2020年秋人教版七年级上册第一章《有理数》单元测试卷 含答案
- 格式:doc
- 大小:90.00 KB
- 文档页数:9
单元测试《有理数》一、选择题1.海口市首条越江隧道——文明东越江通道项目将于2020年4月份完工,该项目总投资3 710 000 000元.数据3 710 000 000用科学记数法表示为( )A.371×107B.37.1×108C.3.71×108D.3.71×1092.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是( )A.星期一B.星期二C.星期三D.星期四3.在﹣4,0,﹣1,3这四个数中,最大的数是( )A.﹣4B.0C.﹣1D.34.下列说法中,正确的有( )①0是最小的整数;②若∣a∣=∣b∣,则a=b;③互为相反数的两数之和为零;④数轴上表示两个有理数的点,较大的数表示的点离原点较远.A.0个B.1个C.2个D.3个5.下列语句正确的有( )个(1)带“﹣”的数是负数;(2)如果a为正数,那么﹣a一定是负数;(3)不存在既不是正数又不是负数的数;(4)0℃表示没有温度.A.0B.1C.2D.36.一天早晨的气温是﹣6℃,中午的气温比早晨上升了12℃,中午的气温是( )A.12℃B.﹣6℃C.18℃D.6℃7.下列各数:0,+5,-3.5,+3.1,-24,2 018,-2π,其中负数有( )A.2个B.3个C.4个D.5个8.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是( )A.1B.-6C.2或-6D.不同于以上答案9.3.14159精确到千分位为( )A.3.1B.3.14C.3.142D.3.14110.下列运算正确的是( )A.-2+(-5)=-(5-2)=-3B.(+3)+(-8)=-(8-3)=-5C.(-9)-(-2)=-(9+2)=-11D.(+6)+(-4)=+(6+4)=+1011.在进行异号的两个有理数加法运算时,用到下面的一些操作:①将绝对值较大的有理数的符号作为结果的符号并记住②将记住的符号和绝对值的差一起作为最终的计算结果③用较大的绝对值减去较小的绝对值④求两个有理数的绝对值⑤比较两个绝对值的大小其中操作顺序正确的步骤是( )A.①②③④⑤B.④⑤③②①C.①⑤③④②D.④⑤①③②12.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是( )A.1B.4C.2018D.42018二、填空题13.如果-15米表示低于海平面15米,那么+120米的意义是______.14.计算:﹣(﹣3)+|﹣5|=__________.15.若(a﹣2)2+|b﹣3|=0,那么a﹣b=16.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.17.已知|x|=8,|y|=3,|x+y|=x+y,则x+y=__________18.观察下面的变化规律:,……根据上面的规律计算:__________.三、解答题19.计算:﹣(﹣2)+(﹣7)+520.计算:.21.计算:﹣(56)÷(﹣12+8)÷(﹣2)×522.计算:1+3+5+......+99)﹣(2+4+6+ (100)23.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发看望B、C、D处的其它甲虫.规定:向上向右走为正,向下向左走为负,如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4).其中第一数表示左右方向,第二个数表示上下方向,那么图中(1)A→C( ,),B→D( ,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.24.某足球守门员练习折返跑,从守门员位置出发,向前跑记为正数,向后跑记为负数,他的练习记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了守门员位置?(2)守门员离开离开守门员位置最远是多少米?(3)守门员离开守门员位置达到10米以上(包括10米)的次数是多少?25.如图所示:A,B,C,D四点表示的数分别为a,b,c,d,且|c|<|b|<|a|<|d|.(1)比较大小:﹣b c,d﹣a c﹣b;(2)化简:|a﹣c|﹣|﹣a﹣b|+|d﹣c|.26.先阅读材料,再根据材料中所提供的方法解答下列问题:我们在求1+2+3+…+99+100的值时,可以用下面的方法:我们设S=1+2+3+…+99+100①,那么S=100+99+98+…+3+2+1②.然后,我们由①+②,得2S=(100+1)+(99+2)+(98+3)+…+(99+2)+(100+1),共100个101.2S=101+101+101+…+101=100×101,所以S=100×101÷2=5050.依据上述方法,求下列各式的值:(1)1+3+5+…+97+99;(2)5+10+15+…+195+200.27.O为数轴的原点,点A、B在数轴上表示的数分别为a、b,且满足(a﹣20)2+|b+10|=0.(1)写出a、b的值;(2)P是A右侧数轴上的一点,M是AP的中点.设P表示的数为x,求点M、B之间的距离;(3)若点C从原点出发以3个单位/秒的速度向点A运动,同时点D从原点出发以2个单位/秒的速度向点B运动,当到达A点或B点后立即以原来的速度向相反的方向运动,直到C点到达B 点或D点到达A点时运动停止,求几秒后C、D两点相距5个单位长度?参考答案1.答案为:D2.答案为:C3.答案为:D4.答案为:B5.答案为:B.6.答案为:D.7.答案为:B8.答案为:C9.答案为:C10.答案为:B11.答案为:D12.答案为:A13.答案为:高出海平面120米14.答案为:8.15.答案为:-116.答案为:-5.17.答案为:5或11.18.答案为:.19.原式=2+(﹣7)+5=0;20.原式=﹣25.21.原式=﹣56÷(﹣4)÷(﹣2)×5=﹣35;22.原式=1+3+5+……+99﹣2﹣4﹣6﹣……﹣100=(1﹣2)+(3﹣4)+(5﹣6)+…+(99﹣100)=(﹣1)+(﹣1)+(﹣1)+…+(﹣1)=﹣50.23.解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+3,+4);B→D记为(+3,﹣2);故答案为:+3,+4,+3,﹣2;(2)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);故该甲虫走过的路线长为1+4+2+1+2=10.24.解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)﹣(3+8+6+10)=28﹣27=1,即守门员最后没有回到球门线的位置;(2)第一次离开5米,第二次离开2米,第三次离开12米,第四次离开4米,第五次离开2米,第六次离开11米,第七次离开1米,则守门员离开守门的位置最远是12米;(3)守门员离开守门员位置达10米以上(包括10米)有+10,+11,共2次.25.解:(1)根据数轴上点的位置得:a<b<0<c<d,且|c|<|b|<|a|<|d|,∴﹣b>c,d﹣a>c﹣b;故答案为>;>;(2)根据题意得:a﹣c<0,﹣a﹣b>0,d﹣c>0,26.解:(1)设S=1+3+5+…+97+99①,那么S=99+97+…+5+3+1②,①+②,得2S=(1+99)+(3+97)+…+(97+3)+(99+1),共50个100.2S=100+100+…+100=50×100,所以S=2500,即1+3+5+…+97+99=2500.(2)设S=5+10+15+…+195+200①,那么S=200+195+…+15+10+5②,①+②,得2S=(5+200)+(10+195)+(15+190)+…+(195+10)+(200+5),共40个205. 2S=205+205+…+205=205×40,所以S=4100,即5+10+15+…+195+200=4100.27.解:(1)∵(a﹣20)2+|b+10|=0,∴a﹣20=0,b+10=0,∴a=20,b=﹣10.(2)∵设P表示的数为x,点A表示的数为20,M是AP的中点.∴点M表示的数为.又∵点B表示的数为﹣10,∴BM=﹣(﹣10)=20+.(3)当0≤t≤时,点C表示的数为3t;当<t≤时,点C表示的数为:20﹣3(t﹣)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t;当5<t≤20时,点D表示的数为:﹣10+2(t﹣5)=2t﹣20.当0≤t≤5时,CD=3t﹣(﹣2t)=5,解得:t=1;当5<t≤时,CD=3t﹣(2t﹣20)=5,解得:t=﹣15(舍去);当<t≤时,CD=|40﹣3t﹣(2t﹣20)|=5,即60﹣5t=5或60﹣5t=﹣5,解得:t=11或t=13.答:1秒、11秒或13秒后,C、D两点相距5个单位长度.。
人教版2020年七年级上册第1章《有理数》单元测试卷满分:120分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.﹣4的绝对值是()A.B.﹣4C.4D.±42.下列各数不是有理数的是()A.0B.﹣C.﹣2D.π3.盈利2000元记作+2000元,那么亏损1500元记作()A.+500元B.﹣500元C.+1500元D.﹣1500元4.截止到8月21日,全球新冠肺炎确诊人数约为2253万,其中数据2253用科学记数法表示为()A.2.253×102B.2.253×103C.22.53×102D.22.53×103 5.若实数a、b互为相反数,则下列等式中成立的是()A.a﹣b=0B.a+b=0C.ab=1D.ab=﹣16.如图,点M表示的数可能是()A.﹣0.5B.﹣1.5C.1.5D.2.57.下列说法中:①两个数的和一定大于其中任何一个加数;②如果两个数的和是正数,那么这两个加数一定都是正数;③如果两个数的和为负数,则必有一个加数是负数;④一个有理数与它的绝对值的和一定不是负数.其中正确的有()A.①②③B.①③C.③④D.②④8.某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是()A.它精确到百位B.它精确到0.01C.它精确到千分位D.它精确到千位9.下列运算正确的是()A.(﹣3)2=﹣9B.﹣(﹣2)2=4C.32=6D.23=810.点A,B在数轴上的位置如图所示,其对应的有理数分别是a和b.对于下列四个结论:①b﹣a>0;②|a|<|b|;③a+b>0;④>0.其中正确的是()A.①②③④B.①②③C.①③④D.②③④二.填空题(共7小题,满分28分,每小题4分)11.有限小数和无限循环小数都可以化成数,因此,它们都是数.12.若a、b互为倒数,则﹣ab=.13.近似数12.56是精确到位.14.数轴上与表示2的点的距离为5个单位长度的点表示的数为.15.|a|=4,|b|=6,则|a+b|﹣|a﹣b|=.16.规定⊗是一种新运算规则:a⊗b=a2﹣b2,例如:2⊗3=22﹣32=4﹣9=﹣5,则5⊗[1⊗(﹣2)]=.17.数轴上有A、B两点,点A表示5的相反数,点B表示绝对值最小的数,一动点P从点B出发,沿数轴以1单位长度/秒的速度运动,3秒后,点P到点A的距离为单位长度.三.解答题(共8小题,满分62分)18.(6分)计算:(1)﹣9+18+(﹣6)﹣(﹣6)(2)3﹣0.5﹣(﹣)+119.(6分)某升降机第一次上升6m,第二次上升4m,第三次下降5m,第四次又下降7m (记升降机上升为正,下降为负).(1)这时升降机在初始位置的上方还是下方?相距多少米?(2)升降机共运行了多少米?20.(6分)已知:|a|=5,|b﹣1|=8,且a﹣b<0,求a+b的值.21.(8分)计算(1)﹣0.5×+2÷(﹣×)(2)﹣32×(﹣+)﹣(﹣5)2÷()222.(8分)已知下列有理数:﹣(﹣3)、﹣4、0、+5、﹣(1)这些有理数中,整数有个,非负数有个.(2)画数轴,并在数轴上表示这些有理数.(3)把这些有理数用“<“号连接起来:.23.(8分)对于四个数“﹣8,﹣2,1,3”及四种运算“+,﹣,×,÷”,列算式解答:(1)求这四个数的和;(2)在这四个数中选出两个数,按要求进行下列计算,使得:①两数差的结果最小:②两数积的结果最大:(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.24.(10分)小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.25.(10分)如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:∵负数的绝对值是它的相反数,﹣4的相反数是4,∴﹣4的绝对值是4.故选:C.2.解:A、是有理数,故A不符合题意;B、是有理数,故B不符合题意;C、是有理数,故C不符合题意;D、是无理数,不是有理数,故符合题意.故选:D.3.解:盈利2000元记作+2000元,那么亏损1500元记作﹣1500元,故选:D.4.解:数据2253用科学记数法表示为2.253×103.故选:B.5.解:∵实数a、b互为相反数,∴a+b=0.故选:B.6.解:根据点M在数轴上的位置,在原点左侧,距原点大约1.5单位,因此点M所表示的数是﹣1.5,故选:B.7.解:因为﹣1+2=1,1不大于2,所以两个数的和不一定大于其中任何一个加数,故①错误;因为﹣1+2=1,两个数的和是正数,这两个加数不一定都是正数,故②错误;因为两个负数相加,其和为负,异号两数相加,当负加数的绝对值较大时,其和为负,两个正数相加时,其和为正.所以两个数的和为负数,则必有一个加数是负数,故③正确;因为正数与其绝对值的和为正数,0与其绝对值的和为0,负数与其绝对值的和为0.所以一个有理数与它的绝对值的和一定不是负数.故④正确.故选:C.8.解:1.36×105精确到千位.故选:D.9.解:A、(﹣3)2=9,故本选项错误;B、﹣(﹣2)2=﹣4,故本选项错误;C、32=9,故本选项错误;D、23=8,故本选项正确.故选:D.10.解:根据图示,可得﹣3<a<0,b>3,∴(1)b﹣a>0,故正确;(2)|a|<|b|,故正确;(3)a+b>0,故正确;(4)<0,故错误.∴正确的是①②③.故选:B.二.填空题(共7小题,满分28分,每小题4分)11.解:有限小数和无限循环小数都可以化成分数,它们都是有理数.故答案为分;有理.12.解:∵a、b互为倒数,∴ab=1.∴﹣ab=﹣×1=﹣.故答案为:﹣.13.解:近似数12.56是精确到百分位,故答案为:百分.14.解:在数轴上与表示2的点距离5个单位长度的点表示的数是2+5=7或2﹣5=﹣3.故答案为:﹣3或7.15.解:∵|a|=4,|b|=6,∴a=±4,b=±6,当a=4,b=6时,|a+b|﹣|a﹣b|=|4+6|﹣|4﹣6|=10﹣2=8;当a=4,b=﹣6时,|a+b|﹣|a﹣b|=|4+(﹣6)|﹣|4﹣(﹣6)|=﹣8;当a=﹣4,b=6时,|a+b|﹣|a﹣b|=|﹣4+6|﹣|﹣4﹣6|=﹣8;当a=﹣4,b=﹣6时,|a+b|﹣|a﹣b|=|﹣4+(﹣6)|﹣|(﹣4)﹣(﹣6)|=8;由上可得,|a+b|﹣|a﹣b|=±8,故答案为:±8.16.解:根据题中的新定义得:原式=5⊗(1﹣4)=5⊗(﹣3)=25﹣9=16.故答案为:16.17.解:∵点A表示5的相反数,点B表示绝对值最小的数,∴点A表示的数是﹣5,点B表示的数是0,点P移动的距离为1×3=3(单位长度),①若点P从点B向右移动,则点P所表示的数为3,此时P A=|﹣5﹣3|=8,②若点P从点B向左移动,则点P所表示的数为﹣3,此时P A=|﹣5+3|=2,故答案为:2或8.三.解答题(共8小题,满分62分)18.解:(1)原式=﹣9+18﹣6+6=9;(2)原式=﹣++1+=+1=5;19.解:(1)(+6)+(+4)+(﹣5)+(﹣7)=﹣2(m)∵﹣2<0,∴这时升降机在初始位置的下方,相距2m.(2)6+4+5+7=22(m)答:升降机共运行了22m.20.解:∵|a|=5,|b﹣1|=8,∴a=±5,b﹣1=±8,∴a=±5,b=9或﹣7,∵a﹣b<0,∴当a=5,b=9时,a+b=5+9=14;当a=﹣5,b=9时,a+b=﹣5+9=4.故a+b的值为4或14.21.解:(1)﹣0.5×+2÷(﹣×)=﹣+2÷(﹣)=﹣﹣=﹣1;(2)﹣32×(﹣+)﹣(﹣5)2÷()2=﹣9×﹣25÷=﹣1﹣9=﹣10.22.解:(1)这些有理数中,整数有:﹣(﹣3)、﹣4、0、+5,共4个,非负数有:﹣(﹣3)、0、+5,共3个.故答案为:4,3;(2)在数轴上表示这些有理数如图:(3)根据数轴可得﹣4<﹣<0<﹣(﹣3)<+5.故答案为:﹣4<﹣<0<﹣(﹣3)<+5.23.解:(1)(﹣8)+(﹣2)+1+3=﹣10+4=﹣6;(2)①根据题意得:(﹣8)﹣3=﹣8﹣3=﹣11;②根据题意得:(﹣8)×(﹣2)=16;(3)根据题意得:(﹣8)÷(﹣2)﹣3=1或(﹣8)÷(﹣2)﹣1=3.24.解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.25.解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40综上所述m=8或﹣40.。
第一章 有理数 单元测试一、单选题(40分)1.如果温度上升,记作,那么温度下降( )A .B .C .D .2.在下列选项中,具有相反意义的量是( )A .盈利3万元和支出3万元B .增长和亏损C .胜两局和负三局D .前进和后退3.有理数中( )A .有最大的负数B .有最小的整数C .有绝对值最小的数D .不是正有理数就是负有理数4.我国古代数学著作《九章算术》中首次正式引入负数,如果支出元记作元,那么收入元记作( )A .元B .元C .D .5.下列数轴的画法正确的是( )A .B .C .D .6.下列说法正确的是( )A .数轴上的一个点可以表示不同的有理数B .数轴上有两个不同的点可以表示同一个有理数C .任何有理数都可以在数轴上找到与它对应的唯一的点D .有的有理数不能在数轴上表示出来7.若方程无解,方程有一个解,方程有两个解,则( )A .B .C .D .8.如图所示,把数轴上的点A 先向左移动3个单位,再向右移动7个单位得到点B ,若A 6℃6+℃2℃2-℃2+℃4-℃4+℃100%100%500500-800800-300-300元800元0p x -=0q x -=0r x -=p q r <<<<p r q q p r <<r q p <<与B 表示的数互为相反数,则点A 表示的数是( )A .B .C .D .9.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价,再打六折C .先提价,再降价D .先提价,再降价10.如图,正六边形(每条边都相等)在数轴上的位置如图所示,点、对应的数分别为和,现将正六边形绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点所对应的数为0,连续翻转后数轴上2025这个数所对应的点是( )A .点B .点C .点D .点二、填空题(20分)11.在数轴上与表示的点距离4个单位长度的点表示的数是 .12.如果收入900元记作元,那么支出800元记作 元.13.如图,点和在数轴上表示的数分别是和40,点在线段上移动,图中的三条线段和,当其中有一条线段的长度是另外一条线段长度的2倍时,则点在数轴上表示的数为 .14.按规定,食品包装袋上都应标明袋内装有食品多少克,如表是四种饼干的检验结果,“+、-”分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是 .(填写饼干型号)A BC D (g )(g )(g )(g )0.51-2-3-50%30%30%25%25%ABCDEF A F 2-1-ABCDEF E A B C F 3-900+A B 20-C AB AB AC 、BC C A B C D 、、、10+8.5+5+3-三、解答题15.(8分)画出数轴,在数轴上表示下列各数,并按从小到大用“”把这些数连接起来.,―2,,,,.16.(8分)下列说法是否正确?正确的在括号内打“√”,不正确的打“×”(1)一个有理数不是正数就是负数.( )(2)符号不同的两个数互为相反数.( )(3)任何一个有理数都有相反数.( )(4)如果一个数的相反数等于它的绝对值,那么这个数一定是负数.( )17.(10分)小虫从某地点0出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬行的路程依次为(单位:厘米),问:(1)小虫是否回到原点0?(2)爬行过程中,如果每爬行1厘米奖励5粒芝麻,则小虫可得到多少粒芝麻?<3.50 1.6-13-325,3,10,8,6,9,12,10+-+---+-18.(14分)先阅读,并探究相关的问题:【阅读】的几何意义是数轴上,两数所对的点,之间的距离,记作,如的几何意义:表示与两数在数轴上所对应的两点之间的距离;可以看做,几何意义可理解为与两数在数轴上对应的两点之间的距离.(1)数轴上表示和的两点和之间的距离可表示为____________;如果,求出的值;(2)探究:是否存在最小值,若存在,求出最小值;若不存在,请说明理由;a b -a b A B AB a b =-25-2563+()63--63-x 2-A B 5AB =x 43x x ++-参考答案:1.A2.C3.C4.D5.D6.C7.A8.C9.B10.B11.1或12.13.0或10或2014.15.,―216.(1)×(2)×(3)√(4)×17.(1)小虫没有回到原点(2)小虫可得到315粒芝麻18.(1),或(2)存在,最小值是77-800-D< 1.6-<13-<0<32<3.52x +3x =7-。
七年级数学上册《第一章 有理数》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.以下四个有理数中,绝对值最小的是( )A .-2B .2C .0D .12.下列选项,具有相反意义的量是( )A .增加20个与减少30个B .6个老师和7个学生C .走了100米和跑了100米D .向东行30米和向北行30米3.下列说法中不正确的是( )A .﹣3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .﹣2000既是负数,也是整数,但不是有理数D .0是正数和负数的分界4.我国是世界上严重缺水的国家,目前每年可利用的淡水资源总量为 27500 亿立方米,人均占有淡水量居世界第 110 位,因此我们要节约用水,其中 27500 用科学记数法表示为( )A .227510⨯B .42.7510⨯C .52.7510⨯D .327.510⨯5.数轴上的两点之间的距离为7,一个点表示的数是﹣3,则另一个点表示的数是( )A .4B .4或﹣10C .﹣10D .10或﹣46.下列各式中,积为负数的是( )A .()()123-⨯-⨯B .()()123-⨯-⨯-C .()103-⨯⨯D .()()()123-⨯-⨯-7.如图,在一个不完整的数轴上有A ,B ,C 三个点,若点A ,B 表示的数互为相反数,则图中点C 点表示的数是( )A .2-B .1C .0D .48.现定义两种运算“ ⊕ ”,“ * ”.对于任意两个整数 11a b a b a b a b ⊕=+-*=⨯-, ,则 (68)(35)⊕*⊕ 的结果是( )A .69B .90C .100D .112 二、填空题9.123- 的倒数是 ,-2.3的绝对值是 . 10.5月23日,我国许多天文爱好者都拍摄了金星伴月的美丽天象,金星是距离地球最近的行星,距离大约4050万千米,用科学记数法表示这个数字为 千米.(保留两位有效数字)11.我们把向东走8步记作+8步,则向西走5步记作 步.12.大于- 132 而小于 122的所有整数的和是 . 13.已知|a ﹣2|+|b+1|=0,则(a+b )﹣(b ﹣a )= .14.如图是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为 .三、计算题15.510.474( 1.53)166----16.计算:(1)()1375+-- ;(2)()()324542-÷---⨯-17.计算:(1)()15136326⎛⎫-+⨯- ⎪⎝⎭;(2)()22022351113242⎛⎫-⨯-+-÷- ⎪⎝⎭.18.如图所示,在一条不完整的数轴上从左到右有点 ,,A B C ,其中 2AB = , 1BC = 设点 ,,A B C 所对应的数之和是 m ,点 ,,A B C 所对应的数之积是 n .(1)若以 B 为原点,写出点 ,A C 所对应的数,并计算 m 的值;若以 C 为原点, m 又是多少?(2)若原点 O 在图中数轴上点 C 的右边,且 4CO = ,求 n 的值.19.某工厂一周内计划每日生产200辆车.受各种因素影响,实际每天的产量与计划量相比的情况如下表(增加为正)(1)本周三生产了多少辆车?(2)本周的总产量与计划相比,是增加还是减少了?增加或减少的数量是多少?(3)产量最多的一天与最少的一天相比,多生产多少辆?20.早在1960年、中国登山队首次从珠穆朗玛北侧中国境内登上珠峰,近几十年,珠峰更是吸引了大批的登山爱好者,某日,登山运动员傅博准备从海拔7400米的3号营地登至海拔近7900米的4号营地,由于天气骤变,近6小时的攀爬过程中他不得不几次下撤躲避强高空风,记向上爬升的海拔高度为正数,向下撒退时下降的海拔高度为负数,傅博在这一天攀爬的海拔高度记录如下:(单位:米)+320、-55、+116、-20、+81、-43、+115.(1)傳博能按原计划在这天登至4号营地吗?(2)若在这一登山过程中,傅博所处位置的海拔高度上升或下降1米平均消耗8大卡的卡路里,则傅博这天消耗了多少卡路里?参考答案:1.C 2.A 3.C 4.B 5.B 6.D 7.B 8.B9.37-;2.310.74.110⨯11.-512.3-13.414.-115.解:原式= 510.474+1.53166-- = 510.47 1.534166+--=2-6=-4.16.(1)解:原式 1375=--65=-1=(2)解:原式 8458=-÷-+258=--+1=17.(1)解:()15136326⎛⎫-+⨯- ⎪⎝⎭()()()151363636326=⨯--⨯-+⨯-()()12906=---+-12906=-+-72=(2)解:()22022351113242⎛⎫-⨯-+-÷- ⎪⎝⎭511138162=⨯-+÷1383216=-+⨯52=-+3=-18.(1)解:以 B 为原点,点 ,A C 所对应的数分别是 2- , 12011m =-++=-以 C 为原点 (21)(1)04m =--+-+=- ;n=---⨯--⨯-=-(2)解:(412)(41)(4)14019.(1)解:200-3=197(辆)答:本周三生产了197辆车(2)解:-8+8-3+4+14-9-25=-20 (辆)减少了20辆.答:本周与计划相比,总产量减少了,减少了20辆(3)解:产量最多的一天生产了200+14=214(辆)产量最少的一天生产了200-25=175(辆)产量最多的一天与最少的一天相比,多生产了214-175=39(辆)答:产量最多的一天与最少的一天相比,多生产39辆.20.(1)解:依题意得:-+-+-+=(米)傳博一天内的攀爬高度为:32055116208143115514-=<3号营地登至4号营地的高度为:79007400500514∴傳博能按原计划在这天登至4号营地(2)解:依题意得:傅博这天消耗了的卡路里为:()+-++-++-+⨯=⨯= 32055116208143115875086000。
2020年人教版数学七年级上册第一章单元测试卷满分120分一.选择题(共12小题,满分36分,每小题3分)1.﹣4的相反数()A.﹣4B.C.D.42.下列选项中,两数互为倒数的是()A.5与﹣5B.﹣2020与C.2020与﹣2020D.2020与3.下列说法中,正确的是()A.有最小的有理数B.有最小的负数C.有绝对值最小的数D.有最小的正数4.截止北京时间8月17日22点前,全球新冠肺炎累计确诊病例已超过21000000例,这个数字210000000可以用科学记数法表示为()A.0.21×108B.2.1×107C.21×106D.2.1×1085.由四舍五入法得到的近似数6.18万,下列说法正确的是()A.精确到万位B.精确到百位C.精确到千分位D.精确到百分位6.如图,数轴上点A表示的数的绝对值是()A.B.±2C.2D.﹣27.如图,根据某机器零件的设计图纸上信息,判断该零件长度(L)尺寸合格的是()A.9.68mm B.9.97mm C.10.1mm D.10.01mm8.某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃9.下列各组数中,相等的是()A.﹣9和﹣B.﹣|﹣9|和﹣(﹣9)C.9和|﹣9|D.﹣9和|﹣9|10.已知数a,b在数轴上表示的点的位置如图所示,则下列结论正确的是()A.a+b>0B.a﹣b>0C.﹣a>﹣b>a D.a•b>011.如图将直径为1个单位长度的圆形纸片上的点A放在数轴的原点上纸片沿着数轴向左滚动一周,点A到达了点A′的位置,则此时点A′表示的数是()A.﹣πB.πC.﹣2πD.2π12.对于有理数a、b,定义一种新运算“※”,规定:a※b=|a|﹣|b|﹣|a﹣b|,则2※(﹣3)等于()A.﹣2B.﹣6C.0D.2二.填空题(共8小题,满分24分,每小题3分)13.2020的绝对值是.14.如果把收入10元记为+10元,那么支出8元记为元15.在有理数中,最大的负整数是,最小的正整数是,最大的非正数是,最小的非负数是.16.点A在数轴上的位置如图所示,则点A表示的数的相反数是.17.若|a|=9,则a的值是.18.数轴上离原点的距离等于2.5个单位长度的数有个.19.计算:﹣22+(﹣2)2﹣(﹣1)3=.20.下列四组有理数的比较大小:①﹣1<﹣2,②﹣(﹣1)>﹣(﹣2),③+(﹣)<﹣|﹣|,④|﹣|<|﹣|,正确的序号是.三.解答题(共8小题,满分60分)21.(8分)把下列各数填在相应的大括号内:﹣35,0.1,,0,,1,4.01001000…,22,﹣0.3,,π.正数:{,…};整数:{,…};负分数:{,…};非负整数:{,…}.22.(9分)计算:(1)7+(﹣28)﹣(﹣9)(2)﹣32+(﹣12)×|﹣|﹣6÷(﹣1)(3)﹣14+×[2×(﹣6)﹣(﹣4)2]23.(6分)已知a,b互为倒数,c,d互为相反数,m为最大的负整数,求+ab的值.24.(7分)阅读下面解题过程:计算:解:原式=(第一步)=(第二步)=(﹣15)÷(﹣25)(第三步)=﹣(第四步)回答:(1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;(2)正确的结果是.25.(6分)在数轴上表示有理数:1.5,﹣|﹣2|,0,﹣(﹣1),﹣,并用“<”号将它们连接起来.26.(7分)某工人驾驶检修车前去检修东西方向的电话线路,设定向东为正,向西为负,某天自A地出发到收工时,所行使的路程为(单位:千米):+4,﹣3,+22,﹣8,﹣2,+17.(1)收工时距A地多少千米?(2)若每千米耗油0.2升,则从A地出发到收工耗油多少升?27.(8分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C 表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油 1.5升,那么这辆货车此次送货共耗油多少升?28.(9分)观察下列各式:31﹣30=2×30…………①32﹣31=2×31…………②33﹣32=2×32…………③……探索以上式子的规律:(1)写出第5个等式:;(2)试写出第n个等式,并说明第n个等式成立;(3)计算30+31+32+ (32020)参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:﹣4的相反数是4.故选:D.2.解:A、5×(﹣5)≠1,故此选项错误;B、(﹣2020)×≠1,故此选项错误;C、2020×(﹣2020)≠1,故此选项错误;D、2020×=1,故此选项正确.故选:D.3.解:最小的有理数、最小的负数、最小的正数都不存在,但是有绝对值最小的数,即0.故选:C.4.解:将210000000用科学记数法表示为:2.1×108.故选:D.5.解:由四舍五入法得到的近似数6.18万精确到0.01万位,即百位.故选:B.6.解:由数轴可得,点A表示的数是﹣1,∵|﹣2|=2,∴数轴上点A表示的数的绝对值为2.故选:C.7.解:如图所示:该零件长度(L)合格尺寸为10﹣0.02到10+0.02之间,故选:D.8.解:﹣2+12﹣8=10﹣8=2(℃).答:半夜的气温是2℃.故选:B.9.解:A、﹣9≠﹣,故本选项不符合题意;B、﹣|﹣9|=﹣9,﹣(﹣9)=9,﹣9≠9,故本选项不符合题意;C、|﹣9|=9,故本选项符合题意;D、|﹣9|=9,9≠﹣9,故本选项不符合题意.故选:C.10.解:从数轴可知:a<0<b,|a|>|b|,A、a+b<0,不正确;B、a﹣b<0,不正确;C、﹣a>﹣b>a,正确;D、a•b<0,不正确;故选:C.11.解:AA′=π,即A′点所表示的数的绝对值是π,在原点的左边,因此A′所表示的数为﹣π.故选:A.12.解:∵a※b=|a|﹣|b|﹣|a﹣b|,∴2※(﹣3)=|2|﹣|﹣3|﹣|2﹣(﹣3)|=2﹣3﹣|2+3|=2﹣3﹣5=﹣6,故选:B.二.填空题(共8小题,满分24分,每小题3分)13.解:根据绝对值的概念可知:|2020|=2020,故答案为:2020.14.解:“正”和“负”相对,因为收入10元记为+10元,所以支出8元记为﹣8元.故答案为:﹣8.15.解:在有理数中,最大的负整数是﹣1,最小的正整数是1,最大的非正数是0,最小的非负数是0.故答案为:﹣1,1,0,0.16.解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是﹣3.故答案为:﹣3.17.解:∵|a|=9,∴a的值是:±9.故答案为:±9.18.解:设该数为x,则|x|=2.5,解得x=±2.5,故答案为:219.解:﹣22+(﹣2)2﹣(﹣1)3=﹣4+4﹣(﹣1)=﹣4+4+1=1,故答案为:1.20.解:①两个负数,绝对值大的反而小,所以﹣1>﹣2,故原比较错误;②因为﹣(﹣1)=1,﹣(﹣2)=2,所以﹣(﹣1)<﹣(﹣2),故原比较错误;③因为+(﹣)=﹣,﹣|﹣|=﹣,而<,所以+(﹣)>﹣|﹣|,故原比较错误;④因为|﹣|=,|﹣|=,而<,所以|﹣|<|﹣|,故原比较正确;正确的是④.故答案为:④.三.解答题(共8小题,满分60分)21.解:正数:{0.1,1,4.01001000…,22,,π,…};整数:{﹣35,0,1,22,…};负分数:{,,﹣0.3,…};非负整数:{0,1,22,…}.故答案为:0.1,1,4.01001000…,22,,π;﹣35,0,1,22;,,﹣0.3;0,1,22.22.解:(1)7+(﹣28)﹣(﹣9)=7+(﹣28)+9=﹣12;(2)﹣32+(﹣12)×|﹣|﹣6÷(﹣1)=﹣9+(﹣12)×﹣6×(﹣1)=﹣9+(﹣6)+6=﹣9;(3)﹣14+×[2×(﹣6)﹣(﹣4)2]=﹣1+×[(﹣12)﹣16]=﹣1+×(﹣28)=﹣1+(﹣7)=﹣8.23.解:由题意得:ab=1,c+d=0,m=﹣1,则原式=﹣+1+0=.24.解:(1)上面解题过程中有两个错误,第一处是第二步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第四步,错误的原因是两数相除,同号得正,符号应该是正的;(2)==×6=.故正确的结果是.故答案为:二,在同级运算中,没有按从左到右的顺序进行,四,两数相除,同号得正,符号应该是正的;.25.解:﹣|﹣2|=﹣2,﹣(﹣1)=1,在数轴上表示有理数如下:26.解(1)4+(﹣3)+22+(﹣8)+(﹣2)+17=30.答:收工时距A地30千米;(2)(4+3+22+8+2+17)×0.2=11.2(升).答:从A地出发到收工共耗油11.2升.27.解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米);(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.28.(1)根据题意得,35﹣34=2×34,故答案为:35﹣34=2×34;(2)根据题意得,3n﹣3n﹣1=2×3n﹣1,证明:左边=3n﹣1(3﹣1)=2×3n﹣1=右边,∴3n﹣3n﹣1=2×3n﹣1;(3)30+31+32+ (32020)==.。
2020年人教版七年级上册第一章《有理数》单元测试卷满分120分时间90分钟一.选择题(共10小题,满分30分,每小题3分)1.的相反数是()A.3B.C.﹣3D.2.规定上升为正,水位上升了﹣0.5m的意义是()A.水位上升了0.5 m B.水位下降了0.5 mC.水位没有变化D.水位下降了5 m3.2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.2.15×106D.21.5×1064.如图,数轴上有O,A,B三点,点O表示原点,点A表示的数为﹣1,若OB=3OA,则点B表示的数为()A.1B.2C.3D.45.在数轴上表示数﹣11和2009的两点分别为A和B,则A和B两点间的距离为()A.1998B.2008C.2019D.20206.下列说法不正确的是()A.近似数1.8与1.80表示的意义不同B.近似数0.0230精确到万分位C.近似数5.449精确到十分位是5.5D.近似数1.75万精确到千位是1.8万7.若x的相反数是﹣3,|y|=5,则x+y的值为()A.﹣8B.2C.﹣8或2D.8或﹣28.有理数a,b在数轴上表示如图所示,则下列各式中正确的是()A.ab>0B.a+b<0C.b<a D.|b|>|a|9.下列各组数中,数值相等的是()A.﹣22和(﹣2)2B.﹣和(﹣)2C.(﹣2)2和22D.﹣(﹣)2和﹣10.下列说法正确的有()①加正号的数是正数,加负号的数是负数;②任意一个正数,前面加上一个“﹣”号,就是一个负数;③大于零的数是正数;④字母a既是正数,又是负数.A.0个B.1个C.2个D.3个二.填空题(共7小题,满分28分,每小题4分)11.有理数可分为:、、.12.若a和b互为倒数,则ab=.13.在有理数﹣4.2、6、0、﹣11、﹣中,分数有个.14.用“>”或“<”符号填空:﹣7﹣9.15.用四舍五入法,把2.345精确到0.01的近似数是.16.我市某天的最高气温是4℃,最低气温是﹣1℃,则这天的日温差是℃.17.如图所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为.三.解答题(共8小题,满分62分)18.(6分)下列由四舍五入得到的近似数各精确到哪一位?(1)31.7;(2)0.002314;(3)5.39万.19.(6分)计算(1)﹣9+5﹣(﹣12)+(﹣3)(2)﹣(+1.5)﹣(﹣4)+3.75﹣(+8)20.(6分)将下列各数填入相应的集合圈中:﹣26,0,0.34,﹣1,3500,﹣51,﹣,15‰.21.(8分)(1)2×(﹣5)+4﹣3÷(2)(﹣1)4+﹣(﹣+)÷(﹣2)22.(8分)画出数轴并标出表示下列各数的点,并用“<”把下列各数连接起来.﹣3.5,4,﹣2,0,1,﹣5.23.(8分)猕猴桃是湖南省张家界的一大特产,现有30筐猕猴桃,以每筐20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:单位:(千克)﹣2﹣1﹣0.501 1.5筐数2445510(1)30筐猕猴桃中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,30筐猕猴桃总计超过或不足多少千克?(3)若猕猴桃每千克售价5元,则这30筐猕猴桃可卖多少元?24.(10分)在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=.如:(﹣1)#2#3==5(1)计算:4#(﹣2)#(﹣5)=(2)计算:3#(﹣7)#()=(3)在﹣,﹣,…,﹣,0,,,…,这15个数中:①任取三个数作为a、b、c的值,进行“a#b#c”运算,求所有计算结果的最小值是;②若将这十五个数任意分成五组,每组三个数,进行“a#b#c”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是.25.(10分)观察下列各式:31﹣30=2×30…………①32﹣31=2×31…………②33﹣32=2×32…………③……探索以上式子的规律:(1)写出第5个等式:;(2)试写出第n个等式,并说明第n个等式成立;(3)计算30+31+32+ (32020)参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:依据只有符号不同的两个数互为相反数得:的相反数是.故选:D.2.解:规定上升为正,水位上升了﹣0.5m的意义是水位下降了0.5m.故选:B.3.解:将21500000用科学记数法表示为2.15×107,故选:B.4.解:∵点A对应的数为﹣1,OB=3OA,∴OA=1,OB=3,∴B点对应的数是3.故选:C.5.解:2009﹣(﹣11)=2009+11=2020,故选:D.6.解:A、近似数1.8精确到十分位,而1.80精确到百分位,所以A选项的说法正确;B、近似数0.0230精确到万分位,所以B选项的说法正确;C、近似数5.449精确到十分位是5.4,所以C选项的说法错误;D、近似数1.75万精确到千位是1.8万,所以D选项的说法正确.故选:C.7.解:∵x的相反数是﹣3,∴x=3,∵|y|=5,∴y=±5,(1)x=3,y=5时,x+y=3+5=8.(2)x=3,y=﹣5时,x+y=3+(﹣5)=﹣2.故选:D.8.解:由数轴上的位置得:a<0<b,且|a|>|b|,∴ab<0,a+b<0,故选:B.9.解:∵﹣22=﹣4,(﹣2)2=4,﹣22≠(﹣2)2,∴选项A不符合题意;∵﹣=﹣,(﹣)2=,﹣≠(﹣)2,∴选项B不符合题意;∵(﹣2)2=4,22=4,(﹣2)2=22,∴选项C符合题意;∵﹣(﹣)2=﹣,﹣=﹣,﹣(﹣)2≠﹣,∴选项D不符合题意.故选:C.10.解:加正号的数不一定是正数,如+(﹣5)=﹣5是负数,加负号的数不一定是负数,如﹣(﹣5)=5是正数,故①错误;任意一个正数,前面加上一个“﹣”号,就是一个负数,故②正确;大于零的数是正数,故③正确;字母a既是正数,又是负数是错误的,如果a是正数,就一定不是负数,故④错误;故选:C.二.填空题(共7小题,满分28分,每小题4分)11.解:有理数包括整数和分数,可以分为正有理数、零、负有理数.故答案为:正有理数,零,负有理数.12.解:∵a和b互为倒数,∴ab=1,故答案为:1.13.解:在有理数﹣4.2、6、0、﹣11、﹣中,分数有﹣4.2,﹣,共2个,故答案为:2.14.解:∵|﹣7|=7,|﹣9|=9,7<9,∴﹣7>﹣9,故答案为:>.15.解:2.345≈2.35(精确到0.01).故答案为2.35.16.解:4﹣(﹣1)=4+1=5.故答案为:5.17.解:设覆盖住的数据为x,则﹣1.1<x<1.9,故被污染的部分内含有的整数为:﹣1,0,1,故答案为:﹣1,0,1.三.解答题(共8小题,满分62分)18.解:(1)31.7精确到十分位;(2)0.002314精确到百万分位;(3)5.39万精确到百位.19.解:(1)﹣9+5﹣(﹣12)+(﹣3)=﹣9+5+12﹣3=5;(2)﹣(+1.5)﹣(﹣4)+3.75﹣(+8)=﹣1+4+3﹣8=(﹣1﹣8)+(4+3)=﹣10+8=﹣2.20.解:根据题意得,21.解:(1)原式=﹣10+4﹣6=﹣12(2)原式=.22.解:画图如下:用“<”连接起来:﹣5<﹣3.5<﹣2<0<1<4.23.解:(1)1.5﹣(﹣2)=3.5(千克).答:最重的一筐比最轻的一筐重3.5千克.(2)2×(﹣2)+4×(﹣1)+4×(﹣0.5)+5×0+5×1+10×15=﹣4﹣4﹣2+0+5+15=10(千克).答:30筐猕猴桃总计超过10千克.(3)5×(30×20+10)=3050(元).答:这20筐猕猴桃可卖3050元.24.解:(1)原式===4.故答案为:4;(2)原式==3.故答案为:3;(3)①当a=b+c时,原式的值最小,令b=﹣,c=﹣,则原式最小值=﹣﹣=﹣;故答案为:﹣;②∵当a=﹣,b=,c=,则原式=+=;当a=﹣,b=,c=,则原式=+=;当a=﹣,b=,c=,则原式=+=;当a=﹣,b=,c=,则原式=+=;当a=0,b=﹣,c=﹣,原式=0,∴五个结果之和的最大值=+++=4.故答案为:4.25.(1)根据题意得,35﹣34=2×34,故答案为:35﹣34=2×34;(2)根据题意得,3n﹣3n﹣1=2×3n﹣1,证明:左边=3n﹣1(3﹣1)=2×3n﹣1=右边,∴3n﹣3n﹣1=2×3n﹣1;(3)30+31+32+ (32020)==.。
人教版七年级数学上册《第一章有理数》单元测试题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.在生产生活中,正数和负数都有现实意义.例如收20元记作+20元,则支出10元记作()A.+10元B.﹣10元C.+20元D.﹣20元2.在数−2,12,√3,227中,有理数的个数有()A.4个B.3个C.2个D.1个3.如图是单位长度为1的数轴,点A,B是数轴上的点,若点A表示的数是−3,则点B表示的数是()A.−1B.0 C.1 D.24.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()A.B.C.D.5.如图,数轴上点A所表示的数的相反数是()A.9 B.−19C.19D.−96.下列各对数中,互为相反数的是()A.-(-3)和3 B.+(-5)和-[-(-5)]C.13和-3 D.-(-7)和-|-7|7.有理数−2,−12,0,32中,绝对值最大的数是()A.−2B.−12C.0 D.328.−3的绝对值的相反数是()A.−3B.3 C.13D.0 二、填空题9.有理数中,最大的负整数是.10.在−5,|−4|,−(+3),0,−(−2)中,负数共有个.11.绝对值小于2.5的整数有.12.若a与−12互为相反数,则a的值为.13.如果一个数的绝对值是10,那么这个数是.三、解答题14.小明在超市买一食品,外包装上印有“总净含量(300±5)g”的字样.请问“±5g”表示什么意义?小明拿去称了一下,发现只有297g.问食品生产厂家有没有欺诈行为?15.把下列各数填在相应的集合中:8,-1,-0.4与35,0,13,−137,−(−5),−|−207|.正数集合{ …};负数集合{ …};整数集合{ …};分数集合{ …};非负有理数集合{ …}.16.求+358,-2.35,0,−227的相反数和绝对值.17.把下列各数和它们的相反数在数轴上表示出来.+3,-1.5,0 −5218.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-2表示的点与何数表示的点重合;(2)若-1表示的点与5表示的点重合,0表示的点与何数表示的点重合;(3)若-1表示的点与5表示的点之间的线段折叠2次,展开后,请写出所有的折点表示的数?参考答案1.B2.B3.C4.B5.D6.D7.A8.A9.-110.211.±2;±1;012.1213.±1014.解:由题意可知:“±5g”表示总净含量的浮动范围为上下5g,即含量范围在(300+5)=305克到(300−5)=295克之间,故总净含量为297在合格的范围内,食品生产厂家没有欺诈行为.15.8 3513−(−5);-1 -0.4 −137−|−207|;8 -1 0 −(−5);-0.4 3513−137−|−207|;8 350 1316.解:相反数分別是:−358,2.35,0,227;绝对值分别是:358,2.35,0,227.17.解:+3的相反数为:-3 -1.5的相反数为:1.50的相反数为:0−52的相反数为:52在数轴上表示如下:.18.(1)解:若1表示的点与-1表示的点重合,则-2表示的点与2表示的点重合;(2)解:若-1表示的点与5表示的点重合,0表示的点与4表示的点重合;(3)解:若-1表示的点与5表示的点重合,则对称中心是2表示的点,第2次对折:-1表示的点与2表示的点重合,则对称中心是0.5表示的点;2表示的点与5表示的点重合,则对称中心是3.5表示的点;∴展开后,所有的折点表示的数:0.5,2,3.5.。
新人教版七年级第一章有理数单元检测题及答案(10套)work Information Technology Company.2020YEAR2有理数单元检测001有理数及其运算(综合)(测试5) 一、境空题(每空2分,共28分)1、31-的倒数是____;321的相反数是____.2、比–3小9的数是____;最小的正整数是____.3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____.9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______.二、选择题(每小题3分,共24分) 11、–5的绝对值是………………………………………………………( )A 、5B 、–5C 、51D 、51-12、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………( )A 、l 个B 、2个C 、3个D 、4个 13、下列算式中,积为负数的是………………………………………………( )A 、)5(0-⨯B 、)10()5.0(4-⨯⨯C 、)2()5.1(-⨯D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是…………………………………………………( )A 、–1与(–4)+(–3)B 、3-与–(–3)C 、432与169D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( )A 、90分B 、75分C 、91分D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( )A 、121B 、321 C 、641 D 、1281317、不超过3)23(-的最大整数是………………………………………( ) A 、–4 B –3 C 、3 D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( )A 、高12.8%B 、低12.8%C 、高40%D 、高28% 三、解答题(共48分)19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数:–3,+l ,212,-l.5,6.20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?21、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯22、(8分)计算.(1)15783--+- (2))6141(21--(3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷23、(12分)计算.(l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯-(3)[]2)4(231)5.01(-+⨯÷-- (4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是 0C ,酒精冻结的温度是–117℃。
人教版2020年七年级上册第一章《有理数》单元测试卷满分120分班级:__________姓名:__________成绩:__________一.选择题(共10小题,满分30分,每小题3分)1.在0,2,,﹣1,这五个数中,最小的数是()A.0B.2C.D.﹣12.规定一个物体向上移动1m,记作+1m,则这个物体向下移动了2m,可记作()A.﹣2m B.2m C.3m D.﹣1m3.某市2020年参加中考的考生人数的为93400人,将93400用科学记数法表示为()A.934×102B.93.4×103C.9.34×104D.0.934×1054.以下说法正确的是()A.一个数前面带有“﹣”号,则是这个数是负数B.整数和小数统称为有理数C.数轴上的点都表示有理数D.数轴上表示数a的点在原点的左边,那么a是一个负数5.如图,数轴上表示数﹣2的点是()A.点N B.点M C.点Q D.点P6.﹣,﹣,﹣的大小顺序是()A.>>B.>>C.>>D.>>7.在数轴上﹣3与+2之间的有理数()A.只有4个B.只有5个C.只有6个D.有无数个8.下列运算中正确的是()A.|﹣(+)|=﹣B.﹣(﹣5)=﹣5C.(﹣5)﹣5=0D.3﹣(﹣2)=5 9.下列各组数中,不相等的一组是()A.(﹣3)2与﹣32 B.﹣|﹣3|2与﹣32 C.﹣|﹣3|3与﹣33 D.(﹣3)3与﹣33 10.如果a与﹣1互为相反数,则|a+2|等于()A.2B.﹣2C.3D.﹣3二.填空题(共6小题,满分24分,每小题4分)11.﹣的绝对值是,相反数是,倒数是.12.把2.895精确到0.01是.13.数轴上表示﹣3的点与表示2的点的距离是.14.在数轴上,点A对应的数为3,在点A的左侧的点B对应的数为a.若|a﹣3|=5,则a 为.15.某同学计划在假期每天做6道数学题超过的题数记为正数,不足的题数记为负数,十天中做题记录如下:﹣3,5,﹣4,2,﹣1,1,0,﹣3,8,7,那么他十天共做的数学题有道.16.对于任意有理数x,经过以下运算过程,当x=﹣6时,运算结果是.三.解答题(共8小题,满分66分)17.(16分)计算(1)10﹣(﹣5)+(﹣8);(2)÷(﹣1)×(﹣2);(3)(+﹣)×12;(4)(﹣1)10×2+(﹣2)3÷4.18.(6分)下面是佳佳同学的一道题的解题过程:2÷(﹣)×(﹣3)=[2÷(﹣)+2]×(﹣3),①=2×(﹣3)×(﹣3)+2×4×(﹣3),②=18﹣24,③=6,④(1)佳佳同学开始出现错误的步骤是;(2)请给出正确的解题过程.19.(8分)把下列各数填在相应的集合内:﹣,8,0.3,0,﹣2018,12%,﹣2.负整数集合{……};正分数集合{……};非负数集合{……};自然数集合{……}.20.(6分)把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来.﹣1.5,0,,2.5,﹣(﹣1),﹣|﹣4|.21.(6分)化简下列各数:①+(﹣3);②﹣(+5);③﹣(﹣3.4);④﹣[+(﹣8)];⑤﹣[﹣(﹣9)].化简过程中,你有何发现?化简结果的符号与原式中的“﹣”号的个数有什么关系?22.(6分)观察下表(1)中的数据,可发现每行、每列及对角线上各数之和都相等.我们把这样的图表称为“幻方”.请按下列要求正确填写幻方:把﹣4、﹣3、﹣2、﹣1、0、1、2、3、4这九个数填入表(2)中,构成幻方.23.(9分)有20袋大米,以每袋30千克为标准,超过或不足的千克数分别用正负数来表述,记录如下:与标准质量的差值(单位:千克)﹣310 2.5﹣2﹣1.5袋数123842(1)20袋大米中,最重的一袋比最轻的一袋重多少千克?(2)与标准重量比较,20袋大米总计超过多少千克或不足多少千克?(3)若大米每千克售价3.5元,出售这20袋大米可卖多少元?24.(9分)如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,终点表示的数是﹣2.参照图中所给的信息,完成填空:已知A,B都是数轴上的点.(1)若点A表示数﹣3,将点A向右移动5个单位长度至点A1,则点A1表示的数是;(2)若点A表示数2,将点A先向左移动7个单位长度,再向右移动个单位长度至点A2,则点A2表示的数是.(3)若将点B先向左移动3个单位长度,再向右移动6个单位长度,终点表示的数恰好是0.则点B所表示的数是;(4)点A1,A2,B表示的数按从小到大的顺序排列依次是.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:∵﹣1<<<0<2,∴最小的数为﹣1.故选:D.2.解:规定一个物体向上移动1m,记作+1m,则这个物体向下移动了2m,可记作﹣2m.故选:A.3.解:93400=9.34×104.故选:C.4.解:A、一个数前面带有“﹣”号,这个数不一定是负数,如﹣(﹣3)=3,故选项错误;B、整数和分数统称为有理数,故选项错误;C、数轴上的点都表示实数,故选项错误;D、数轴上表示数a的点在原点的左边,那么a是一个负数,故选项正确.故选:D.5.解:﹣2在数轴原点的左侧,由图直接可得点N表示﹣2.故选:A.6.解:∵﹣=﹣1+,﹣=﹣1+,﹣=﹣+,>>,∴﹣>﹣>﹣.故选:A.7.解:在数轴上﹣3与+2之间的有理数有无数个.故选:D.8.解:A.|﹣(+)=.,故错误;B,﹣(﹣5)=5,故错误;C.(﹣5)﹣5=﹣10,故错误;D.3﹣(﹣2)=3+2=5,故正确.故选:D.9.解;A.(﹣3)2=9≠﹣32=﹣9,此选项符合题意;B.﹣|﹣3|2=﹣9=﹣32,此选项不符合题意;C.﹣|﹣3|3=﹣33=﹣27,此选项不符合题意;D.(﹣3)3=﹣33=﹣27,此选项不符合题意;故选:A.10.解:∵a与﹣1互为相反数,∴a=1.∴|a+2|=|1+2|=3.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:﹣的绝对值是:,相反数是:,倒数是:﹣.故答案为:,,﹣.12.解:2.895≈2.90(精确到0.01),故答案为:2.90.13.解:∵﹣3<0,2>0,∴两点之间的距离为:2﹣(﹣3)=5.14.解:|a﹣3|=5,a﹣3=±5,解得a=﹣2或8.∵点B在点A的左侧,∴a小于3,故答案为:﹣2.15.解:﹣3+5﹣4+2﹣1+1+0﹣3+8+7=12,6×10=60,60+12=72;故答案为72.16.解:(﹣6)+3=﹣3,(﹣3)2=9,9×=3.答:运算结果是3.三.解答题(共8小题,满分66分)17.解:(1)10﹣(﹣5)+(﹣8)=10+5﹣8=7;(2)÷(﹣1)×(﹣2)=×(﹣)×(﹣)=;(3)(+﹣)×12=×12+×12﹣×12=3+2﹣6=﹣1;(4)(﹣1)10×2+(﹣2)3÷4=1×2+(﹣8)÷4=2﹣2=0.18.解:(1)佳佳同学开始出现错误的步骤是①.故答案为:①.(2)2÷(﹣)×(﹣3)==2×(﹣12)×(﹣3)=72.19.解:负整数集合{﹣2018,﹣2};正分数集合{ 0.3,12%};非负数集合{ 8,0.3,0,12%};自然数集合{ 0,8}.故答案为:﹣2018,﹣2;0.3,12%;8,0.3,0,12%;0,8.20.解:如图所示:∴﹣|﹣4)<﹣3<﹣1.5<0<﹣(﹣1)<2.5.21.解:①+(﹣3)=﹣3;②﹣(+5)=﹣5;③﹣(﹣3.4)=3.4;④﹣[+(﹣8)]=8;⑤﹣[﹣(﹣9)]=﹣9.最后结果的符号与“﹣”的个数有着密切联系,当“﹣”的个数是奇数,最后结果为负数,当“﹣”的个数是偶数,最后结果为正数.22.解:[(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3+4]÷3=0÷3=0第1行的第3个数是:0﹣(﹣1)﹣4=﹣3第3行的第2个数是:0﹣3﹣1=﹣4第2行的第2个数是:0﹣(﹣4)﹣4=0第2行的第1个数是:0﹣0﹣2=﹣223.解:(1)最重的一袋比最轻的一袋重:2.5﹣(﹣3)=2.5+3=5.5(千克),答:最重的一袋比最轻的一袋重5.5千克;(2)(﹣3)×1+(﹣2)×4+(﹣1.5)×2+1×2+0×3+2×2+2.5×8=8(千克),答:20 袋大米总计超过8千克;(3)3.5×(30×20+8)=2128(元),答:出售这20 袋大米可卖2128元.24.解:(1)若点A表示数﹣3,将点A向右移动5个单位长度至点A1,则点A1表示的数是﹣3+5=2;(2)若点A表示数2,将点A先向左移动7个单位长度,再向右移动个单位长度至点A2,则点A2表示的数是2﹣7+=﹣.(3)若将点B先向左移动3个单位长度,再向右移动6个单位长度,终点表示的数恰好是0.则点B所表示的数是0﹣6+3=﹣3;(4)点A1,A2,B表示的数按从小到大的顺序排列依次是﹣3<﹣<2.故答案为:2;﹣;﹣3;﹣3<﹣<2.。
人教版七年级数学上册第一章有理数单元测试题一.选择题(共10小题)1.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等2.如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1 B.0 C.1 D.33.点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为()A.﹣2或1 B.﹣2或2 C.﹣2 D.14.<()<,符合条件的分数有()个.A.无数B.1 C.2 D.35.在,,1.62,0四个数中,有理数的个数为()A.4 B.3 C.2 D.16.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+ B.﹣C.×D.÷7.有理数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.<08.312是96的()A.1倍B.C.D.36倍9.2019年“十一”黄金周期间(7天),北京市接待旅游总人数为920.7万人次,旅游总收入111.7亿元.其中111.7亿用科学记数法表示为()A.111.7×106B.11.17×109C.1.117×1010D.1.117×108 10.如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元二.填空题(共8小题)11.2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为.12.绝对值不大于11.1的整数有个.13.今年,秦州市市区道路的改造面积约达到231500平方米,使市民行车舒适度大大提升.231500(精确到1000)≈.14.计算:﹣ +|3|﹣+(﹣6)=.15.一只蜗牛在数轴上爬行,从原点出发爬行2个单位长度到达终点,那么这个终点表示的数值是.16.对于任意有理数a、b,规定a⊕b=2a2+ab﹣1,则(﹣3)⊕5=.17.﹣2020的相反数是,﹣2020的绝对值是,﹣2020的倒数是.18.若a+3=0,则a=.三.解答题(共8小题)19.计算(1)×()×÷;(2)()×12;(3)(﹣125)÷(﹣5);(4)(﹣10)3+[(﹣4)2﹣(1﹣32)×2].20.求|x+3|+|x﹣5|的最小值.21.如图,点A,B在数轴上,它们对应的数分别是﹣2,3x﹣4,且点A,B到原点的距离相等,求x的值.22.已知A地海拔高度为﹣30m,B地海拔高度为50m,C地海拔高度为﹣10m,哪个地方地势最高?哪个地方地势最低?地势最低的地方与地势最高的地方相差多少米?23.先计算,再阅读材料,解决问题:(1)计算:.(2)认真阅读材料,解决问题:计算:÷().分析:利用通分计算的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:()÷=()×30=×30﹣×30+×30﹣×30=20﹣3+5﹣12=10.故原式=.请你根据对所提供材料的理解,选择合适的方法计算:(﹣)÷.24.超市购进8筐白菜,以每筐25kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?25.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”例如:①24×11=264.计算过程:24两数拉开,中间相加,即2+4=6,最后结果264;②68×11=748.计算过程:68两数分开,中间相加,即6+8=14,满十进一,最后结果748.(1)计算:①32×11=,②78×11=;(2)若某个两位数十位数字是a,个位数字是b(a+b<10),将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是,十位数字是,个位数字是;(用含a、b的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理.26.定义新运算@”与“⊕”:a@b=,a⊕b=.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.参考答案与试题解析一.选择题(共10小题)1.解:A、+a和﹣(﹣a)互为相反数;错误,二者相等;B、+a和﹣a一定不相等;错误,当a=0时二者相等;C、﹣a一定是负数;错误,当a=0时不符合;D、﹣(+a)和+(﹣a)一定相等;正确.故选:D.2.解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=33+1+b=3c﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a﹣b+c=﹣2+1+2=1,故选:C.3.解:由题意得,|2a+1|=3,解得,a=1或a=﹣2,故选:A.4.解:设符合条件的数为x,根据分数的基本性质,把分子分母扩大2倍,则,符合条件的分数有:,,;把分子分母扩大3倍,则,符合条件的分数有:,,,,;…,所以符合条件的分数有无数个,故选:A.5.解:在,,1.62,0四个数中,有理数为,1.62,0,共3个,故选:B.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:由数轴可知:b<﹣1,0<a<1,∴a+b<0,a﹣b>0,ab<0,<0.故选:D.8.解:∵312=(32)6=96,∴312是96的1倍.故选:A.9.解:111.7亿=11170000000=1.117×1010故选:C.10.解:如果收入10元记作+10元,那么支出10元记作﹣10元.故选:C.二.填空题(共8小题)11.解:93480000=9.348×107.故答案为:9.348×107.12.解:原点(0点)左边绝对值不大于11.1的整数有:﹣1、﹣2、﹣3、﹣4、﹣5、﹣6、﹣7、﹣8、﹣9、﹣10、﹣11,原点(0点)右边绝对值不大于11.1的整数有:1、2、3、4、5、6、7、8、9、10、11,还有0,因此,绝对值不大于11.1的整数有:11+1+11=23(个).故答案为:23.13.解:231500≈2.32×105,故答案为2.32×105.14.解:原式=﹣﹣+﹣=﹣1﹣3=﹣4,故答案为:﹣4.15.解:从原点出发,向右爬行2个单位长度,得+2,从原点出发,向左爬行2个单位长度,得﹣2,故答案为:2或﹣2.16.解:∵a⊕b=2a2+ab﹣1,∴(﹣3)⊕5=2×(﹣3)2+(﹣3)×5﹣1 =18﹣15﹣1=2.故答案为:2.17.解:﹣2020的相反数是2020,﹣2020的绝对值为2020,﹣2020的倒数是:﹣.故答案为:2020,2020,﹣.18.解:∵a+3=0,∴a=﹣3.故答案为:﹣3.三.解答题(共8小题)19.解:(1)×()×÷=×(﹣)×=﹣;(2)()×12=3+2﹣6=﹣1;(3)(﹣125)÷(﹣5)=[(﹣125)+(﹣)]×(﹣)=25+=25;(4)(﹣10)3+[(﹣4)2﹣(1﹣32)×2]=(﹣1000)+[16﹣(1﹣9)×2]=(﹣1000)+[16﹣(﹣8)×2]=(﹣1000)+(16+16)=(﹣1000)+32=﹣968.20.解:∵|x+3|+|x﹣5|表示点x到点﹣3和点5之间的距离之和,∴当点x在点﹣3和5之间时,距离之和最小,即﹣3≤x≤5故最小值为5﹣(﹣3)=8.21.解:∵点A,B到原点的距离相等,点A表示的数是﹣2,点B在原点的右侧,∴点B表示的数为2,即:3x﹣4=2,解得,x=2,答:x的值为2.22.解:因为50>﹣10>﹣30,所以B地地势最高,A地地势最低,地势最低的地方与地势最高的地方相差:50﹣(﹣30)=50+30=80(m).答:B地地势最高,A地地势最低,地势最低的地方与地势最高的地方相差80m.23.解:(1)原式=×12﹣×12+×12=4﹣2+6=8;(2)原式的倒数是:(﹣+﹣)×(﹣52)=×(﹣52)﹣×(﹣52)+×(﹣52)﹣×(﹣52)=﹣39+10﹣26+8=﹣47,故原式=﹣.24.解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),25×8﹣5.5=194.5(千克),答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元),583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.25.解:(1)①∵3+2=5∴32×11=352②∵7+8=15∴78×11=858故答案为352,858.(2)两位数十位数字是a,个位数字是b,这个两位数乘11,∴三位数百位数字是a,十位数字是a+b,个位数字是b.故答案为:a,a+b,b.(3)两位数乘以11可以看成这个两位数乘以10再加上这个两位数,若两位数十位数为a,个位数为b,则11(10a+b)=10(10a+b)+(10a+b)=100a+10b+10a+b=100a+10(a+b)+b根据上述代数式,可以总结出规律口诀为:“头尾一拉,中间相加,满十进一”.26.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.。
2020年人教版七年级数学上册《第1章有理数》单元测试卷一.选择题(共10小题)1.在0.2、﹣2、10、、﹣2.5、﹣3.3中,负数的个数有()A.3个B.4个C.5个D.6个2.下列说法正确的有()①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称;③有理数是正整数、负整数、正分数、负分数的统称;④0是偶数,但不是自然数;⑤偶数包括正偶数、负偶数和零.A.1个B.2个C.3个D.4个3.学校、小明家、书店依次坐落在一条南北走向的大街上,学校在小明家南边20m,书店在小明家北边100m.小明同学从家里出发,向北走了50m,接着又向南走了70m,此时小明的位置是()A.在家B.在书店C.在学校D.不在上述地方4.﹣9的相反数是()A.B.﹣C.9D.﹣95.﹣8的绝对值是()A.﹣8B.C.8D.﹣6.下列说法正确的是()A.0既不是正数也不是负数B.最小的正数0C.绝对值等于3的数是3D.任何有理数都有倒数7.下列四个地方:死海(海拔﹣400米),卡达拉低地(海拔﹣133米),罗讷河三角洲(海拔﹣2米),吐鲁番盆地(海拔﹣154米).其中最低的是()A.死海B.卡达拉低地C.罗讷河三角洲D.吐鲁番盆地8.如果a、b异号,且a+b<0,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a,b异号,且正数的绝对值较大D.a,b异号,且负数的绝对值较大9.若x的相反数是3,|y|=6,且x+y<0,则x﹣y的值是()A.3B.3或﹣9C.﹣3或﹣9D.﹣910.(﹣3)﹣(﹣4)+7的计算结果是()A.0B.8C.﹣14D.﹣83二.填空题(共8小题)11.如果节约6吨水记作+6吨,那么浪费2吨水记作吨.12.下列各数﹣2,3,,﹣5.4,|﹣9|,0,4中,属于整数的有个,属于负数的有个.13.点A表示数轴上的一个点,将点A向右移动10个单位,再向左移动6个单位,终点恰好是原点,则点A表示的数是.14.﹣(﹣2.8)=,﹣2.6是的相反数.15.已知a,b,c的位置如图所示,则|a|+|a+b|﹣|c﹣b|=.16.0.2的倒数是.17.大于而不大于的整数有,所有整数之积为.18.如图,在3×3的幻方的九个空格中,填入9个数字,使得处于同一横行,同一竖行,同一斜对角线上的三个数的和都相等,按以上规则的幻方中,则同一竖行的三个数的和为.三.解答题(共8小题)19.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣31,﹣16,+35,﹣38,﹣20(1)经过这6天,仓库里的货品是(填“增多了”或“减少了”)(2)经过这6天,仓库管理员结算发现仓库还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?20.把下列各数填在相应的表示集合的大括号里:﹣2.4,3,2.008,﹣,1,﹣0.,0,﹣(﹣2.28),3.14,﹣|﹣4|正有理数集合:{…};负有理数集合:{…};整数集合:{…};负分数集合:{…}.21.滴滴打车是一种网上约车方式,更方便人们出行,小明国庆节第一天下午营运全是在安庆某大道南北走向的公路上进行的,如果向南记作“﹣”,向北记作“+”.他这天下午行车情况如下:(单位:千米,每次行车都有乘客)﹣10,+5,﹣2,+8,﹣6,﹣4,+7,+8请回答:(1)小明将最后一名乘客送到目的地时,小明在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若小明的出租车每千米耗油0.06升,每升汽油6.5元,这八次出车共耗油费多少元?22.【观察与归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3||﹣8|+|3|>|﹣8+3||﹣2|+|﹣3|=|﹣2﹣3||0|+|﹣6|=|0﹣6|归纳:|a|+|b||a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【理解与应用】(2)根据上题中得出的结论,若|m|+|n|=9,|m+n|=1,求m的值.23.若n=1﹣+﹣+﹣+,求n的负倒数.24.在数轴上表示数:﹣2.5,0,2,|﹣|,﹣1.然后按从小到大的顺序用“<“连接起来.25.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数字之和相等,得到的3×3的方格称为一个三阶幻方.在图中的空格处填上合适的数字,使它构成一个三阶幻方.26.已知a﹣b=5且a>4,b<6,求|a﹣4|+|b﹣6|﹣5的值.2020年人教版七年级数学上册《第1章有理数》单元测试卷参考答案与试题解析一.选择题(共10小题)1.在0.2、﹣2、10、、﹣2.5、﹣3.3中,负数的个数有()A.3个B.4个C.5个D.6个【分析】根据小于0的是负数即可求解.【解答】解:在0.2、﹣2、10、、﹣2.5、﹣3.3中,负数有﹣2、﹣π、﹣2.5、﹣3.3,负数的个数有4个.故选:B.【点评】此题主要考查了正数和负数的意义,判断一个数是正数还是负数,关键是看它比0大还是比0小.2.下列说法正确的有()①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称;③有理数是正整数、负整数、正分数、负分数的统称;④0是偶数,但不是自然数;⑤偶数包括正偶数、负偶数和零.A.1个B.2个C.3个D.4个【分析】按照有理数的分类对各项进行逐一分析即可.【解答】解:①正有理数是正整数和正分数的统称是正确的;②整数是正整数、0和负整数的统称,原来的说法是错误的;③有理数是正整数、0、负整数、正分数、负分数的统称,原来的说法是错误的;④0是偶数,也是自然数,原来的说法是错误的;⑤偶数包括正偶数、负偶数和零是正确的.故说法正确的有2个.故选:B.【点评】考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.3.学校、小明家、书店依次坐落在一条南北走向的大街上,学校在小明家南边20m,书店在小明家北边100m.小明同学从家里出发,向北走了50m,接着又向南走了70m,此时小明的位置是()A.在家B.在书店C.在学校D.不在上述地方【分析】根据题意,以小明家为原点,向北为正方向,在数轴上用点表示各个地方的位置,按照小明所走的方向与距离即可得答案.【解答】解:根据题意,以小明家为原点,向北为正方向,20米为一个单位,在数轴上用点分别表示学校、家、书店的位置,如图所示:0+50﹣70=﹣20∴此时小明的位置是在学校故选:C.【点评】本题考查了数轴的运用,注意结合题意,在数轴上用点表示各个地方的位置,是解题的关键.4.﹣9的相反数是()A.B.﹣C.9D.﹣9【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣9的相反数是9,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.5.﹣8的绝对值是()A.﹣8B.C.8D.﹣【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣8的绝对值为|﹣8|=8.故选:C.【点评】本题考查了绝对值的性质,熟记一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.6.下列说法正确的是()A.0既不是正数也不是负数B.最小的正数0C.绝对值等于3的数是3D.任何有理数都有倒数【分析】根据有理数的分类和绝对值的非负性进行分析即可.【解答】解:0既不是正数也不是负数,故A正确.没有最小的正数,故B错误.绝对值等于3的数是3和﹣3,故C错误.0是有理数,但是0没有倒数,故D错误.故选:A.【点评】本题考查了有理数的定义及相关的基本性质,解题的关键是掌握有理数的分类及相关的基本性质.7.下列四个地方:死海(海拔﹣400米),卡达拉低地(海拔﹣133米),罗讷河三角洲(海拔﹣2米),吐鲁番盆地(海拔﹣154米).其中最低的是()A.死海B.卡达拉低地C.罗讷河三角洲D.吐鲁番盆地【分析】根据有理数大小的比较解答即可.【解答】解:﹣400<﹣154<﹣133<﹣2所以最低的是死海.故选:A.【点评】本题考查了有理数大小的比较,解题的关键是明确两个负数比较大小,绝对值大的反而小.8.如果a、b异号,且a+b<0,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a,b异号,且正数的绝对值较大D.a,b异号,且负数的绝对值较大【分析】两数异号,两数之和小于0,说明两数都是负数或一正一负,且负数的绝对值大.综合两个条件可选出答案.【解答】解:∵a+b<0,∴a,b同为负数,或一正一负,且负数的绝对值大,∵a,b异号,∴a、b异号,且负数的绝对值较大.故选:D.【点评】此题主要考查了有理数的乘法和加法,解题的关键是熟练掌握计算法则,正确判断符号.9.若x的相反数是3,|y|=6,且x+y<0,则x﹣y的值是()A.3B.3或﹣9C.﹣3或﹣9D.﹣9【分析】首先根据相反数,绝对值的概念分别求出x、y的值,然后代入x﹣y,即可得出结果.【解答】解:x的相反数是3,则x=﹣3,|y|=6,y=±6,∵且x+y<0,∴y=﹣6,∴x﹣y=﹣3﹣(﹣6)=3.故选:A.【点评】此题主要考查绝对值的性质以及相反数的定义.需注意的是互为相反数的两个数绝对值相等.10.(﹣3)﹣(﹣4)+7的计算结果是()A.0B.8C.﹣14D.﹣83【分析】根据有理数的加减混合运算即可求解.【解答】解:(﹣3)﹣(﹣4)+7=﹣3+4+7=8故选:B.【点评】本题考查了有理数的加减混合运算,解决本题的关键是计算过程中注意符号.二.填空题(共8小题)11.如果节约6吨水记作+6吨,那么浪费2吨水记作﹣2吨.【分析】节约与浪费具有相反意义,节约6吨水用正数表示,则浪费记作负数,据此可解.【解答】解:节约与浪费具有相反意义,节约6吨水记作+6吨,那么浪费2吨水记作﹣2吨.故答案为:﹣2.【点评】本题考查了正数和负数的意义,比较简单.12.下列各数﹣2,3,,﹣5.4,|﹣9|,0,4中,属于整数的有5个,属于负数的有2个.【分析】根据整数的定义,负数的定义,可得答案.【解答】解:在﹣2,3,,﹣5.4,|﹣9|,0,4中,属于整数的有﹣2,3,|﹣9|,0,4共5个;属于负数的有﹣2,﹣5.4共2个.故答案为:5;2【点评】本题考查了有理数,负数时小于零的数,注意带符号的数不一定是负数.13.点A表示数轴上的一个点,将点A向右移动10个单位,再向左移动6个单位,终点恰好是原点,则点A表示的数是﹣4.【分析】设点A表示的数是x,根据向右移动用加法,向左移动用减法,列方程并求解即可.【解答】解:设点A表示的数是x,由题意得:x+10﹣6=0∴x=﹣4故答案为:﹣4.【点评】本题考查了数轴上的点所表示的数,正确列出方程,是解题的关键.14.﹣(﹣2.8)= 2.8,﹣2.6是 2.6的相反数.【分析】根据相反数的定义分别填空即可.【解答】解:﹣(﹣2.8)=2.8,﹣2.6是2.6的相反数.故答案为:2.8,2.6.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.15.已知a,b,c的位置如图所示,则|a|+|a+b|﹣|c﹣b|=﹣2a﹣c.【分析】通过数轴判断a,c,b的相对大小,可知b<a<0<c,且|b|>|c|>|a|,从而确定绝对值里代数式的值的符号,再去掉绝对值,最后实现化简.【解答】解:由数轴可知b<a<0<c,且|b|>|c|>|a|,∴a+b<0,c﹣b>0,∴|a|+|a+b|﹣|c﹣b|=﹣a﹣(a+b)﹣(c﹣b)=﹣a﹣a﹣b﹣c+b=﹣2a﹣c.故答案为:﹣2a﹣c.【点评】本题考查的是利用数轴比较数的大小,并进行化简,利用数轴判断绝对值内代数式的符号是解题关键.16.0.2的倒数是5.【分析】利用倒数的定义求解即可.【解答】解:0.2的倒数是5.故答案为:5.【点评】本题主要考查了倒数,解题的关键是熟记倒数的定义.17.大于而不大于的整数有﹣2,﹣1,0,1,所有整数之积为0.【分析】找出符合条件的所有的整数,然后再根据有理数的乘法运算法则进行计算即可.【解答】解:大于而不大于的整数有﹣2,﹣1,0,1.(﹣2)×(﹣1)×0×1=0.故答案为:﹣2,﹣1,0,1;0.【点评】本题主要考查了有理数大小比较,注意:负数都小于0,两个负数比较大小,其绝对值大的反而小.18.如图,在3×3的幻方的九个空格中,填入9个数字,使得处于同一横行,同一竖行,同一斜对角线上的三个数的和都相等,按以上规则的幻方中,则同一竖行的三个数的和为15.【分析】使得处于同一横行,同一竖行,同一斜对角线上的三个数的和都相等,则由已知的2x+x+1=4+x+x+1,即可求出x,进而求出同一竖行的三个数的和值.【解答】解:由题意得,2x+x+1=4+x+x+1,解得x=5将x=5代入4+x+x+1得4+5+5+1=15故同一竖行的三个数的和为15故答案为15.【点评】此题比较简单,主要考查了有理数的加法,主要多观察表格中的数值找出规律即可以求解.三.解答题(共8小题)19.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣31,﹣16,+35,﹣38,﹣20(1)经过这6天,仓库里的货品是减少了(填“增多了”或“减少了”)(2)经过这6天,仓库管理员结算发现仓库还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?【分析】(1)根据有理数的加法法则计算;(2)根据(1)的计算结果解答;(3)求出公司6天内货品进出仓库的吨数的和,计算即可.【解答】解:(1)+31+(﹣31)+(﹣16)+(+35)+(﹣38)+(﹣20)=﹣39(吨),∴经过这6天,仓库里的货品减少了,故答案为:减少了;(2)460+39=499(吨),答:6天前仓库里有货品499吨;(3)(31+31+16+35+38+20)×5=855(元),答:这6天要付855元装卸费.【点评】本题考查的是正数和负数,掌握有理数的加法法则,正数和负数的意义是解题的关键.20.把下列各数填在相应的表示集合的大括号里:﹣2.4,3,2.008,﹣,1,﹣0.,0,﹣(﹣2.28),3.14,﹣|﹣4|正有理数集合: ,,1,﹣(﹣), …};负有理数集合:{ ﹣2.4,﹣,﹣0.,﹣|﹣4| …};整数集合:{ 3,0,﹣|﹣4| …};负分数集合:{ ﹣2.4,﹣,﹣0. …}.【分析】根据正负有理数、整数、负分数的定义,直接填空即可.【解答】解:正有理数集合:{ 3,2.008,1,﹣(﹣2.28),3.14…};负有理数集合:{﹣2.4,﹣,﹣0.,﹣|﹣4|…};整数集合:{ 3,0,﹣|﹣4|…};负分数集合:{﹣2.4,﹣,﹣0.…}.故答案为:{ 3,2.008,1,﹣(﹣2.28),3.14…};{﹣2.4,﹣,﹣0.,﹣|﹣4|…};{ 3,0,﹣|﹣4|…};{﹣2.4,﹣,﹣0.…}.【点评】本题考查了有理数的分类,题目难度不大.记住有理数的分类及相关定义是解决本题的关键.21.滴滴打车是一种网上约车方式,更方便人们出行,小明国庆节第一天下午营运全是在安庆某大道南北走向的公路上进行的,如果向南记作“﹣”,向北记作“+”.他这天下午行车情况如下:(单位:千米,每次行车都有乘客)﹣10,+5,﹣2,+8,﹣6,﹣4,+7,+8请回答:(1)小明将最后一名乘客送到目的地时,小明在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若小明的出租车每千米耗油0.06升,每升汽油6.5元,这八次出车共耗油费多少元?【分析】(1)根据题意计算行车情况的和,再进行判断即可;(2)算出总里程求出所耗油的费用即可.【解答】解:(1)﹣10+5﹣2+8﹣6﹣4+7+8=6(千米),答:小明在下午出车的出发地的正北方向,距下午出车的出发地6千米;(2)(10+5+2+8+6+4+7+8)×0.06×6.5=50×0.06×6.5=19.5(元),答:这八次出车共耗油费19.5元.【点评】此题主要考查有理数的混合运算、正负数的运用,理解正负数的意义,认真审题明确何时与符号有关系,何时与绝对值有关系是解题的关键.22.【观察与归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3||﹣8|+|3|>|﹣8+3||﹣2|+|﹣3|=|﹣2﹣3||0|+|﹣6|=|0﹣6|归纳:|a|+|b|≥|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【理解与应用】(2)根据上题中得出的结论,若|m|+|n|=9,|m+n|=1,求m的值.【分析】(1)根据提供的关系式得到规律即可;(2)根据(1)中的结论分当m为正数,n为负数时和当m为负数,n为正数时两种情况分类讨论即可确定答案.【解答】解:(1)根据题意得:|a|+|b|≥|a+b|,故答案为:≥;(2)由上题结论可知,因为|m|+|n|=9,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m﹣n=9,则n=m﹣9,|m+m﹣9|=1,m=5或4;当m为负数,n为正数时,﹣m+n=9,则n=m+9,|m+m+9|=1,m=﹣4或﹣5;综上所述,m为±4或±5.【点评】本题考查了绝对值的知识,解题的关键是能够根据题意分类讨论解决问题,难度不大.23.若n=1﹣+﹣+﹣+,求n的负倒数.【分析】1=1+,=+,=+,=+,=+,=+,=+,由此求得n的值,即可求出负倒数.【解答】解:∵n=1﹣+﹣+﹣+,=(1+)﹣(+)+(+)﹣(+)+(+)﹣(+)+(+)=1+﹣﹣++﹣﹣++﹣﹣++=1+=,∴n 的负倒数是﹣. 【点评】此题考查有理数的加减混合运算,认真审题,找出规律,是解决此类问题的关键所在.24.在数轴上表示数:﹣2.5,0,2,|﹣|,﹣1.然后按从小到大的顺序用“<“连接起来.【分析】根据题意先画出图形,再根据数轴上右面的数比左面的数大来解答.【解答】解:如图:按从小到大的顺序用“<”连接:.【点评】本题考查了有理数的大小比较,数轴,把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.25.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数字之和相等,得到的3×3的方格称为一个三阶幻方.在图中的空格处填上合适的数字,使它构成一个三阶幻方.【分析】根据三个数的和为2+3+4=9,依次列式计算即可求解.【解答】解:2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:【点评】本题考查了有理数的加法,根据表格,先求出三个数的和是解题的关键,也是本题的突破口.26.已知a﹣b=5且a>4,b<6,求|a﹣4|+|b﹣6|﹣5的值.【分析】先根据绝对值的定义化简,再根据有理数的加减法法则计算即可.【解答】解:∵a﹣b=5且a>4,b<6,∴|a﹣4|+|b﹣6|﹣5=a﹣4﹣6﹣b﹣5=a﹣b﹣9=5﹣9=﹣4.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.。
第1章有理数一.选择题1.下列说法中正确的是()A.两数相加,和一定比加数大B.互为相反数的两个数(0除外)的商为﹣1C.几个有理数相乘,若有奇数个负数,那么它们的积为负数D.减去一个数等于加上这个数2.下列各对数中,互为相反数的是()A.﹣23与﹣32B.(﹣2)3与﹣23C.(﹣3)2与﹣32D.﹣与3.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣7 4.5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为()A.13×105B.1.3×105C.1.3×106D.1.3×1075.下列命题中,正确的是()A.若m•n>0,则m>0,n>0B.若m+n<0,则m<0,n<0C.若m•n=0,则m=0且n=0D.若m•n=0,则m=0或n=06.若|﹣x|=5,则x等于()A.﹣5B.5C.D.±57.下列各式错误的是()A.|﹣|=B.﹣的相反数是C.﹣的倒数是﹣D.﹣<﹣8.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2B.3C.4D.59.若数a,b在数轴上的位置如图示,则()A.a+b>0B.ab>0C.a﹣b>0D.﹣a﹣b>010.在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是()A.加号B.减号C.乘号D.除号二.填空题11.的相反数是,的倒数是,()2=.12.已知数轴上点A,B分别对应数a,b.若线段AB的中点M对应着数15,则a+b的值为.13.若a>b,则化简|a﹣b|+b的结果是.14.若a,b互为相反数,x,y互为倒数,p的绝对值为2,则(a+b)﹣3xy+p=.15.如果5x+3与﹣2x+9是互为相反数,则x﹣2的值是.16.已知|x|=2,|y|=5,且x>y,则x+y=.三.解答题17.计算题:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)5.7﹣4.2﹣8.4﹣2.3+1(3)﹣(﹣12)+(+18)﹣(+37)+(﹣41)(4)(﹣1)﹣1+(﹣2)﹣(﹣3)﹣(﹣1)+4.18.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=;(2)若|x﹣2|=5,则x=;(3)请你找出所有符合条件的整数x,使得|1﹣x|+|x+2|=3.19.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫*(加乘)运算.”然后他写出了一些按照*(加乘)运算的运算法则进行运算的算式:(+4)*(+2)=6;(﹣4)*(﹣3)=+7;…(﹣5)*(+3)=﹣8;(+6)*(﹣7)=﹣13;…(+8)*0=8;0*(﹣9)=9.…小亮看了这些算式后说:“我知道你定义的*(加乘)运算的运算法则了.”请你帮助小亮完成下列问题:(1)归纳*(加乘)运算的运算法则:两数进行*(加乘)运算,..特别地,0和任何数进行*(加乘)运算,或任何数和0进行*(加乘)运算,都得这个数的绝对值.(2)若有理数的运算顺序适合*(加乘)运算,请直接写出结果:①(﹣3)*(﹣5)=;②(+3)*(﹣5)=;③(﹣9)*(+3)*(﹣6)=;(3)试计算:[(﹣2)*(+3)]*[(﹣12)*0](括号的作用与它在有理数运算中的作用一致);20.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?21.某集团公司对所属甲.乙两分厂下半年经营情况记录(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)如下表.月份七月份八月份九月份十月份十一月份十二月份甲厂﹣0.2﹣0.4+0.50+1.2+1.3乙厂+1.0﹣0.7﹣1.5+1.8﹣1.80(1)计算八月份乙厂比甲厂多亏损多少亿元?(2)分别计算下半年甲.乙两个工厂平均每月盈利或亏损多少亿元?参考答案一.选择题1.B.2.C.3.C.4.C.5.D.6.D.7.D.8.B.9.D.10.A.二.填空题11.﹣;3;.12.30.13.a.14.﹣1或﹣515.﹣6.16.﹣3或﹣7.三.解答题17.解:(1)原式=﹣53+21+69﹣37=(21+69)+(﹣53﹣37)=90﹣90=0;(2)原式=(5.7+1.2)+(﹣4.2﹣8.4﹣2.3)=6.9﹣14.9=﹣8;(3)原式=12+18﹣37﹣41=30﹣78=﹣48;(4)原式=(﹣1﹣2)+(﹣1+3+1)+4=﹣4+3+4=3.18.解:(1)原式=6;(2)∵|x﹣2|=5,∴x﹣2=±5,∴x=7或﹣3;(3)由题意可知:|1﹣x|+|x+2|表示数x到1和﹣2的距离之和,∴﹣2≤x≤1,∴x=﹣2或﹣1或0或1.故答案为(1)6;(2)7或﹣3;19.解(1)根据题意知,两数进行*(加乘)运算,同号得正、异号得负,并把绝对值相加,故答案为:同号得正、异号得负,并把绝对值相加.(2)①(﹣3)*(﹣5)=+(3+5)=8;②(+3)*(﹣5)=﹣(3+5)=﹣8;③(﹣9)*(+3)*(﹣6)=(﹣12)*(﹣6)=18;(3)原式=(﹣5)*12=﹣17.20.解:(1)+5﹣3+10﹣8﹣6+12﹣10=27﹣27=0,所以小虫最后回到出发点A;(2)第一次爬行距离原点是5cm,第二次爬行距离原点是5﹣3=2(cm),第三次爬行距离原点是2+10=12(cm),第四次爬行距离原点是12﹣8=4(cm),第五次爬行距离原点是|4﹣6|=2(cm),第六次爬行距离原点是﹣2+12=10(cm),第七次爬行距离原点是10﹣10=0(cm),从上面可以看出小虫离开原点最远是12cm;(3)小虫爬行的总路程为:|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54(cm).54÷1=54(粒)所以小虫一共得到54粒芝麻.21.解:(1)由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,∴可得出乙比甲多亏0.3亿元.(2)甲:﹣0.2﹣0.4+0.5+0+1.2+1.3=2.4亿元;乙:1.0﹣0.7﹣1.5+1.8﹣1.8+0=﹣1.2亿元.∴甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元答:八月份乙厂比甲厂多亏损0.3亿元;甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元。
2020年秋人教版七年级数学上册第1章有理数单元培优测试卷一、选择题(共10题;共30分)1.|−2020|的结果是()A. 12020B. 2020 C. −12020D. -20202.下列温度比−2℃低的是()A. −3℃B. −1℃C. 1℃D. 3℃3.若实数a的相反数是﹣2,则a等于()A. 2B. ﹣2C. 12D. 04.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A. 0.69×107B. 69×105C. 6.9×105D. 6.9×1065.下列说法正确的是()A. 近似数3.6与3.60精确度相同B. 数2.9954精确到百分位为3.00C. 近似数1.3x104精确到十分位D. 近似数3.61万精确到百分位6.计算30+(−20)的结果等于()A. 10B. -10C. 50D. -507.计算(−6)÷(−13)的结果是()A. −18B. 2C. 18D. −28.中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是()A. 10B. 89C. 165D. 2949.实数a , b , c在数轴上的对应点的位置如图所示,若a与c互为相反数,则a , b , c中绝对值最大的数是()A. aB. bC. cD. 无法确定10.如图,数轴上两点M,N所对应的实数分别为m,n,则m−n的结果可能是()A. -1B. 1C. 2D. 3二、填空题(共8题;共24分)11.5G是第五代移动通信技术,5G网络下载速度可以达到每秒1300000 KB以上,这意味着下载一部高清电影只需1秒,将1300000用科学记数法表示应为________.12.写出一个负数,使这个数的绝对值小于3________.13.我市某天的最高气温是4℃,最低气温是−1℃,则这天的日温差是________℃.14.点A在数轴上的位置如图所示,则点A表示的数的相反数是________.15.小志自主创业,在网上经营一家水果店,销售的水果中有盒装草莓、荔枝、山竹,价格依次为40元/盒、60元/盒、80元/盒.为增加销量,小志对这三种水果进行促销:一次性购买水果的总价超过100元时,超过..的部分打5折,每笔订单限购3盒.顾客支付成功后,小志会得到支付款的80%作为货款.(1)顾客一笔订单购买了上述三种水果各一盒,则小志收到的货款是________元;(2)小志在两笔..订单中共售出原价180元的水果,则他收到的货款最少..是________元.16.小字计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为3元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元,如果小宇在购买下表中所有菜品时,采取适当的下订单方式,那么他点餐的总费用最低可为________元.水煮牛肉(小)30醋溜土豆丝(小)12豉汁排骨(小)30手撕包菜(小)12米饭317.已知有理数a在数轴上的位置如图所示,则化简a+|a−1|的结果为________.18.已知如下各数:4,−3,0,-4,2.5,-1,解答下列各题2(1)用“>”号把这些数连接起来________(2)这些数的绝对值的和是________三、解答题(共6题;共46分)19.计算:(1)24×(18−13)﹣(﹣6);(2)﹣32+|5﹣7|﹣4÷(﹣2)×1220.一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)小明家距小彬家多远?(2)货车一共行驶了多少千米?(3)货车每千米耗油0.2升,这次共耗油多少升?21.若a,b,c都是非零有理数,求a|a|+b|b|+c|c|的值.22.已知有理数 a、b、c 在数轴上所对应的点如图所示,试化简:|a-2b|-12|b-2c|-|a+c|.23.已知有理数a , b互为相反数且a≠0,c , d互为倒数,有理数m和﹣2在数轴上表示的点相距3个单位长度,求|m|−ab +a+b2018−cd的值.24.如图,已知A、B、C是数轴上的三点,点C表示的数是6,点B与点C之间的距离是4,点B与点A 的距离是12,点P为数轴上一动点.(1)数轴上点A表示的数为________.点B表示的数为________;(2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由;(3)点P以每秒1个单位长度的速度从C点向左运动,点Q以每秒2个单位长度从点B出发向左运动,点R从点A以每秒5个单位长度的速度向右运动,它们同时出发,运动的时间为t秒,请求点P与点Q,点R的距离相等时t的值.答案一、选择题1.解:|−2020|=2020.故答案为:B2.解:根据两个负数,绝对值大的反而小可知-3<-2,所以比-2℃低的温度是-3℃.故答案为:A.3.解:∵2的相反数是﹣2,∴a=24.解:690万=6900000=6.9×106.故答案为:D.5.A、近似数3.6精确到十分位,近似数3.60精确到百分位,故A选项不符合题意;B、数2.9954精确到百分位为3.00,故B选项符合题意;C、近似数1.3×104精确到千位,故C选项不符合题意;D、近似数3.61万精确到百位,故D选项不符合题意,故答案为:B.6.解:30+(−20)=30−20=10故答案为:A.)=(-6)×(-3)=18.7.解:(-6)÷(- 13故答案为:C.8.依题意,还在自出生后的天数是:2×5×5×5+1×5×5+3×5+4=250+25+15+4=294,故答案为:D.9.解:根据数轴上点的位置及a,c互为相反数,得c<0<a<b,且|c|=|a|<|b|,则绝对值最大的是b,故答案为:B.10.解:根据数轴可得0<m<1,−2<n<−1,则1<m−n<3故答案为:C二、填空题11.1300000= 1.3×106.故答案为:1.3×106.12.解:∵|-1|=1,1<3,∴这个负数可以是-1.故答案为:-1(答案不唯一).13.解:根据题意得:4−(−1)=5.故答案为:514.解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是-3.故答案为:-3.15.解(1)由题意得:(100+80×0.5)×0.8=112元,小志收到的货款是112元,(2)当一笔购买草莓、荔枝、另一笔购买山竹时,小志收到的货款是(40+ 60+80)×0.8=144元,当一笔购买草莓、山竹、另一笔购买荔枝时,小志收到的货款是(100+20×0.5+60)×0.8=136元,当一笔购买荔枝、山竹、另一笔购买草莓时,小志收到的货款是(100+40×0.5+40)×0.8=128元,所以:收到的货款最少是128元.故答案为:112,128.16.解:小宇在购买表中所有菜品时,应采取这样的下订单方式:水煮牛肉订一单,豉汁排骨订一单,醋溜土豆丝和手撕包菜还有2份米饭合订一单共订了3份30元订单,故他点餐总费用最低可为(30+12+30+12+2×3)−12×3−3+3=54元,答:他点餐总费用最低可为54元.故答案为54.17.解:根据数轴可知,a<0,所以a−1<0,∴a+|a−1|=a+1−a=1;故答案为:1.18.解:(1)如图所示:∴4>2.5>0>-1>−32>-4故答案为:4>2.5>0>-1>−32>-4;(2)4+| −32|+0+|-4|+2.5+|-1|=4+1.5+0+4+2.5+1=13.故这些数的绝对值的和为13故答案为:13.三、解答题19. (1)解:原式=3﹣8+6=1(2)解:原式=﹣9+2+1=﹣6.20. (1)解:如图:以超市为原点,向东为正方向,则根据数轴可知:小明家距小彬家7.5个单位长度,∴小明家距小彬家7.5千米;(2)解:根据题意,货车一共行驶了:2×10=20(千米). 答:货车一共行驶了20千米.(3)解:20×0.2=4(升).答:这次共耗油4升.21.解:解:对a,b,c的取值情况分类讨论如下:①当a,b,c都是正数时,由绝对值的意义可知a|a|,b|b|,c|c|的值都是1,所以a|a|+b|b|+c|c|=3;②当a,b,c都是负数时,a|a|,b|b|,c|c|的值都是-1,所以a|a|+b|b|+c|c|=-3;③当a,b,c中有两个正数,一个负数时,a|a|,b|b|,c|c|中有两个1,一个-1,所以它们的和为1;④当a,b,c中有一个正数,两个负数时,a|a|,b|b|,c|c|中有两个-1,一个+1,所以它们的和为-1.综上,a|a|+b|b|+c|c|的值为±1或±3.22. 解:根据数轴上点的位置得:2b<b<a<0<c<2c,且∣a∣<∣c∣,所以a-2b>0,b-2c<0,a+c>0,所以|a-2b|-12|b-2c|-|a+c|=a-2b+ 12(b-2c)-(a+c)=a-2b+ 12b-c-a-c= −32b−2c ..23.解:由题意知a+b=0,cd=1,m=1或m=﹣5,当m在-2的右侧时,m=1,原式=1﹣(﹣1)+0﹣1=1+1﹣1=1;当m在-2的左侧时,m=﹣5,原式=5﹣(﹣1)+0﹣1=5;综上,|m|−ab +a+b2018−cd的值为1或524. (1)-10;2(2)∵AB=12,∴P不可能在线段AB上,所以分两种情况:①如图1,当点P在BA的延长线上时,PA+PB=16,∴PA+PA+AB=16,2PA=16﹣12=4,PA=2,则点P表示的数为﹣12;②如图2,当点P在AB的延长线上时,同理得PB=2,则点P表示的数为4;综上,点P表示的数为﹣12或4;(3)由题意得:t秒P点到点Q,点R的距离相等,则此时点P、Q、R所表示的数分别是6﹣t,2﹣2t,﹣10+5t,;①6﹣t﹣(2﹣2t)=6﹣t﹣(﹣10+5t),解得t=127②6﹣t﹣(2﹣2t)=(﹣10+5t)﹣(6﹣t),解得t=4;或4秒.答:点P与点Q,点R的距离相等时t的值是127解:(1)由题意可知点A和点B都在点C的左边,且点A小于0,则由题意可得数轴上点B表示的数为6-4=2,点A表示的数为2-10=﹣10,故答案为:﹣10,2;。
人教版七年级数学上册第一章有理数一、选择题1.在―π3,3.1415,0,―0.333…,―22,2.010010001…中,非负数的个数( )7A.2个B.3个C.4个D.5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A.7.1695×107B.716.95×105C.7.1695×106D.71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A.B.C.D.4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.计算3―(―3)的结果是( )A.6B.3C.0D.-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a,都可以用1⑤任何无理数都是无限不循环小数.正确的有a表示它的倒数.( )个.A.0B.1C.2D.37.把数轴上表示数2的点移动3个单位后,表示的数为( )A.5B.1C.5或-1D.5或18.如果|a|=―a,那么a一定是( )A.正数B.负数C.非正数D.非负数9.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1―12=11×2①12―13=12×3②13―14=13×4③14―15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2―ab ,例如:3⊗1=32―3×1=6,则4⊗[2⊗(―5)]的值为 .14.如图所示的运算程序中,若开始输入的值为―2,则输出的结果为 .15.若a ―2+|3―b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a |+b |b |+c |c |+abc |abc | 的值可能是 . 三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.―3,|―3|,32,(―2)2,―(―2)18.将有理数―2.5,0,212023,―35%,0.6分别填在相应的大括号里.2,整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.的值.(2)求m―cd+3a+3bm22.我们知道,|a|可以理解为|a―0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a―b|,反过来,式子|a―b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数―1的点和表示数―3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a―3|=5,那么a的值是_________.②|a―3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B2.【答案】A3.【答案】B4.【答案】D5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】A10.【答案】B11.【答案】﹣1212.【答案】213.【答案】―4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,―3<3<―(―2)<|―3|<(―2)2218.【答案】解:整数:0,2023;负数:―2.5,―35%;,0.6.正分数:21219.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm .(3)18.521.【答案】(1)0,1,±2;(2)1或―322.【答案】(1)5,2(2)①8或―2;②9;③102313223.【答案】(1)5;6(2)解:①点M 未到达O 时(0<t≤2时),NP=OP=3t ,AM=5t ,OM=10-5t ,MP=3t+10-5t即3t+10-5t=5t ,解得t =107,②点M 到达O 返回,未到达A 点或刚到达A 点时,即当(2<t≤4时),OM=5t-10,AM=20-5t , MP=3t+5t-10即3t+5t-10=20-5t ,解得t =3013③点M 到达O 返回时,在A 点右侧,即t >4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t =―103(不符合题意舍去).综上t =107或t =3013;(3)解:如下图:根据题意:NO=6t ,OM=5t ,所以MN=6t+5t=11t依题意: NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M 对应的数为20.。
2020年人教版七年级数学上册有理数单元测试卷一(含答案)2020年人教版七年级数学上册有理数单元测试卷一一、选择题(共12小题,总分36分)1.(3分)7的相反数是()A.7B.-7C.7/1D.-1/72.(3分)下列四个数中最大的数是()A.1B.-2C.-4D.-63.(3分)数轴上的点A到原点的距离是4,则点A表示的数为()A.4B.-4C.4或-4D.2或-24.(3分)下列说法正确的是()A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-15.(3分)已知:a=-2+(-10),b=-2-(-10),c=-2×(-5),下列判断正确的是()A.a>b>cB.b>c>aC.c>b>aD.a>c>b6.(3分)若a=2,|b|=5,则a+b=()A.-3B.7C.-7D.-3或77.(3分)我国是最早认识负数,并进行相关运算的国家。
在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算3+(-4)的过程。
按照这种方法,图(2)表示的过程应是在计算()A.(-5)+(-2)B.(-5)+2C.5+(-2)D.5+28.(3分)据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃。
根据以上数据推算,在月球上昼夜温差有()A.56℃B.-56℃C.310℃D.-310℃9.(3分)据科学家估计,地球的年龄大约是xxxxxxxx00年,将xxxxxxxx00用科学记数法表示为()A.4.6×10^8B.46×10^8C.4.69×10^9D.4.6×10^910.(3分)如果a+b<0,并且ab>0,那么()A.a<0,b<0B.a>0,b>0C.a<0,b>0D.a>0,b<011.(3分)已知某班有40名学生,将他们的身高分成4组,在160~165 cm区间的有8名学生,那么这个小组的人数占全体的()A.10%B.15%C.20%D.25%12.(3分)下列各数|-2|,-(-2),-(-2),(-2)中,负数的个数有()A.1个B.2个C.3个D.4个二、填空题(共6小题,总分18分)13.(3分)在知识抢答中,如果用+10表示得10分,那么扣20分表示为-20.14.(3分)在-42,+0.01,π,-7/2,120这5个数中,正有理数是0.01和120.15.(3分)已知a=-2,b=3,则a×b×(-1)=6.16.(3分)把-15表示为分数形式是-15/1.17.(3分)把0.8表示为百分数形式是80%。