测温及其保护电路设计

目前,热电阻和热电偶是工业生产过程自动化最常用的两种温度传感器。热电阻由于在测量的灵敏度、线性度等诸多方面均优于热电偶,因此,在中低温区得到了更广泛的应用。

传统的不平衡电桥作为电阻温度变送器(如铜热电阻、铂热电阻等)的测量电路,在温度测量和控制中起着极其重要的作用。这种电路也经常作为单片机的一种前向通道接口使用,进而构成智能化测量控制仪表,但是,不平衡电桥中存在的非线性特性一直是人们需要彻底解决的问题。除此之外,在设计中,还要考虑自热温升、引线电阻、零点迁移等因素。对于热电阻的测量,人们进行了大量的研究,也发表了很多的文章,在对这些成果进行借鉴的基础上,本文提出了一种新型的热电阻测量电路,具有通用性强、测量精度高、电路简单等特点。

2 电桥非线性分析

电桥是在工业测量过程中进行电阻—电压转换的常用电路,具有结构简单及良好的动态品质。但存在的问题是桥臂电阻和电桥输出电压之间的非线性。

产生ΔR的变化时,电桥输出电压变化为:如图2—1所示,在桥臂电阻R

2

显然,上式的分母项是产生非线性的根本原因。而该分母项的产生,其原因是当R2发生变化时,该侧桥臂上的电流也相应的发生变化。如果保证该侧电流恒定,那么,电压与电阻的关系就是线性的。基于这种思路,作者利用恒流源设计了热电阻测量电路,下一部分将进行重点说明。

3 热电阻测量电路设计与分析

在图3—1中左侧为恒流源电路,为了便于说明,将其分离出来如图3—2所示。

通过反馈网络对取样电阻上的电压取样,然后,与基准电压比较,得到一个误差,

将此误差用放大器放大后去控制调整管,改变调整管c-e之间的电压降,达到恒流的目的。

R S 为取样电阻,当电流I流过R

S

时,R

S

上压降为V

RS

,有:

V RS =I×R

S

(3—1)

V

RS 与I成正比。当I变化时V

RS

一定朝着相同的方向变化。有:

V

P =V

REF (3-2)

V N =V

RS

(3—3)

其中,V

P

为比较放大器的同相输入端电压,V

N

为反相端输入电压。

在理想的情况下,对于运算放大器来说,有: V

P

V N (3—4) V

RS

=V

REF (3-5)

即:V

RS =V

REF

(3—5)因此,从理论上说,有

I=V

RS /R

S

(3—6)

实际上,由于比较器的放大倍数非常大,输入阻抗也非常高,电流源电路是根据

V RS 来调整调整管的导通状态,从而得到恒流的目的:当I变大时,V

RS

增大,由于V

REF

不变,因此比较器的输出下降,调整管基极的电流会变小,从而I下降;I变小时,调整过程正好相反。

下面是对恒流源的特性进行的分析。对于图3—2,设比较器的输出电压为V

O

比较器的开环放大倍数为A,调整管基极电流为I

b ,集电极电流为I

c

,发射极电流为

I

e

。因此有:

整理后可得:

由式(3—14)可得出恒流I可以近似的看作只是V

REF 和R

S

和函数,而与其他参

数无关。在使用过程中,即使某些器件的参数有所变化,如运算放大器的开环放大倍数A发生变化,也不会影响到恒定电流I的数值。

在图3—1中,R

1,R

2

半桥的电流I

1

是由串联调整恒流源提供的稳定电流。通过

使用电压跟随器IC1 B,使R

1,R

2

半桥与R

3

,R

4

半桥相互隔离,即电流I

1

与R

3

,R

4

桥的电流I

2

无关;而两半桥的电压相等。

热电阻R

1

采用了三线制接线方式连接,3条引线的电阻均为r,其中两个引线电

阻分别包括在R

1支路和R

2

支路中,另外一个引线电阻与电桥的输出端相连接,因为

该输出端与输入阻抗极高的放大器相连接,所以,这个引线电阻可以忽略不计。电桥的各部分电压差分别为:

当热电阻R

1的阻值因被测温度的改变而改变时,即R

1

=R

+ΔR,电桥偏了原来的

平衡状态,此时,电桥的输出电压为:

式中I

1

为前述恒流源提供的恒定电流,可见ΔU与ΔR成线性关系,克服了不平衡电桥桥臂电阻与输出电压的非线性。IC1 C和IC1 D组成两个电压跟随器,输入阻抗极高,以保证在测量过程中不影响两个半桥的电压和电流。

电桥的输出为差压,IC2构成的减法器,将电桥输出进行放大:

这样,通过测量U

O 就可知热电阻的阻值变化,而且,U

O

与ΔR具有线性关系,完

全消除了传统的不平衡电桥的非线性误差。同时电桥输出电压U

O

的表达式中不包括引线电阻r,只要使相邻桥臂中连接的两条长导线的材料、截面积、长度以及工作环境相同,在电桥的任何工作状态下,都能完全消除引线电阻及其温漂对电桥输出电压的影响。

在图3—1中通过改变R

2

的阻值可以改变电桥的平衡点,参看式(3—22)的条

件R

2=R

,将R

2

调整到热电阻零点温度对应的阻值,就可以改变热电阻测量的零点温

度,从而,提高了实际应用的灵活性,解决了零点迁移问题。另外,对于不同分度号的热电阻,通过改变R

2

的阻值,该电路都可以使用。这就使这个电路具有很强的通用性。

热电阻的测温电路

Pt100热电阻的测温电路 [摘要] 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。 温度测量系统应用广泛,涉及到各行各业的各个方面,在各种不同的领域中都占有重要的位置。从降低开放成本扩大适用范围、系统运行的稳定性、可靠性出发,设计一种以Pt100铂热电阻为温度信号采集元件的传感器温度测量系统。才测量系统不但可以测量室内的温度,还可以测量液体等的温度,在实际应用中,该系统运行稳定、可靠,电路设计简单实用。 [关键字] 传感器 Pt100热电阻温度测量

目录 1 前言 (4) 1.1 传感器概况 (4) 1.2 设计目的 (7) 2 设计要求 (8) 2.1 设计内容 (8) 2.2 设计要求 (9) 3 原器件清单 (10) 4 Pt100热电阻的测温电路 (11) 4.1 总体电路图 (11) 4.2 工作原理 (11) 5 Pt100热电阻测温电路的原理及实现 (12) 5.1 测温电路的工作原理 (12) 5.2 测温电路的实现 (14) 5.3 测量结果及结果分析 (15) 6 制作过程及注意事项 (16) 6.1 制作过程 (16) 6.2 注意事项 (17) 7 总结 (18) 8 致谢 (19) 参考文献 (20)

热电阻电路测温计设计

燕山大学 传感器原理及应用课程设计题目:热电阻温度传感器器 学院(系)电气工程学院 年级专业: 12级自动化仪表 学号: 120103020133 学生姓名:马冰卿 指导教师:童凯 教师职称:教授

一、概述 1.1 热电阻温度传感器简介 热电阻温度传感器是利用导体或半导体的电阻值随温度变化而变化的原理进行测温的一种传感器温度计。 热电阻温度传感器分为金属热电阻和半导体热敏电阻两大类。热电阻广泛用于测量-200~+850°C范围内的温度,少数情况下,低温可测至1K,高温达1000°C。 热电阻传感器由热电阻、连接导线及显示仪表组成,热电阻也可以与温度变送器连接,将温度转换为标准电流信号输出。 用于制造热电阻的材料应具有尽可能大和稳定的电阻温度系数和电阻率,输出最好呈线性,物理化学性能稳定,复线性好等。目前最常用的热电阻有铂热电阻和铜热电阻。 1.2 pt100热电阻简介 pt100是铂热电阻,它的阻值跟温度的变化成正比。PT100的阻值与温度变化关系为:当PT100温度为0℃时它的阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成匀速增长的。

二、工作原理 2.1 热电阻工作原理 与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。下面以铂电阻温度传感器为例:Pt100 是电阻式温度传感器,测温的本质其实是测量传感器的电阻,通常是将电阻的变化转换成电压或电流等模拟信号,然后再将模拟信号转换成数字信号,再由处理器换算出相应温度。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 ()[]010t t Rt Rt -+=α (1) 式中,Rt 为温度t 时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值α为温度系数。 半导体热敏电阻的阻值和温度关系为: t e Rt B A = (2) 式中Rt 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测 量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。 2.2 接线方式 采用pt100测温一般有三种接线方式:二线制、三线制、四线制。 ① 二线制接法:这种接法不考虑PT100电缆的导线电阻,将A/D 采样端与电流源的正极输出端接在一起,这种接法由于没有考虑测温电缆的电阻,因此只能适用于测温距离较近的场合。

热敏电阻测温电路设计

电子设计大赛论文 (B组) 热敏电阻测温电路设计 第三十组 K3队 组队成员:顾代辉黄龑罗程 2010年5月23日

摘要:科技发展,很多工业化的生产都需要温度测量,这使得温度测量仪器变成一个 很重要的东西。下面我们将题目所给的温度测量电路进行分析和改动设计。题目所给图是一个在工业场合的温度测量系统,采用RTD 电阻温度检测器。通过分析可知,ref R 两端分到的电压即为ref V ,Vo3输出的电压即为NTC 两段分到的电压。而要求我们设计的电路所用的是NTC 负温度系数热敏电阻器。题目要求我们将电流产生电路的电流控制在0.1m A 。这里我们简 单的将 ref R 改成25k 。对于滤波电路,我们设计各个参数使得其截至频率在100Hz 左右,就 能滤掉1000HZ 的干扰信号;对于基准源,我们都用基本的连接方法,输出电压为2.5V ;对于稳压管,输出电压为恒定的5V ;对于串口连接,我们用到MAX232芯片其中一个接口,与单片机的RXD/TXD 连接传输数据。 关键词:温度传感器 AVR 串口显示 I .电路分析 (1) 电流产生电路分析: 首先对于运放A1,由虚短和虚断,可知 111211 120 V V I I === 有: 1121221 O V V V R R --= 可解得:1121122=O V V V = 即第一个运放功能为将信号放大两倍。 对于运放A2,同理,有 212221 220 V V I I === 有:221O V V =可见,运放A2是一个电压跟随器。

又:24211234( )2 REF O REF O O V V R V V V V R R -?+=+=+ 11122O REF O V V V V ==+ 故: REF R 两端分到的电压为 122R O REF REF O O REF V V V V V V V =-=+-= 由此可见: REF R 两端分压恒为基准电压 REF V ,只要基准电压和 REF R 的值不变,则 通过 REF R 的电流REF REF V I R = 2.5 12.5mA k ==为恒定值,该电路的作用为产生恒定电流。 由于3233p n V V V ==,故Rline 和R6相当于并联, 66'1001R R I I Rline ==,故100'101 I I I =≈ 故可认为恒定电流I 都通过热敏电阻RTD 。 运放A3以及NTD 分析: 由叠加法分析,当31V 接地时,033131317100'6100R k V V V V R k =- =-=- 当32V 接地时,03323276100100''26100R R k k V V V R k ++= == 故0303033231'''2V V V V V =+=- …………………… ① 而32()'RTD V Rline R I =+? …………………… ② 31(2)'RTD V Rline R I =+? …………………… ③

铂电阻测温电路的设计

虚拟仪器设计技术大作业题目:铂电阻测温电路的设计 专业:电子信息科学与技术 班级:电本(2)班 学号:1150720079 姓名:张顶红 同组人:柳建、黄腾辉、罗凯、 颜超、舒样超、陈雷 指导老师:秦新燕

日期:2014年5月22号 物理与机电工程学院 目录 一.课程设计的目的 二.课程设计的任务 三.铂电阻测温电路原理及设计 3.1传感器模型的建立 3.2测温电路组成与原理 3.2.1稳压电路

3.2.2基本放大电路 3.2.3校正电路 3.2.4电路输出范围的调节3.3整体电路分析与设计 3.3.1稳压电路分析 3.3.2铂电阻温度特性分析 3.3.3 Rw1作用分析 3.3.4电路验证 3.4实验数据处理四.Labview虚拟仪器设计 4.1数据显示子程序VI设计 4.2接口电路的设计与编译 五.仿真测温 六.总结

一.课程设计目的 在Multisim中,可根据铂电阻阻值与温度的关系建立铂电阻模型,设计一个测温范围为0至100℃的测温仪。通过本课程设计,了解铂电阻测温的原理,会根据铂电阻的阻值与温度的关系建立仿真模型;掌握铂电阻的测温电路;熟悉LabVIEW虚拟仪器Multisim的导入方法;提出铂电阻测温仪的优化方案。 二.课程设计的任务 在Multisim中,可根据铂电阻阻值与温度的关系建立铂电阻模型,设计一个测温度范围为0~100℃的测温仪。通过本设计,应掌握以下内容: 1)了解铂电阻测温的原理,会根据铂电阻的阻值与温度的关系建立仿真模型。 2)掌握铂电阻的测温电路。 3)会用LabVIEW设计温度显示模板,把电路输出电压值转换成温度及参数的显示。 4)熟悉LabVIEW虚拟仪器向Multisim的导入方法。 三.铂电阻测温电路原理及设计 3.1传感器模型的建立 金属铂电阻器性能十分稳定,在-260~+630℃之间,铂电阻用做标准温度计;在0~+630℃之间铂电阻与温度的关系如下:

电子电路设计实验(热电阻温度测量系统的设计与实现)

北京邮电大学 电子电路综合设计实验 课题名称:热电阻温度测量系统的设计与实现

索引 一、概要 1.1、课题名称 热电阻温度测量系统的设计与实现 1.2、报告摘要 为了实现利用热敏电阻测量系统温度,设计实验电路。利用热电阻100为温度测量单元,系统主要包括传感电路、放大电路、滤波电路、转换电路和显示电路五个单元构成。通过包含热敏电阻的电桥电路实现温度信号向电信号的转换,利用三运放差分电路实现放大差模信号抑制共模信号并通过二极管显示二进制数来显示温度值。此电路可以定量的显示出温度的与转换器输入电压的关系,再通过量化就可以实现温度测量的功能。报告中首先给出设计目标和电路功能分析,然后讨论各级电路具体设计和原理图,最后总结本次实验并给出了电路图。 1.3、关键字 测量温度热敏电阻差分放大低通滤波转换 二、设计任务要求 (1)了解掌握热电阻的特性和使用方法。 (2)了解数模转换电路的设计和实现方法。 (3)了解电子系统设计的方法和基本步骤。 (4)设计一个利用热电阻100 为温度测量元件设计一个电子测温系统,用发光二极管显示的输出状态,并模拟测温(实际上实验室给的是300), 用软件绘制完整的电路原理图()。 三、设计思路与总体结构图

图1:热电阻温度测量的系统原理框图 如图将系统划分为传感器电路、放大电路、滤波电路、转换电路显示器和电源电路共六个单元。传感器是由100及若干精密电阻和电位器构成的电桥电路组成;放大器是有运放324构成仪表放大器,具有较高的共模抑制比和输入阻抗;滤波电路采用高精度07二阶低通有源滤波器;模数转换电路是用0804进行设计,并利用555N产生频率为1到1.3的时钟信号来使数模转换电路实现实时同步;显示电路由发光二极管构成;电源电路采用变压器、稳压模块和整流桥等器件进行设计。 四、分块电路和总体电路的设计 4.1、温度传感器电路设计 4.1.1铂热电阻 热电阻是利用温度变化是自身阻值随之变化的特性来测量温度的,工业上广泛的用于测量中低温区(-200℃—500℃)的温度。 铂热电阻在氧化性介质中,甚至在高温下,物理、化学性质都比较稳定,因此具有较好的稳定性和测量精度,主要用于高精度温度测量和标准测温装置中。 铂热电阻与温度的关系,在0—630.74℃以内为 在-190-0以内为: 式中为t时的电阻值;是0时的电阻值;t为任意温度值;A、B、C为 分度系数,,。 但是实际实验中的使用的是300,而且根据在实验室的实际测量300在20℃时是325Ω,而且其阻值随着温度的升高而降低。 4.1.2热电阻温度传感器的接入方式 热电阻由于精度高、性能稳定等优点在工业测试中得到广泛应用。流过热电阻的电流一般为4-5,不能过大,否则产生热量过多而导致影响测量精度。

基于热敏电阻的数字温度计设计

目录 1 课程设计的目的 (1) 2 课程设计的任务和要求 (1) 3 设计方案与论证 (1) 4 电路设计 (2) 4.1 温度测量电路 (3) 4.2 单片机最小系统 (6) 4.3 LED数码显示电路 (8) 5 系统软件设计 (9) 6 系统调试 (9) 7 总结 (11) 参考文献 (13) 附录1:总体电路原理图 (14) 附录2:元器件清单 (15) 附录3:实物图 (16) 附录4:源程序 (17)

1 课程设计的目的 (1)掌握单片机原理及应用课程所学的理论知识; (2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题; (3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧; (4)培养认真严谨的工作作风和实事求是的工作态度; (5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。 2 课程设计的任务和要求 (1)采用LED 数码管显示温度; (2)测量温度范围为-10℃~110℃; (3)测量精度误差小于0.5℃。 3 设计方案与论证 方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。该方案的原理框图如图3-1所示。 DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D 即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控 制系统。 图3-1 方案一系统框图 单片机 最小系统 数码 显示 温度传感器 DS18B20

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

推荐使用的热电阻Pt100测温电路

铂电阻温度传感器是利用其电阻和温度成一定函数关系而制成的温度传感器,由于其测量准确度高、测量范围大、复现性和稳定性好等,被广泛用于中温(-200℃~650℃)范围的温度测量中。 PT100是一种广泛应用的测温元件,在-50~600℃℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。由于铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正。校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正则需要在微处理系统中使用,将Pt电阻的电阻值和温度对应起来后存入EEPROM中,根据电路中实测的AD值以查表方式计算相应温度值。 常用的Pt电阻接法有三线制和两线制,其中三线制接法的优点是将PT100的两侧相等的的导线长度分别加在两侧的桥臂上,使得导线电阻得以消除。常用的采样电路有两种:一为桥式测温电路,一为恒流源式测温电路。其中图1为三线制桥式测温电路,图2为两线制桥式测温电路,图3为恒流源式测温电路。下面分别对桥式电路和恒流源式电路的原理在设计过程中应注意事项进行说明(注:这两个电路本人均有采用及试验,证明可行) 一、桥式测温电路 桥式测温的典型应用电路如图1所示(图1和图2均为桥式电路,分别画出来是为了说明两线制接法和三线制接法的区别)。 测温原理:电路采用TL431和电位器VR1调节产生4.096V的参考电源;采用R1、R2、VR2、Pt100构成测量电桥(其中R1=R2,VR2为100Ω

精密电阻),当Pt100的电阻值和VR2的电阻值不相等时,电桥输出一个mV级的压差信号,这个压差信号经过运放LM324放大后输出期望大小的电压信号,该信号可直接连AD转换芯片。差动放大电路中R3=R4、R5=R6、放大倍数=R5/R3,运放采用单一5V供电。 设计及调试注意点: 1. 同幅度调整R1和R2的电阻值可以改变电桥输出的压差大小; 2. 改变R5/R3的比值即可改变电压信号的放大倍数,以便满足设计者对温度范围的要求 3. 放大电路必须接成负反馈方式,否则放大电路不能正常工作 4. VR2也可为电位器,调节电位器阻值大小可以改变温度的零点设定,例如Pt100的零点温度为0℃,即0℃时电阻为100Ω,当电位器阻值调至109.885Ω时,温度的零点就被设定在了25℃。测量电位器的阻值时须在没有接入电路时调节,这是因为接入电路后测量的电阻值发生了改变。 5. 理论上,运放输出的电压为输入压差信号×放大倍数,但实际在电路工作时测量输出电压与输入压差信号并非这样的关系,压差信号比理论值小很多,实际输出信号为 4.096*(RPt100/(R1+RPt100)- RVR2/(R1+RVR2)) (1) 式中电阻值以电路工作时量取的为准。 6. 电桥的正电源必须接稳定的参考基准,因为如果直接VCC的话,当网压波动造成VCC发生波动时,运放输出的信号也会发生改变,此时再到以VCC未发生波动时建立的温度-电阻表中去查表求值时就不正确

基于热敏电阻的温度检测装置

实验报告 项目名称:基于热敏电阻的温度检测装置 专业:电子信息工程技术 姓名: 学号: 指导老师: 职称:

目录 第1章前言-------------------------------------------------------4 1.1 设计背景-----------------------------------------------------4 1.2 设计的主要内容及技术指标-------------------------------------5 1.3 数据采集系统简单介绍-----------------------------------------5 第2章热敏电阻的温度检测装置的系统论证----------------------7 2.1 温度传感器的选择---------------------------------------------7 2.2 调理模块-----------------------------------------------------7 2.3温度核心模块-------------------------------------------------11 2.4 显示模块-----------------------------------------------------12 第3章热敏电阻的温度检测装置硬件系统设计--------------------14 3.1 温度采集模块硬件设计-----------------------------------------14 3.2 AD转换模块设计-----------------------------------------------15 3.3 MCU控制器模块设计--------------------------------------------16 3.3.1 核心部件的介绍------------------------------------------16 3.3.2 复位电路的设计------------------------------------------17 3.4 显示模块电路设计----------------------------------------------18 3.5电源模块的设计-------------------------------------------------19 第4章热敏电阻的温度检测装置软件系统设计---------------------20 4.1软件总体程序设计-----------------------------------------------20 4.2 功能模块设计---------------------------------------------------20 4.2.1 AD转换模块原理及程序------------------------------------21 4.2.2 热敏电阻阻值和温度的非线性对性模块原理及程序-------------23 4.2.3 温度显示模块程序-----------------------------------------26 第5章热敏电阻的温度检测装置系统调----------------------------29 第6章总结--------------------------------------------------------30 参考文献-------------------------------------------------------------31

热敏电阻温度测量电路

热敏电阻温度测量电路 下图是温度在0~50℃范围的测量电路。当温度为0℃时输出电压是0V ,温度为50℃时是5V 。他可以与电压表链接来测量温度,也可以连接AD 转换器变换为数字量,利用计算机之类进行测量。 1、工作原理 该电路由检测温度的热敏电阻和1个运算放大器电路,以及将0~50℃的温度信息变换为0~5V 电压的2个运算放大器电路构成。 热敏电阻检测温度时,利用热敏电阻TH R 与电阻3R 分压后的电压作为检测电压进行处理,在这里是利用运算放大器1OP 的电压跟随器电路提取的。输出电压的极性为正,随着温度的上升,热敏电阻的电阻值降低,所以输出电压也下降。 检出的信号加在1OP 和电阻~4R 7R 构成的差动放大电路的正输入端上,而加在负输入端上的是由8R 、9R 、1VR 对5V 分压后的电压,这部分是电压调整电路,可以在温度为0℃时将1OP 的输出电压调整为0V ,这样就可以输出与温度上升成比例的负电压。 2OP 的输出加在由3OP 构成的反转放大电路上被放大,放大倍数为—10211/)(R VR R +倍。调整2VR 可以使温度达50℃时3OP 的输出电压为+5V 。 通过调整1VR 和2VR ,可以在0℃时得到0V 的输出电压,50℃时得到5V 的输出电压,使输出电压与温度成比例。 2、设计 (1)温度测量范围以及输出电压、电源电压的确定:设定温度测量范围为0~50℃,这时的输出电压是0~5V 。电路使用的电源为±15V ,基准电压为5V 。 (2)热敏电阻和运算放大器的选定:这里使用NTC 型热敏电阻,选用25℃的电阻值为10K Ω,误差在±1%以内的NTH4G39A 103F02型,这种热敏电阻的常数为B=3900。 (3)补偿电阻3R 的确定:电阻3R 的作用是当热敏电阻的温度变化时,将相对应的输出电压的变化线性化。设线性化的温度范围是0~50℃,,那么补偿电阻3 R

热电阻的单片机测温系统

摘要 电子温度计是日常生活中最普遍的电子产品之一,常用的转换元件有热电阻、热敏电阻、热电偶等,通常我们将这些转换元件通过非电量转化电量的检测方法,结合电量和温度之间的关系,我们可以计算出其温度值。在本课题中将介绍一种利用电阻电桥失衡输出的电压转换温度的设计。在设计中,利用AT89S系列单片机作为控制器,计算铂电阻(PT100)电量与温度的转换,并在LED显示温度。 关键词:AT89S52 ADC0832 Abstract Electronic thermometer isin daily lifethe mostcommon oneof electronicproducts, and thecommoninterface element havehe at resistance,thermal resistance, thermocouple,etc., usually we will these interface element through the non-electricity into electricity d etection methods, combined with power and the relationshipbetween the temperature, we can calculate the temperature value. In this topicwill introducea kind of makeuse of the resistance br idgeunbalanced output voltage transition temperature design. In the design,the use of AT89S seriesmicrocontrolleras the controller, calculationof platinum resistance(PT100) powe rand temperatureconversion, and intheLEDdisplay temperature. ?Keyword:AT89S52 ADC0832

热电阻的测温电路

热电阻的测温电路公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

Pt100热电阻的测温电路 [摘要] 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。 温度测量系统应用广泛,涉及到各行各业的各个方面,在各种不同的领域中都占有重要的位置。从降低开放成本扩大适用范围、系统运行的稳定性、可靠性出发,设计一种以Pt100铂热电阻为温度信号采集元件的传感器温度测量系统。才测量系统不但可以测量室内的温度,还可以测量液体等的温度,在实际应用中,该系统运行稳定、可靠,电路设计简单实用。 [关键字] 传感器 Pt100热电阻温度测量

目录 1 前言 (4) 1.1 传感器概况 (4) 1.2 设计目的 (7) 2 设计要求 (8) 2.1 设计内容 (8) 2.2 设计要求 (9) 3 原器件清单 (10) 4 Pt100热电阻的测温电路 (11) 4.1 总体电路图 (11) 4.2 工作原理 (11) 5 Pt100热电阻测温电路的原理及实现 (12) 5.1 测温电路的工作原理 (12) 5.2 测温电路的实现 (14) 5.3 测量结果及结果分析 (15) 6 制作过程及注意事项 (16) 6.1 制作过程 (16) 6.2 注意事项 (17) 7 总结 (18) 8 致谢 (19) 参考文献 (20)

热敏电阻测温电路的设计说明

课程题目:热敏电阻测温电路的设计院系:机电汽车工程学院 班级: 学生: 学号: 小组成员: 指导教师:

目录 一、设计目的、要求及方案选择-----------------------------------------------------(2) 1、设计目的---------------------------------------------------------------------------(2) 2、设计要求---------------------------------------------------------------------------(2) 3、设计方案的选择--------------------------------------------------------------------( 2) 二、硬件系统各模块电路的设计---------------------------------------------------(3) 1、单片机系统的设计---------------------------------------------------------------(3)1-1、AT89C51的简介及管脚功能---------------------------------------------(3) 1-1、AT89C51的最小系统介绍-----------------------------------------------(5) 2、基于MF58的NTC热敏电阻温度测量电路设计 ---------------------------(7) 2-1、MF58热敏电阻的介绍---------------------------------------------------(8) 2-2、温度测量电路的设计----------------------------------------------------(10) 3、LED数码管显示电路的设计---------------------------------------------------(11) 3-1、显示电路驱动系统的设计

(推荐)热敏电阻测温电路

热敏电阻测温电路 热敏电阻测量电路 本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃. 2.2.1 原理电路 本测温控温电路由温度检测、显示、设定及控制等部分组成,见图2.2.1。图中D1~D4为单电源四运放器LM324的四个单独的运算放大器。RT1~RTn为PTC感温探头,其用量取决于被测对象的容积。 RP1用于对微安表调零,RP2用于调节D2的输出使微安表指满度。S 为转换开关。 图2.2.1 测温控温电路由RT检测到的温度信息,输入D1的反馈回路。该信息既作为D2的输入信号,经D2放大后通过微安表显示被测温度;又作为比较器D4的同相输入信号,与D3输出的设定基准信号,构成D4的差模输入电压。当被控对象的实际温度低于由RP3预设的温度时,RT的阻值较小,此时D4同相输入电压的绝对值小于反相输入电压的绝对值,于是D4输出为高电位,从而使晶体管V饱和导通,继电器K得电吸合常开触点JK,负载RL由市电供电,对被控物进行加热。当被控对象的实际温度升到预设值时, D4同相输入电压的绝对值大于反相输入电压的绝对值, D4的输出为低电位,从而导致V截止,K失电释放触点JK至常开,市电停止向RL供电,被控物进入恒温阶段。如此反复运行,达到预设的控温目的。

2.2.2 主要元器件选择本测温控温电路选用PTC热敏电阻为感温元件,该元件在0℃时的电阻值为264Ω,制作成温度传感器探测头,按图2.2.2线化处理后封装于护套内, 其电阻-温度特性见图2.2.3. 图2.2.2 线化电路线化后的PTC热敏电阻感温探头具有良好的线性,其平均灵敏度达16Ω/℃左右。如果采用数模转换网络、与非门电路及数码显示器,替代本电路的微安表显示器,很容易实现远距离多点集中的遥测。继电器的选型取决于负载功率。为便于调节,RP1~RP4选用线性带锁紧机构的微调电位器。 2.2.3 安装与调试调试工作主要是调整指示器的零点和满度指示。先将S接通R0,调节RP1使微安表指零,于此同时,调节RP4使其阻值与RP1相同,以保持D1与D4的对称性。然后将S接通R1,调节RP2使微安表指满度。最后,按RT的标准阻-温曲线,将RP3调到与设定温度相应的阻值,即可投入使用。本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃.

热敏电阻及测温系统课程设计

热敏电阻及测温系统课程设计

目录 1、总体设计 (1) 1.1 课设任务 (1) 1.2 小组成员及分工 (1) 1.2.1 小组成员组成 (1) 1.2.2 组员分工 (1) 1.3 总体设计方案 (1) 2、硬件设计 (3) 2.1 热敏电阻温度传感器 (3) 2.2 A/D转换器 (3) 2.2.1 AD0809简介 (3) 2.2.2 基于AD0809的数模转换电路4 2.2.3 模数转换单元电路的设计 (4) 2.3 LED数码管显示原理 (5) 2.4 AT89S52单片机 (6) 3 软件设计 (9) 3.1 模数转换 (9) 3.2数码显示 (10) 4、仿真及计算 (11) 4.1 实验步骤 (11) 4.2利用MATLAB对实验数据进行处理 (11) 4.3 仿真公式 (14) 4.4 结果分析 (14) 5、心得体会 (16) 6、参考文献 (17) 附录 (18)

1、总体设计 1.1 课设任务 1.了解热敏电阻的工作原理; 2.掌握热敏电阻调理电路和AD转换; 3.了解非线性特性和其校正方式; 4.使用单片机读取转换值并显示。 本课程设计使用热敏电阻为传感器,结合后端处理电路和AD转换器,并用AT89C51单片机获取数据,测得温度数码管显示出来。 1.2 小组成员及分工 1.2.1 小组成员组成 组长:黄波 组员:华林峰、黄奔涛、柯良 1.2.2 组员分工 当我们拿到这个课题“热敏电阻及温度测试系统”后,首先全组人员开了一个小的讨论会,大家都提出了自己的想法,然后根据课程设计的任务要求进行了明确的分工:组长黄波负责系统的总体的设计和程序的编写;黄奔涛主要负责上网查找相关热敏电阻传感器和AD0809数模转换器的工作原理;华林峰负责对设计过程中实验数据的记录并利用MATLAB软件对实验数据进行处理;柯良则负责文字的处理,撰写课程设计报告;然后,大家一起对热敏电阻调理电路和AD转换进行学习研究,并进行软件的调试;最终实现了课程设计的任务要求,达到了胥老师所预期的结果及“热敏电阻传感器将采集到的电压信号经过 AD0809模数转换器将模拟信号转换为数字信号并在单片机上显示当前的温度值。 1.3 总体设计方案 图1-1 设计方案图 首先通过热敏电阻进行温度采集,然后利用AD0809芯片进行A/D模数转换,再经过AT89C51芯片进行处理,最后通过LED数码管显示温度。

基于单片机的热电阻温度检测

温度是一个非常重要的物理量,因为它直接影响燃烧、化学反应、发酵、烘烤、蒸馏、浓度、挤压成形、结晶以及空气流动等物理和化学过程。温度控制失误就可能引起生产安全、产品产量等一系列问题。因此对温度的检测的意义就越来越大。温度采集控制系统在工业生产、科学研究和人们的生化领域中,得到了广泛应用。在工业生产过程中,很多时候都需要对温度进行严格的监控,以使得生产能够顺利的进行,产品的质量才能够得到充分的保证。使用自动温度控制系统可以对生产环境的温度进行自动控制,保证生产的自动化、智能化能够顺利、安全进行,从而提高企业的生产效率。本课程设计采用金属热电阻温度计进行测温,工业中常采用三线制接法,尤其是在测温范围窄,导线长,架设铜导线途中温度发生变化等情况。并通过ADC0809模数转换后经单片机送显示。 关键词:热电阻 ADC0809 AT89C52 显示

引言 (1) 一.系统原理及原理图 (1) 1.系统原理 (1) (1)温度检测与处理 (1) (2)模数转换 (2) (3)温度显示 (2) 2.系统原理图 (2) 二.温度检测模块的设计 (2) 1.电阻温度计简介 (2) 2.温度检测及信号处理 (3) 三.模数转换 (3) 1.模数转换简介 (3) 2.ADC0809简介…………………………………………4. 3.单片机与ADC0809的连接 (4) 四.显示及声光报警电路 (5) 五.系统总电路图 (6) 六.总结 (8) 体会 (9) 参考文献 (10)

引言 自动控制系统在各个领域尤其是工业领域中有着极其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行监测和控制。采用MCS-51单片机对温度进行控制,不仅具有控制方便、组太简单和灵活性大等优点,而且可以把幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业中经常会遇到的问题。温度控制在我们的日常生活中是非常有用的,我们利用温度控制来更好的为我们的生活工作所服务,随着单片机行业的迅速发展,将会有更好的温度控制仪的出现。一.系统原理及原理图 1.系统原理 该电阻温度检测系统由三部分组成:温度检测与处理,模数转换,温度显示。(1)温度检测与处理 电阻式温度计是利用物质在温度变化时本身电阻也随着发生变化的特性来测量温度的。当被测介质中有温度阶梯存在时,所所测得温度是感温元件所在范围介质中的平均温度。尽管导体或半导体材料的电阻值对温度的变化都有一定的依赖关系,但适用于制作温度检测元件的并不多,作为热电阻必须满足以下要求: ①要有尽可能大而且稳定的电阻温度系数 ②电阻率要大,以便在同样灵敏度下减小元件的尺寸 ③电阻随温度变化要有单值函数关系,最好呈线性关系 ④在电阻的使用温度范围内,其化学和物理性能稳定,在加工时要有较好的工艺性 ⑤材料要易于提纯,要能分批复制而不改变其性能,要有良好的相互互换性

热电阻温度检测及其报警电路设计1

引言 随着现代信息技术的飞速发展和传统工业改造的逐步实现.能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差。与传统的温度计相比,这里设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。本文就热电阻温度检测仪及其各个元器件的工作原理和设计进行介绍。 偏差报警单元在控制系统的偏差超出给定范围时,发出报警信号。本文就偏差报警单元工作原理进行介绍。

第一章四线制温度变送器 1.1 概述四线制温度变送器具有如下特点: ①在热电阻温度变送器中采用了线性化电路,从而使变送器的输出信号和被测温度呈线性关系,便于指示和记录。 ②变送器的输入、输出之间具有隔离变压器,并采取了安全火花防爆措施,故具有良好的抗干扰性能,且能测量来自危险场所的直流毫伏或温度信号。 图1 温度变送器结构方框图 变送器总体结构如图1所示。三种变送器在线路结构上都分为量程单元和放大单元两个部分,它们分别设置在两块印制电路板上,用接插件互相连接。其中放大单元是通用的,而量程单元则随品种、测量范围的不同而异。 方框图中,空心箭头表示供电回路,实线箭头表示信号回路。毫伏输入信号U i 或由测温元件送来的反映温度大小的输人信号E t 与桥路部分的输出信号U z 及反馈信 号U f 相叠加,送人集成运算放大器。放大了的电压信号再由功率放大器和隔离输出电路转换成统一的4—20mA直流电流J。和1—5V直流电压U。输出。 变送器的主要性能指标:基本误差为±0.5%;环境温度每变化25℃附加误差不超过±0.5%;负载电阻在0—100Ω范围内变化时,附加误差不超过±0.5%。

相关主题
文本预览
相关文档 最新文档