当前位置:文档之家› 二次函数知识点总结归纳

二次函数知识点总结归纳

二次函数知识点总结归纳
二次函数知识点总结归纳

二次函数知识点总结归纳

I. 定义与定义表达式一般地,自变量x 和因变量y 之间存在如下关系:

y=ax^2+bx+c (a,b,c 为常数,a≠0,且a 决定函数的开口方向,a>0时,开口方向向上,a<0 时,开口方向向下,IaI 还可以决定开口大小,IaI 越大开口就越小,IaI 越小开口就越大.)则称y 为x 的二次函数。二次函数表达式的右边通常为二次三项式。

II. 二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c 为常数,a≠0)

顶点式:y=a(x-h)^2+k [ 抛物线的顶点P(h,k)] 交点式:y=a(x-x ?)(x-x ?) [仅限于与x 轴有交点A(x? ,0)和B(x?,0)的抛物线] 注:在3 种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√ b^2-4ac)/2a

III. 二次函数的图像在平面直角坐标系中作出二次函数y=x^2 的图像,可以看出,二次函数的图像是一条抛物线。

IV. 抛物线的性质

1. 抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0 时,抛物线的对称轴是y 轴(即直线x=0)

2. 抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0 时,P 在y 轴上;当Δ= b^2-4ac=0时,P 在x 轴上。

3. 二次项系数a 决定抛物线的开口方向和大小。

当a> 0 时,抛物线向上开口;当a< 0 时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4. 一次项系数b 和二次项系数 a 共同决定对称轴的位置。当a与b 同号时(即ab>0),对称轴在y 轴左;当a与b 异号时(即ab<0),对称轴在y 轴右。

5. 常数项c 决定抛物线与y 轴交点。抛物线与y 轴交于( 0,c)

6. 抛物线与x 轴交点个数

Δ= b^2-4ac>0 时,抛物线与x 轴有2 个交点。

Δ= b^2-4ac=0 时,抛物线与x 轴有1 个交点。

Δ= b^2-4ac<0时,抛物线与x轴没有交点。X 的取值是虚数( x= -b±√ b^2-

4ac 的值的相反数,乘上虚数i ,整个式子除以2a)

V. 二次函数与一元二次方程特别地,二次函数(以下称函数) y=ax^2+bx+c,当y=0 时,二次函数为关于x 的一元二次方程(以下称方程),即ax^2+bx+c=0 此时,函数图像与x 轴有无交点即方程有无实数根。函数与x 轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,

a≠0) 的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

当h>0 时,y=a(x-h)^2 的图象可由抛物线y=ax^2 向右平行移动h 个单位得到,当h<0 时,则向左平行移动|h|个单位得到.

当h>0,k>0 时,将抛物线y=ax^2 向右平行移动h 个单位,再向上移动k 个单位,就可以得到y=a(x-h)^2 +k 的图象;

当h>0,k<0 时,将抛物线y=ax^2 向右平行移动h 个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k 的图象;

当h<0,k>0 时,将抛物线向左平行移动|h|个单位,再向上移动k 个单位可得到y=a(x-h)^2+k 的图象;

当h<0,k<0 时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k 的图象;

因此,研究抛物线y=ax^2+bx+c(a≠ 0)的图象,通过配方,将一般式化为y=a(x-h)^2+k 的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这

给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤-b/2a 时,y 随x 的增大而减小;当x ≥-b/2a时,y随x的增大而增大.若a<0,当x ≤-b/2a时,y随x的增大而增大;当x ≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c 的图象与坐标轴的交点:

(1) 图象与y 轴一定相交,交点坐标为(0,c);

(2) 当△=b^2-4ac>0,图象与x轴交于两点A(x ?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a ≠0)的两根.这两点间的距离AB=|x ?-x?|

当△ =0.图象与x 轴只有一个交点;

当△ <0.图象与x 轴没有交点.当a>0时,图象落在x 轴的上方,x 为任何实数时,都有y>0;当a<0 时,图象落在x 轴的下方,x 为任何实数时,都有

y<0.

5.抛物线y=ax^2+bx+c 的最值:如果a>0(a<0),则当x= -b/2a 时,y 最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1) 当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a ≠0).

(2) 当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-

h)^2+k(a≠0).

(3) 当题给条件为已知图象与x 轴的两个交点坐标时,可设解析式为两根式:

y=a(x-x ?)(x-x ?)(a≠ 0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

I. 定义与定义表达式

一般地,自变量x 和因变量y 之间存在如下关系:y=ax^2+bx+c

(a,b,c 为常数,a≠0,且 a 决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI 还可以决定开口大小,IaI 越大开口就越小,IaI 越小开口就越大.)则称y 为x 的二次函数。

二次函数表达式的右边通常为二次三项式。

II. 二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c 为常数,a≠0)

顶点式:y=a(x-h)^2+k [ 抛物线的顶点P(h,k)]

交点式:y=a(x-x ?)(x-x ?) [仅限于与x 轴有交点A(x? ,0)和B(x?,0)的抛物线]

注:在 3 种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√ b^2-4ac)/2a

III. 二次函数的图像

在平面直角坐标系中作出二次函数y=x^2 的图像,可以看出,二次函数的图像是一条抛物线。

IV. 抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0 时,抛物线的对称轴是y 轴(即直线x=0)

2. 抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y 轴上;当Δ= b^2-4ac=0时,P在x 轴上。

3. 二次项系数a 决定抛物线的开口方向和大小。

当a> 0 时,抛物线向上开口;当a< 0 时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4. 一次项系数b 和二次项系数 a 共同决定对称轴的位置。当a与b同号时(即

ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y 轴右。

5. 常数项c 决定抛物线与y 轴交点。抛物线与y 轴交于(0,c)

6. 抛物线与x 轴交点个数

Δ= b^2-4ac>0 时,抛物线与x 轴有2 个交点。

Δ= b^2-4ac=0 时,抛物线与x 轴有1 个交点。

Δ= b^2-4ac<0时,抛物线与x轴没有交点。X 的取值是虚数(x= -b±√ b^2-4ac 的值的相反数,乘上虚数i ,整个式子除以2a)

V. 二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0 时,二次函数为关于x 的一元二次方程(以下称方程),即ax^2+bx+c=0 此时,函数图像与x 轴有无交点即方程有无实数根。函数与x 轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

当h>0 时,y=a(x-h)^2 的图象可由抛物线y=ax^2 向右平行移动h 个单位得到,当h<0 时,则向左平行移动|h|个单位得到.

当h>0,k>0 时,将抛物线y=ax^2 向右平行移动h 个单位,再向上移动k 个单位,就可以得到y=a(x-h)^2 +k 的图象;

当h>0,k<0 时,将抛物线y=ax^2 向右平行移动h 个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k 的图象;

当h<0,k>0 时,将抛物线向左平行移动|h|个单位,再向上移动k 个单位可得到

y=a(x-h)^2+k 的图象;

当h<0,k<0 时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k 的图象;

因此,研究抛物线y=ax^2+bx+c(a≠ 0)的图象,通过配方,将一般式化为y=a(x-h)^2+k 的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤-b/2a 时,y 随x 的增大而减小;当x ≥-b/2a时,y随x的增大而增大.若a<0,当x ≤-b/2a时,y随x的增大而增大;当x ≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c 的图象与坐标轴的交点:

(1) 图象与y 轴一定相交,交点坐标为(0,c);

(2) 当△ =b^2-4ac>0,图象与x轴交于两点A(x ?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a ≠0)的两根.这两点间的距离AB=|x ?-x?|

当△ =0.图象与x 轴只有一个交点;

当△ <0.图象与x 轴没有交点.当a>0时,图象落在x 轴的上方,x 为任何实数时,都有y>0;当a<0 时,图象落在x 轴的下方,x 为任何实数时,都有

y<0.

5.抛物线y=ax^2+bx+c 的最值:如果a>0(a<0),则当x= -b/2a 时,y 最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1) 当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a ≠0).

(2) 当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-

h)^2+k(a≠0).

(3) 当题给条件为已知图象与x 轴的两个交点坐标时,可设解析式为两根式:y=a(x-x ?)(x-x ?)(a≠ 0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

初三.二次函数知识点总结

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结:

2. 2 =+的性质: y ax c 结论:上加下减。 总结:

3. ()2 =-的性质: y a x h 结论:左加右减。 总结: 4. ()2 =-+的性质: y a x h k

总结: 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法 如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

二次函数的图像与性质知识点及练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2,y=a(x-h)2 ,y =a(x-h)2 +k 和c bx ax y ++=2图象,能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质:

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左 加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 六、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

(完整版)九年级上册数学二次函数知识点汇总,推荐文档

新人教版九年级上二次函数知识点总结 知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如(是常数,)的函数,叫做二次函数.2y ax bx c =++a b c ,,0a ≠其中是二次项系数,是一次项系数,是常数项. a b c 知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶 ??点 2. 二次函数的图象与性质 ()2 y a x h k =-+(1)二次函数基本形式的图象与性质:a 的绝对值越大,抛物线的开口越小 2y ax = (2)的图象与性质:上加下减 2y ax c =+

(3)的图象与性质:左加右减 ()2 y a x h =-

(4)二次函数的图象与性质 ()2 y a x h k =-+ 3. 二次函数的图像与性质 c bx ax y ++=2 (1)当时,抛物线开口向上,对称轴为,顶点坐标为. 0a >2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而减小;当时,随的增大而增大;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最小值 .y 2 44ac b a - (2)当时,抛物线开口向下,对称轴为,顶点坐标为. 0a <2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而增大;当时,随的增大而减小;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最大值 .y 2 44ac b a -

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点.(2)二次函数图象的平移平移步骤: ①将抛物线解析式转化成顶点式,确定其顶点坐标;()2 y a x h k =-+()h k ,② 可以由抛物线经过适当的平移得到具体平移方法如下: 2 ax 【【【(h <0)【【【 【【(h >0)【【【(h 【【|k|【【【 平移规律:概括成八个字“左加右减,上加下减”.(3)用待定系数法求二次函数的解析式①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:,∴顶点是,对称轴a b ac a b x a c bx ax y 44222 2 -+ ??? ? ?+=++=),(a b ac a b 4422--是直线.a b x 2- =②配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(, ()k h x a y +-=2 h ),对称轴是直线. k h x =

(完整word版)初中二次函数知识点总结(全面)

二次函数知识点 二次函数概念: 1.二次函数的概念:一般地,形如y=ax 2+bx+c (a b c ,,是常数,a ≠0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域是全体实数。<<>≤≥ 2. 二次函数y=ax 2+bx+c 的性质 1)当a >0时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. (三)、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可 以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 练习 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在( ) A. 第一象限 B. 第二象限 C. x 轴上 D. y 轴上

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

二次函数知识点梳理

二次函数de 基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数de 概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)de 函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数de 定义域是全体实数. 2. 二次函数2 y ax bx c =++de 结构特征: ⑴ 等号左边是函数,右边是关于自变量x de 二次式,x de 最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数de 基本形式 1. 二次函数基本形式:2 y ax =de 性质: a de 绝对值越大,抛物线de 开口越小。 2. 2 y ax c =+de 性质:上加下减。 3. ()2 y a x h =-de 性质:左加右减。

4. ()2 y a x h k =-+de 性质: 三、二次函数图象de 平移 在原有函数de 基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++de 比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同de 表达形式,后者通过配方可以 得到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象de 画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取de 五点为:顶点、 与y 轴de 交点()0c , 、以及()0c ,关于对称轴对称de 点()2h c ,、与x 轴de 交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称de 点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴de 交点,与y 轴de 交点. 六、二次函数2 y ax bx c =++de 性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x de 增大而减小;当2b x a >-时,y 随x de 增大而增大;当2b x a =-时,y

二次函数的性质

20.4二次函数的性质 教学目标: 1.从具体函数的图象中认识二次函数的基本性质. 2.了解二次函数与二次方程的相互关系. 3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会求二次函数的最值,并能根据性质判断函数在某一范围内的增减性 教学重点:二次函数的最大值,最小值及增减性的理解和求法. 教学难点:二次函数的性质的应用. 教学过程: 一、复习引入 二次函数: y=ax2 +bx + c (a 1 0)的图象是一条抛物线,它的开口由什么决定呢? 补充: 当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立. 二、新课教学: 1.探索填空: 根据下边已画好抛物线y= -2x2的顶点坐标 是, 对称轴是,在侧,即x_____0时, y随着x的增大而增大;在侧,即x_____0时, y随着x的增大而减小. 当x= 时,函数y最大值是____. 当x____0时,y<0. 2. 探索填空::据上边已画好的函数图象填空:抛物线y= 2x2的顶点坐标 是, 对称轴是,在侧,即x_____0时, y随着x的增大而减少;在侧,即x_____0时, y随着x的增大而增大. 当x= 时,函数y最小值是____. 当x____0时,y>0

3.归纳: 二次函数y=ax2+bx+c(a≠0)的图象和性质 (1).顶点坐标与对称轴 (2).位置与开口方向 (3).增减性与最值 当a ﹥0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当时,函数y有最小值。当a ﹤0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当时,函数y有最大值 4.探索二次函数与一元二次方程 二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示. (1).每个图象与x轴有几个交点? (2).一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗? (3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? 归纳: (3).二次函数y=ax2+bx+c的图象和x轴交点有三种情况: ①有两个交点, ②有一个交点, ③没有交点. 当二次函数y=ax2+bx+c的图象和x轴有交点时, 交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax2+bx+c=0的根.

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结 二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项.

二、二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax a 的绝对值越大,抛物线的开口越小。Array 2. 2 =+的性质:上加下减。 y ax c

二次函数基本知识点梳理及训练(最新)

① 二次函数 考点一 一般地,如果y =ax 2+bx +c(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数. 1.结构特征:①等号左边是函数,右边是关于自变量x 的二次式;②x 的最高次数是2;③二次项系数a ≠0. 2.二次函数的三种基本形式 一般形式:y =ax 2+bx +c(a 、b 、c 是常数,且a ≠0); 顶点式:y =a(x -h)2+k(a ≠0),它直接显示二次函数的顶点坐标是(h ,k); 交点式:y =a(x -x 1)(x -x 2)(a ≠0),其中x 1 、x 2 是图象与x 轴交点的横坐标. 考 点二 二次函数的图象和性质

考点三 二次函数y=ax2+bx+c的图象特征与a、b、c及b2-4ac的符号之间的关系 考点四 任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过平移得到,具体平移方法如下: 考点五 1.设一般式:y=ax2+bx+c(a≠0). 若已知条件是图象上三个点的坐标.则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a、b、c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0). 若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将解析式化为一般式. 3.设顶点式:y=a(x-h)2+k(a≠0). 若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数化为一般式 考点六 二次函数的应用包括两个方法 ①用二次函数表示实际问题变量之间关系. ②用二次函数解决最大化问题(即最值问题),用二次函数的性质求解,同时注意自变量的取值范围. (1)二次函数y=-3x2-6x+5的图象的顶点坐标是() A.(-1,8) B.(1,8) C.(-1,2)D.(1,-4) (2)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为() A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2 (3)函数y=x2-2x-2的图象如下图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是() ②

二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有

二次函数知识点梳理

初三年级数学—二次函数的基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2 y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同的表达形式,后者通过配方可以得 到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、 与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2 y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -.

【浙教版初中数学】《二次函数的性质》综合练习

1.3 二次函数的性质 一、基础训练 1.若抛物线y=x2-2x+m与x轴只有一个公共点,则m=______. 2.如图所示的抛物线是二次函数y=ax2-3x+a-1的图象,那么a的值是_____. 3.若抛物线y=x2+(m-2)x-m与x轴的两个交点关于y轴对称,则m=______.4.二次函数y=-x2+4x+m的值恒小于0,则m的取值范围是______.5.不论k取任何实数,抛物线y=a(x+k)2+k(a≠0)的顶点都在()A.直线y=x上B.直线y=-x上C.x轴上D.y轴上 6.已知抛物线y=ax2+bx+c上的两点(2,0),(4,0),那么它的对称轴是直线() A.x=-3 B.x=1 C.x=2 D.x=3 7.已知直角三角形的两直角边之和为4,求斜边长的最小值及当斜边长达到最小值时的两条直角边长. 1

8.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越强. (1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低? (2)第几分钟,学生的接受能力最强? 二、提高训练 9.已知二次函数y=x2-4x-a,下列说法正确的是() A.当x<0时,y随x的增大而减小 B.若图象与x轴有交点,则a≤4 2

C.当a=3时,不等式x2-4x+a>0的解集是1

二次函数知识点总结大全一

二次函数知识点总结大全一 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数(R )。 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 结论:在Y 轴上,上加下减。

3. ()2 y a x h =-的性质: 结论:在X 左加右减。 4. ()2 y a x h k =-+的性质: 总结:

二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较

请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2 424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴 的交点. 五、二次函数2y ax bx c =++的性质: 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =- ,顶点坐标为2424b ac b a a ??-- ? ?? ,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -.

全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

二次函数y=ax^2+bx+c(a≠0)的图象与性质—知识讲解(基础)

二次函数y=ax 2 +bx+c(a ≠0)的图象与性质—知识讲解(基础) 撰稿:张晓新 审稿:杜少波 【学习目标】 1. 会用描点法画二次函数2 (0)y ax bx c a =++≠的图象;会用配方法将二次函数2 y ax bx c =++的解析式写成2 ()y a x h k =-+的形式; 2.通过图象能熟练地掌握二次函数2 y ax bx c =++的性质; 3.经历探索2 y ax bx c =++与2()y a x h k =-+的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想. 【要点梳理】 要点一、二次函数2 (0)y ax bx c a =++≠与=-+≠2 ()(0)y a x h k a 之间的相互关系 1.顶点式化成一般式 从函数解析式2 ()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称 2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++. 2.一般式化成顶点式 22 2 2222b b b b y ax bx c a x x c a x x c a a a a ?? ??????=++=++=++-+?? ? ? ?????????? ? 2 2424b ac b a x a a -? ?=++ ?? ?. 对照2 ()y a x h k =-+,可知2b h a =-,244ac b k a -=. ∴ 抛物线2 y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24,24b ac b a a ??-- ??? . 要点诠释: 1.抛物线2 y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24,24b ac b a a ??-- ???,可以当作公 式加以记忆和运用. 2.求抛物线2 y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.

相关主题
文本预览
相关文档 最新文档