当前位置:文档之家› 固定管板式换热器

固定管板式换热器

固定管板式换热器
固定管板式换热器

乙醇-水精馏塔顶产品冷凝器

摘要

换热器是化工生产中重要的设备之一,它是一种冷热流体间传递热量的设备,其中管壳式换热器应用最为广泛。冷凝器是换热器中的一种,本次设计的换热器为单壳程、双管程的卧式固定管板式换热器,管程介质为自来水,壳程介质为95%的乙醇。

固定管板式换热器是由两端管板和壳体及管箱连接而成,因此它具有结构简单和造价低廉的优点。

本次设计主要分为两个部分,一部分是工艺设计,另一部分为机械设计。其中固定管板的设计较为复杂,也是至关重要的环节。机械设计中包括了结构设计和强度设计。在本次设计中,换热器两端采用B型管箱,封头为标准椭圆形封头。本次设计主要材料选用的是目前中国压力容器行业使用量最大的钢板16MnR。

换热器作为换热设备随处可见,在工业中应用非常普遍,特别是耗能用量十分大的领域,随着节能技术的飞速发展,换热器的种类开发越来越多。

关键词:换热器;冷凝器;壳体;管板;管箱;封头

abstract

The heat exchanger is one of the chemical production equipment,it is a hot and cold fluid heat transfer equipment,including shell-and-tube heat exchanger is the most widely used.The condenser is a heat exchanger, the heat exchanger design for single shell,double tube side horizontal fixed tube plate heat exchanger tube medium is water,the shell media95% ethanol.

Fixed tube plate heat exchangers are connected by both ends of the tube plate and the housing and the tube box,so it has the advantages of simple structure and low cost.

The design is divided into two parts,process design,and the other part of the mechanical design.Fixed tube sheet design is more complex, is also a vital link.The mechanical design is included in the structural design and design strength.In this design,the two ends of the heat exchanger tube box type B,head for the standard elliptical head.The design material selection pressure vessel industry in China use of the largest steel16MnR.

The heat exchanger as a heat transfer equipment everywhere,very common in industrial applications,especially energy consumption amount of very large areas,with the rapid development of energy-saving technology,more and more heat exchanger types of development.

Keywords: heat exchanger;condenser;housing;tube plate;tube box;head

摘要 (2)

abstract (3)

一、绪论 (6)

1.1、设计目的 (6)

1.2、该设备的作用及在生产中的应用 (6)

1.3、说明运用该设备的理由 (6)

1.4、设备的结构特点 (6)

1.5、在设计中遇到的问题的处理 (6)

1.6、设计方案的确定 (7)

二、换热器概述 (7)

2.1、换热器的分类 (8)

三、换热器的工艺设计 (12)

3.1、设计条件 (12)

3.2、换热器初选 (12)

3.2.1确定物性 (12)

3.2.2流程安排 (13)

3.2.3初选换热器的类型 (13)

3.2.4物料衡算 (13)

3.2.5计算平均传热温差 (13)

3.2.6设总传热系数k (14)

3.3工艺结构尺寸 (15)

3.3.1管径和管内流速 (15)

3.3.2管程数和传热管数 (15)

3.3.3传热管排列和分程方法 (15)

3.3.4壳体内径 (16)

3.3.5折流板 (16)

3.3.6拉杆 (17)

3.3.7接管 (18)

3.4换热器核算 (19)

3.4.1管程换热系数 (19)

3.4.2壁温的确定 (20)

3.4.3壳程换热系数 (20)

3.4.4污垢热阻和管壁热阻 (20)

3.4.5计算总传热系数 (21)

3.4.6传热面积裕度 (21)

3.4.7壁温核算 (22)

3.5计算压力降 (22)

3.5.1计算管程压力降 (22)

3.5.2计算壳程压力降 (23)

3.6工艺计算一览表 (23)

四、换热器的结构设计 (24)

4.1设计压力和设计温度的确定 (24)

4.1.1管程设计压力和设计温度的确定 (24)

4.2壳体、管箱壳体和封头的设计 (25)

4.2.1壳体厚壁的确定 (25)

4.2.2管箱壳体厚度的确定 (26)

4.2.3封头设计 (26)

4.2.4管箱法兰选用 (27)

4.2.5管箱垫片的选取 (29)

4.3管板和换热管 (29)

4.3.1管板 (29)

4.3.2换热管 (31)

4.4进出口设计 (32)

4.4.1接管外伸长度 (32)

4.4.2排气、排液管 (33)

4.4.3接管法兰的选用 (33)

4.4.4接管开孔补强 (35)

4.4.5 壳程接管尺寸的最小位置 (40)

4.4.6管箱接管尺寸的最小位置 (41)

4.5折流板或支持板 (42)

4.5.1折流板或支持板的尺寸 (42)

4.5.2折流板管孔 (42)

4.5.5支持板 (43)

4.5.6折流板质量计算 (43)

4.6防冲板 (44)

4.7分程隔板 (44)

4.8膨胀节设计 (45)

4.8.1膨胀节 (45)

4.8.2膨胀节计算 (46)

4.10支座 (48)

五、换热器的强度计算及校核 (49)

5.1 壳体及封头校核 (49)

5.1.1 壳体强度校核 (49)

5.1.2 管箱壳体强度校核 (50)

5.1.3 椭圆封头强度校核 (51)

5.2管板校核 (51)

5.2.1固定管板计算 (51)

一、绪论

1.1、设计目的

课程设计是化工原理课程教学中综合性和实际性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性的初次尝试。通过化工原理课程设计,要求学生能综合运用本课程和前修课程的基本知识,进行融会贯通的独立思考,在规定的时间内完成指定的化工设计任务,从而得到化工设计的主要程序和方法,培养学生分析和解决工程实际问题的能力。同时,通过课程设计,还可以培养学生树立正确的设计思想,培养实事求是,严肃认真,高度负责的工作作风。

1.2、该设备的作用及在生产中的应用

换热器是实现传热过程的基本设备。而此设备是比较典型的传热设备,它在工业中的应用十分广泛。例如:在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜和冷凝器、化工厂蒸发设备的加热室等。

1.3、说明运用该设备的理由

这种换热器的特点是壳体和管板直接焊接,结构简单、紧凑。在同样的壳体直径内,排管较多。管式换热器具有易于制造、成本较低、处理能力达、换热表面清洗比较方便、可供选用的结构材料广阔、适应性强、可用于调温调压场合等优点,由于两管板之间有管子相互持撑,管板得到加强,故在各种列管换热器中他的管板最薄,其造价比较低,因此得到了广泛应用。

1.4、设备的结构特点

该结构能够快速的降低物料的温度,工作时热流体走壳程,冷流体走管程,使接触面积大大增加,加快了换热速度。同时,对温差稍大时可在壳体的适当部位焊上补偿圈(或称膨胀节),通过补偿圈发生弹性变形(拉伸或压缩)来适应外壳和管束不同的膨胀程度。

1.5、在设计中遇到的问题的处理

在设计中,在工艺计算过程中,由于选取K

不当或其他条件选取不当,造

成在校核时K

0不符合要求。在重新选取K

的同时,改变了其他的条件,如:n,

L等,经过二次校核达到了预期的目的。

1.6、设计方案的确定

(1)对于列管式换热器,首先根据换热流体的腐蚀性或其它特性选项定其结构材料,然后再根据所选项材料的加工性能,流体的压强和温度、换热的温度差、换热器的热负荷、安装检修和维护清洗的要求以及经济合理性等因素来选项定其型式。

设计所选用的列管换热器的类型为固定管板式。列管换热器是较典型的换热设备,在工业中应用已有悠久历史,具有易制造、成本低、处理能力大、换热表面情况较方便、可供选用的结构材料广阔、适应性强、可用于调温调压场合等优点,故在大型换热器中占优势。

固定管板式列管换热器的特点是,壳体与管板直接焊接,结构简单紧凑,在同样的壳体直径内排管最多。由于两管板之间有管板的相互支撑,管板得到加强,故各种列管换热器中它的管板最薄,造价最低且易清洗。缺点是,管外清洗困难,管壁与壳壁之间温差大于50℃时,需在壳体上设置膨胀节,依靠膨胀节的弹性变形以降低温差压力,使用范围仅限于管、壳壁的温差不大于70℃和壳程流体压强小于600kpa的场合,否则因膨胀节过厚,难以伸缩而失去温差补偿作用。

(2)工艺流程图

(3)流体流经的空间:冷却水走管程原因有以下几个方面,冷却水常常用江水或自来水,比较脏硬度较高,受热容易结垢,在管内便于清理,此外,管内流体易于维持高速,可避免悬浮颗粒的沉积。管程可以采用多管程来增大流速,用以提高对流传热系数。被加热的流体应走管程,以提高热的有效利用,被冷却的流体走壳程,以便于热量散失。饱和蒸汽由于比较清洁应于壳程流过,易便于冷凝液的排出。综上所述冷却水走管程。

(4)流体的流动方向选择:饱和乙醇(95%)蒸气应从换热器壳程上方进入,冷凝水从壳程的下方排出,这样既便于冷凝水的排放,又利于传热效率的提高;冷却水一般从换热器的下方的入口进入,上方的出口排出,可减少冷却水流动中的死角,以提高传热面积的有效利用.故采用逆流.

(5)流速的选择:换热器内流体的流速大小,应有经济衡算来决定.增大器内流体的流速,可增强对流传热,减少污垢在换热管表面上沉积的可能性,即降低了污垢的热阻,使总传热系数增大,从而减少换热器的传热面积和设备的投资经费,但是流速增大,又使流体阻力增大,动力消耗也就增多,从而致使操作费用增加,若流速过大,还会使换热器产生震动,影响寿命,因此选取合适的流速是十分重要的.

(6)冷却剂及出口温度的确定:选取水做冷却剂,它们可以直接取自大自然,不必特别加工.由于水源丰富,可以降低传热面积,减少设备费用.

二、换热器概述

换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。在工程实践中有时也会存在两

种以上的流体参加换热,但它的基本原理与前一种情形并无本质上的区别。

在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。

2.1、换热器的分类

换热器作为传热设备被广泛用于耗能用量大的领域。随着节能技术的飞速发展,换热器的种类越来越多。适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:

1、换热器按传热原理可分为:

1)间壁式换热器

间壁式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。因此又称表面式换热器,这类换热器应用最广。间壁式换热器根据传热面的结构不同可分为管式、板面式和其他型式。

2)蓄热式换热器

蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。

3)流体连接间接式换热器

流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。这类换热器主要用于回收和利用高温废气的热量。以回收冷量为目的的同类设备称蓄冷器,多用于空气分离装置中。如炼焦炉下方预热空气的蓄热室。

4)混合式换热器

混合式换热器是通过冷、热流体的直接接触、混合进行热量交换的换热器,又称接触式换热器。由于两流体混合换热后必须及时分离,这类换热器适合于气、液两流体之间的换热。例如,冷水塔、气体冷凝器等。

2、换热器按用途分为:

1)冷却器

冷却器是把流体冷却到必要的温度,但冷却流体没有发生相的变化。

2)加热器

加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。

3)预热器

预热器预先加热流体,为工序操作提供标准的工艺参数。

4)过热器

过热器用于把流体(工艺气或蒸汽)加热到过热状态。

5)蒸发器

蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。

下面我们主要介绍列管式换热器。

1、列管式换热器分类

列管式换热器是目前化工及酒精生产上应用最广的一种换热器。它主要由壳体、管板、换热管、封头、折流挡板等组成。

列管式换热器又称为管壳式换热器,是最典型的间壁式换热器。

优点:单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采用。

结构:壳体、管束、管板、折流挡板和封头。一种流体在管内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。

列管式换热器,按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。

列管式换热器种类很多,目前广泛使用的按其温差补偿结构来分,主要有以下几种:浮头式换热器、固定式换热器、U形管换热器、填料函式换热器等1)浮头式换热器

浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。

新型浮头式换热器浮头端结构,它包括圆筒、外头盖侧法兰、浮头管板、钩圈、浮头盖、外头盖及丝孔、钢圈等组成,其特征是:在外头盖侧法兰内侧面设凹型或梯型密封面,并在靠近密封面外侧钻孔并套丝或焊设多个螺杆均布,浮头处取消钩圈及相关零部件,浮头管板密封槽为原凹型槽并另在同一端面开一个以该管板中心为圆心,半径稍大于管束外径的梯型凹槽,且管板分程凹槽只与梯型凹槽相连通,而不与凹型槽相连通;在凹型和梯型凹槽之间钻孔并套丝或焊设多个螺杆均布,设浮头法兰为凸型和梯型凸台双密封,分程隔板与梯型凸台相通并位于同一端面的宽面法兰,且凸型和梯型凸台及分程隔板分别与浮头管板凹型和梯型凹槽及分程凹槽相对应匹配,该浮头法兰与无折边球面封头组配焊接为浮头盖,其法兰螺孔与浮头管板的丝孔或螺杆相组配,用螺栓或螺帽紧固压紧浮头管板凹型

图1 浮头式换热器

和梯型凹槽及分程凹槽及其垫片,该结构必要时可适当加大浮头管板的厚度和直径及圆筒的内径,同时相应变更加大相关零部件的尺寸;另配置一无外力辅助钢圈,其圈体内径大于浮头管板外径,钢圈一端设法兰与外头盖侧法兰内侧面凹型或梯型密封面连接并密封,另一端设法兰或其他结构与浮头管板原凹型槽及其垫片或外圆密封。

浮头换热器的特点:

浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,这个特点在现场能看出来。这种换热器壳体和管束的热膨胀是自由的,管束可以抽出,便于清洗管间和管内。其缺点是结构复杂,造价高(比固定管板高20%),在运行中浮头处发生泄漏,不易检查处理。浮头式换热器适用于壳体和管束温差较大或壳程介质易结垢的条件。

2)固定管板式换热器

固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈(或膨胀节)。当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。

固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。固定管板式换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板

图2 固定管板式换热器

外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束内根据换热管的长度设置了若干块折流板。这种换热器管程可以用隔板

分成任何程数。

这类换热器的结构比较简单、紧凑、造价便宜,但壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管

内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。

为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。一般壳程压强超过0.6Mpa时由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其他结构。

固定管板式换热器的特点

1、旁路渗流较小;

2、造价低;

3、无内漏;

4、固定管板式换热器的缺点是,壳体和管壁的温差较大,易产生温差力,壳程无法清洗,管子腐蚀后连同壳体报废,设备寿命较低,不适用于壳程易结垢场合。

3)U型管式换热器

这类换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。

图3 U型管换热器

4)填料函式换热器:

这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程中不应处理易挥发、易燃、易爆和有毒的介质。

图4 填料函式换热器

三、换热器的工艺设计

3.1、设计条件

处理能力:5×104吨/年

操作压力:常压

产品浓度:含乙醇95%

允许压降:不大于105Pa

冷却介质:自来水,压力为0.3MPa,入口温度30℃,出口温度40℃

每年按330天计,每天24小时连续运行

3.2、换热器初选

3.2.1确定物性

定性温度:对于一般低粘度的气体和水,其定性温度可取流体进出口温度的平均值。

水的定性温度:t

m =

30+40

2

=35℃

塔顶乙醇(95%)的定性温度:T

m =

78.3+78.3

2

=78.3℃

自来水在35℃下的物性数据和乙醇(95%)在78.3℃下的物性数据如表1

表1 物性数据

物性

流体温度T

(℃)

密度(液)

ρ

kg/m3

粘度μ

mPa·s

比热容C p

kJ/(Kg·

℃)

热导系

数λ

W/(m·℃)

液化潜热

r/(kJ/kg) 738.59

自来水359940.7274 4.1740.6262258.4

3.2.2流程安排

具有饱和蒸汽冷凝的换热器,应使饱和蒸汽走壳程,便于排出冷凝液,并且由于循环冷却水较易结垢,其流速太低,将会加快污垢增长速度,使得换热器的传热能力下降,所以应使冷却水走管程,乙醇(95%)走壳程。

3.2.3初选换热器的类型

两流体的温度变化情况:热流体进口温度78.3℃,出口温度78.3℃;冷流体进口温度30℃,出口温度40℃,考虑到冬季操作时,进口温度会降低,估计该换热器的管壁温和壳体壁温之差应该小于50,因此初步确定选固定管板式换热器。

3.2.4物料衡算

冷凝蒸汽的流量:

G 1=5×104

×103/(330×24×3600)=1.754kg/s

r=r 纯乙醇×95%+r 水×5%=885.1×95%+2258.4×5%=925.265kJ/kg

Q=Gs 1×r=1.754×925.265=1622.915kJ/s

自来水的流量:

G 2?Cpc ?(t 1-t 2)=Q ∴G 2=1622.915/(4.174×(40-30))=38.88kg/s

3.2.5计算平均传热温差

逆流:

热流体: T 1=78.3℃ → T 2=78.3℃

冷流体: t 1=40℃ → t 2=30℃

?t 1 =78.2-30=48.3℃

?t 2 =78.2-40=38.3℃

?t 1 /?t 2 =1.26<2

∴?t m ;=12

(38.2+48.2)=43.3℃ 温度校正:

P =211140300.2178.230

t t T t --==-- 12210T T R t t -=

=- 由P 和R 查图5对数平均温差校正系数图可知

图5 温差校正系数图

此时1t ??≈,大于0.8,所以选用单壳程的列管式换热器。

∴3.4343.31.=?=?=??m t m t t ?℃

3.2.6设总传热系数k 两流体 K(w/(m 2.℃))

水-水 700-1800

有机物-水 有机物粘度μ<0.5mPa ·s μ=0.5-1.0mPa ·s μ>1.0mPa ·s

300-800

200-500

50-300

有机物冷凝-水 有机物粘度μ<0.5mPa ·s

μ=0.5-1.0mPa ·s

μ>1.0mPa ·s

500-1200 200-700 50-350 由表 2可知有机物冷凝-水的列管式换热器的总传热系数为200-700w/(m 2.℃)。 故可初设总传热系数:K=450w/(m 2.℃)

估算传热面积:

由Q=KA ?t m

估A =Q/K △t m =1622.589×103/(450 ×43.3)=83.274 m 2

固定管板式换热器课程设计

固定管板式换热器设计

目录 第一章绪论··3 1.1什么是管壳式换热器·3 1.2管壳式换热器的分类··3 第二章总体结构设计··4 2.1固定管板式换热器结构··4 第三章机械设计··4 3.1工艺条件 (4) 3.2设计计算 (4) (1)管子数n (5) (2)换热管排列形式··5 (3)管间距的确定 (5) (4)壳程选择··5 3.3 筒体··6 (1)换热器壳体内径的确定··6 (2)换热器封头的选择··6 3.4 折流板··6 (1)折流板切口高度的确定··6 (2)确定折流板间距··6 (3)折流板的排列方式··7 (4)折流板外径的选择··7 (5)折流板厚度的确定··7

(6)折流板的管孔确定··7 3.5 拉杆、定距管··7 (1)拉杆的直径和数量··7 (2)拉杆的尺寸··8 (3)拉杆的布置··9 (4)定距管··9 3.6、防冲板··9 3.7、接管··9 (1)接管的公称直径··9 (2)接管的壁厚确定··9 (3)接管高度的确定··9 3.8 法兰··10 (1)容器法兰的选用··10 (2)接管法兰··10 3.9 垫片的选用··11 3.10 管板的设计与计算··11 3.11 支座··12 3.12 圆筒节的设计··13 第四章列管式换热器机械结构设计··13 4.1 传热管与管板的连接··14 4.2 管板与壳体及管箱的连接··14 4.3 管法兰与接管连接··14

第五章强度计算··15 5.1 换热器壳体壁厚的计算··15 5.2 管箱短节··16 第六章安装制造··16 6.1 换热器制造··16 6.2 换热器安装··17 参考文献··18 心得体会··18

固定管板式换热器使用中的注意事项及工作原理

固定管板式换热器的注意事项及工作原理 固定管板式换热器在运行中应注意事项有: (1)换热器在新安装或检修完之后必须进行试压后才能使用。 (2)换热器在开工时要先通冷流后通热流,在停工时要先停热流后停冷流。以防止不均匀的热胀冷缩引起泄漏或损坏。 (3)固定管板式换热器不允许单向受热,浮动式换热器管、壳两侧也不允许温差过大。 (4)启动过程中,排气阀应保持打开状态,以便排出全部空气,启动结束后应关闭。 (5)如果使用碳氢化合物,在装入碳氢化合物之前要用惰性气体驱除换热器中的空气,以免发生爆炸。 (6)停工吹扫时,引汽前必须放净冷凝水,并缓慢通气,防止水击。换热器一侧通气时,必须把另一侧的放空阀打开,以免弊压损坏,关闭换热器时,应打开排气阀及疏水阀,防止冷却形成真空损坏设备。 (7)空冷器使用时要注意部分流量均匀,确保冷却效果。 (8)经常注意监视防止泄漏。 固定管板式换热器的工作原理:

图1 [固定管板式换热器]为固定管板式换热器的构造。A流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。

固定管板式换热器课设

江汉大学 课题名称: 固定管板式换热器设计 系别: 化学与环境工程学院 专业: 过控121班 学号: 122209104119 姓名: 库勇智 指导教师: 杨继军 时间: 2016年元月 课程设计任务书 设计题目:固定管板式换热器设计 一、设计目得: 1.实用国家最新压力容器标准、规范进行设计,掌握典型得过程装备 设计得全过程、 2.掌握查阅与综合分析文献资料得能力,进行设计方法与设计方案得 可行性研究与论证。 3.掌握软件强度设计计算,要求设计思路清晰,计算数据准确可靠,正 确掌握计算机操作与专业软件得实用。 4.掌握图纸得计算机绘图。 二、设计条件: 设计条件单

管口表 三、设计要求: 1。换热器机械设计计算及整体结构设计 2、绘制固定管板式换热器装配图(一张一号图纸) 3。管长与壳体内径之比在3-20之间 四、主要参考文献 1.国家质量监督检验检疫总局,GB150—2011《压力容器》,中国标

准出版社,2011。 2。国家质量监督检验检疫总局,TSG R0004-2009《固定式压力容器安全技术监察规程》,新华出版社,2009、 3.国家质量监督检验检疫总局,GB151—1999《管壳式换热器》,中国标准出版社,1999、 4、天津大学化工原理教研室,《化工原理》上册,姚玉英主编,天津科学技术出版社,2012、 5、郑津样,董其伍,桑芝富主编,《过程装备设计》,化学工业出版社,2010。 6。赵惠清,蔡纪宁主编,《化工制图》,化学工业出版社,2008。7.潘红良,郝俊文主编,《过程装备机械设计》,华东理工大学出版社,2006、 8。E.U、施林德尔主编,《换热器设计手册》第四卷,机械工业出版社,1989。 前言 换热设备就是用于两种或两种以上流体间、一种流体一种固体间、固体粒子间或者热接触且具有不同温度得同一种流体间热量(或焓)传递得装置。 换热器就是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确得设置,性能得改善关系各部门有关工艺得合理性、经济性以及能源得有效利用与节约,对国民经济有着十分重要得影响。在炼油、化工装置中换热器占总设备数量得40%左右,

固定板管式换热器设计说明书

固定板管式换热器 设 计 说 明 书 系别: 班级: 姓名: 学号:

一、 设计任务和设计条件 某炼油厂拟用原有在列管式换热器中回收柴油的热量。已知原油 流量为40000kg/h ,进口温度70℃,要求其出口温度不高于110℃;柴油流量为30000kg/h ,进口温度为175℃。设计一适当型号的换热器,已知物性数据: 二、 确定设计方案 ① 初选换热器的规格 当不计热损失时,换热器的热负荷为: Q=W )(12t t c pc C =40000/3600×2.2×103×(110-70)=9.8×105W 逆流过程如图所示: T 2125℃ T 1175℃ t 170℃ t 2110℃ 逆流平均温度差: m t = 8.5970 125110175ln ) 70125()110175( ℃ 初估 值 R= 25.170110125 175 P= 381.070 17570 110 初步决定采用单壳程,偶数管程的固定板管式换热器。经查表得校

正系数 =0.9>0.8,可行。 ∴ 53.859.80.9 逆m m t t ℃ 初步估计传热系数K 估=200W/(㎡·℃), 则 A m 07.918 .53200108.9t 5 m 估估K Q ∴所设计换热器(固定板管式)的参数选择如下表: ② 计算(管、壳程的对流传热系数和压降): a. 管程: 流通面积 220175.04 222 002.044m N N d S P T i i 柴油流速 s m S W u i i h i /666.00175.0715360030000 3600 Re 4 3 1049.11064.0715666.002.0 i i i i du 柴油被冷却,所以 ) /(701)133 .01064.01048.2(1490002.0133.0023.0Pr Re 023 .023.0338 .03 .0C m W d i i i i i ?

固定管板换热器计算书

软件批准号:CSBTS/TC40/SC5-D01-1999 DATA SHEET OF PROCESS EQUIPMENT DESIGN

工程名: PROJECT 设备位号: ITEM 设备名称:原料气压缩机一级冷却器EQUIPMENT 图号:FXLSZ-02-00 DWG NO。 设计单位:抚顺新纪元炼化设备有限公司DESIGNER

固定管板换热器设计计算计算单位抚顺新纪元炼化设备有限公司 设计计算条件 壳程管程 设计压力p s 0.5MPa设计压力p t 1.8MPa 设计温度t s 50?C设计温度t t 150?C 壳程圆筒内径D i450mm管箱圆筒内径D i450mm 材料名称Q345R材料名称Q345R 简图 计算内容 壳程圆筒校核计算 前端管箱圆筒校核计算 前端管箱封头(平盖)校核计算 后端管箱圆筒校核计算 后端管箱封头(平盖)校核计算 管箱法兰校核计算 开孔补强设计计算 管板校核计算

前端管箱筒体计算 计算单位 计算所依据的标准 GB 150.3-2011 计算条件 筒体简图 计算压力 P c 1.80 MPa 设计温度 t 150.00 C 内径 D i 450.00 mm 材料 Q345R ( 板材 ) 试验温度许用应力 189.00 MPa 设计温度许用应力 189.00 MPa 试验温度下屈服点 s 345.00 MPa 钢板负偏差 C 1 0.30 mm 腐蚀裕量 C 2 2 mm 焊接接头系数 0.85 厚度及重量计算 计算厚度 = P D P c i t c 2[]σφ- = 2.54 mm 有效厚度 e =n - C 1- C 2= 9.7 mm 名义厚度 n = 12.00 mm 重量 123.05 Kg 压力试验时应力校核 压力试验类型 液压试验 试验压力值 P T = 1.25P [][]σσt = 2.2500 (或由用户输入) MPa 压力试验允许通过 的应力水平 T T 0.90 s = 310.50 MPa 试验压力下 圆筒的应力 T = p D T i e e .().+δδφ 2 = 71.39 MPa 校核条件 T T 校核结果 合格 压力及应力计算 最大允许工作压力 [P w ]= 2δσφ δe t i e []() D += 5.95649 MPa 设计温度下计算应力 t = P D c i e e () +δδ2= 48.55 MPa t 160.65 MPa 校核条件 t ≥ t 结论 筒体名义厚度大于或等于GB151中规定的最小厚度8.20mm,合格

固定管板式换热器课设报告

江汉大学 课题名称:固定管板式换热器设计 系别:化学与环境工程学院 专业:过控121班 学号: 122209104119 姓名:库勇智 指导教师:杨继军 时间: 2016年元月

课程设计任务书 设计题目:固定管板式换热器设计 一、设计目的: 1.实用国家最新压力容器标准、规范进行设计,掌握典型的过程装 备设计的全过程。 2.掌握查阅和综合分析文献资料的能力,进行设计方法和设计方案 的可行性研究和论证。 3.掌握软件强度设计计算,要求设计思路清晰,计算数据准确可靠, 正确掌握计算机操作和专业软件的实用。 4.掌握图纸的计算机绘图。 二、设计条件: 设计条件单 名称管程壳程 物料名称循环水甲醇 工作压力0.45Mpa 0.05Mpa 操作温度40℃70℃ 推荐钢材10,Q235-A,16MnR 换热面积60㎡ 推荐管长Φ=25 32-39㎡40-75㎡76-135㎡ 2m 2.5 3m

管口表 符号公称直径用途 a 200 冷却水金口 b 200 甲醇蒸汽进口 c 20 放气口 d 70 甲醇物料出口 e 20 排净物 f 200 冷却水出口 三、设计要求: 1.换热器机械设计计算及整体结构设计 2.绘制固定管板式换热器装配图(一张一号图纸) 3.管长与壳体内径之比在3-20之间 四、主要参考文献 1.国家质量监督检验检疫总局,GB150-2011《压力容器》,中国标准出版社,2011. 2.国家质量监督检验检疫总局,TSG R0004-2009《固定式压力容器安全技术监察规程》,新华出版社,2009. 3.国家质量监督检验检疫总局,GB151-1999《管壳式换热器》,中国标准出版社,1999. 4.天津大学化工原理教研室,《化工原理》上册,姚玉英主编,天津科学技术出版社,2012. 5.郑津样,董其伍,桑芝富主编,《过程装备设计》,化学工业出版社,

固定管板式换热器课程设计

一 列管换热器工艺设计 1、根据已知条件,确定换热管数目和管程数: 选用.5225?φ的换热管 则换热管数目:5.737019 .014.35.2110 A 0≈??== d l n p π根 故738=n 根 管程数:对于固定板式换热器,可选单管程或双管程,为成本计,本设计采用单管程。 2、管子排列方式的选择 (1)采用正三角形排列 (2)选择强度焊接,由表1.1查的管心距t=25mm 。 表1.1 常用管心距 管外径/mm 管心距/mm 各程相邻管的管心距/mm 19 25 38 25 32 44 32 40 52 38 48 60 (3)采用正三角形排列,当传热管数超过127根,即正六边形的个数a>6时,最外层六边形和壳体间的弓形部分空间较大,也应该配置传热管。不同的a 值时,可排的管数目见表1.2。具体排列方式如图1,管子总数为779根。 表1.2 排管数目 正六角形的数目a 正三角形排列 六角形对角线上的管数b 六角形内的管数 每个弓形部分的管数 第一列 第二列 第三列 弓形部分的管数 管子总数 1 3 7 7 2 5 19 19 3 7 37 37 4 9 61 61 5 11 91 91 6 13 12 7 127 7 15 169 3 1 8 187 8 17 217 4 24 241 9 19 271 5 30 10 21

301 11 23 397 7 42 439 12 25 469 8 48 517 13 27 547 9 2 66 613 14 29 631 10 5 90 721 15 31 721 11 6 102 823 16 33 817 12 7 114 931 17 35 919 13 8 126 1045 18 37 1027 14 9 138 1165 19 39 1411 15 12 162 1303 20 41 1261 16 13 4 198 1459 21 43 1387 17 14 7 228 1616 22 45 1519 18 15 8 246 1765 23 47 1657 19 16 9 264 1921 图1.1折流板的管孔及换热管及拉杆分布 3、壳程选择 壳程的选择:简单起见,采用单壳程。 4、壳体内径的确定 换热器壳体内径与传热管数目、管心距和传热管的排列方式有关。壳体的内径需要圆整成标准尺寸。以400mm为基数,以100mm为进级档,必要时可以50mm为进级档。 对于单管程换热器,壳体内径公式0 b t+ - D d = ~ )3 2( )1 (

固定管板式换热器

固定管板式换热器的设计 学生:库勇智,化学与环境工程学院 指导教师:王小雨,江汉大学 摘要 换热器是用来在流体间交换热量的装置,在化学专业中具有非常重要的地位,被使用于化工各行业中。由于其中固定管板式换热器管板和壳体是一体构造,具有结构简单、造价十分便宜的优点,所以被普遍的使用。 这篇设计说明书上面着重说明了换热器的换热面积、各个设计压力和设计温度以及接管等数据参数。根据上面所给的数据和换热器类型来对换热器的各个零部件,即换热管根数,尺寸、排列方式,壳体和管箱、封头等等,最后校核、压力试验,根据工艺结构选出材料,最后作图。 本设计说明书的每一部分都是完全参照GB150-2011《压力容器》和GB151-2014《热交换器》中固定管板式换热器的有关标准来计算、校核和选型的。 关键词 管壳式换热器;固定管板式换热器;加热器

Abstract Heat exchanger is a device for exchanging heat between the fluids and in chemistry has a very important position, is used in the chemical industry. Because of the fixed tube plate heat exchanger tube plate and the shell is an integral structure, with has the advantages of simple structure, low cost advantages, so be widely use. The design specification above illustrates the change of the heat exchange area of the heat exchanger, each design pressure and temperature and over data parameters. According to the data given above and the heat exchanger type heat exchanger parts, i.e. the heat exchange tube number, size, arrangement, shell and tube box, head, and so on, finally checking, pressure test, selected according to process structure materials. Finally, drawing. The design specification is strictly according to GB150-2011< pressure container > and heat GB151-2014< exchanger is > fixed tube plate heat exchanger of the relevant provisions of the calculation, selection and checking. Key words Shell and tube heat exchanger ;fixed tube heat exchanger ;heater

固定管板式换热器课设论文

化工原理课程设计(论文) 煤油冷却器的设计 学院 专业 年级 学号 学生姓名 指导教师 2011年 11月

目录 一.任务书 (4) 1.1题目 1.2任务及操作条件 1.3列管式换热器的选择及设计要求 二.概述 (5) 2.1换热器概述 2.2固定管板式换热器 2.3设计背景及设计要求 三.物料数据的确定 (10) 3.1试算并初选换热器规格 3.2计算总传热系数 3.3计算传热面积 四.工艺结构尺寸 (13) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3传热管排列和分程方法 4.4壳体内径 4.5折流板 4.6接管 4.7拉杆和定距管 4.8管板厚度

4.9封头 4.10缓冲挡板 4.11放气孔、排液孔 4.12膨胀节 4.13胀接 4.14密封垫圈 五.换热器核算 (20) 5.1壳程对流传热系数 5.2管程对流系数 5.3传热系数K 5.4传热面积 5.5计算压强降 六.工艺计算结果汇总表 (25) 七.后记 (26) 参考文献 (27)

煤油冷却器的设计 一.化工原理课程设计任务书 1.1设计题目:煤油冷却器的设计 1.2设计任务及操作条件 1.处理能力 19.6*104 吨/年煤油 2.设备型式列管式换热器 3.操作条件 a 煤油:入口温度145℃,出口温度 35℃ b 冷却介质:自来水,入口温度 30℃,出口温度 40℃ c 允许压强降:不大于105 pa d 煤油定性温度下的物性数据:密度为825kg/m3 ,粘度为7.15*10-4 pa*s,比热容为2.22kJ/(kg *℃),导热系数为0.14w/(m*℃) e 每年按330天计,每天24小时连续运行 1.3换热器的选择及设计要求 列管式换热器的形式主要依据换热器管程与壳程流体的温度差来确定。由于两流体的温差大于50 C,故选用带补偿圈的固定管板式换热器。这类换热器结构简单、价格低廉,但管外清洗困难,宜处理壳方流体较清洁及不易结垢的物料。因水的对流传热系数一般较大,并易结垢,故选择冷却水走换热器的管程,煤油走壳程。

固定管板式换热器结构设计

固定管板式换热器的结构设计 摘要 换热器是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确的设置,性能的改善关系各部门有关工艺的合理性、经济性以及能源的有效利用与节约,对国民经济有着十分重要的影响。 换热器的型式繁多,不同的使用场合使用目的不同。其中常用结构为管壳式,因其结构简单、造价低廉、选材广泛、清洗方便、适应性强,在各工业部门应用最为广泛。 固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。固定管板式换热器能承受较高的操作压力和温度,因此在高温高压和大型换热器中,其占有绝对优势。 固定管板式换热器主要由壳体、换热管束、管板、前端管箱(又称顶盖或封头)和后端结构等部件组成。管束安装在壳体内,两端固定在管板上。管箱和后端结构分别与壳体两端的法兰用螺栓相连,检修或清洗时便于拆卸。换热器设计的优劣最终要看是否适用、经济、安全、运行灵活可靠、检修清理方便等等。一个传热效率高、紧凑、成本低、安全可靠的换热器的产生,要求在设计时精心考虑各种问题.准确的热力设计和计算,还要进行强度校核和符合要求的工艺制造水平。 关键词:换热器;固定管板式换热器;结构;设计

The Structural Design of Fixed Tube Plate Heat Exchanger Author : Chen Hui-juan Tutor : Li Hui Abstract Heat exchanger is one of the most important equipments which is used in the fields of chemical, oil, power, metallurgy, transportation, national defense industry. Its right setting and the improvements of performance play an important role in the rationality o technology, economy, energy utilization and saving, which has a very important impact on the national economy. The type of heat exchanger is various, the different use occasions and the purpose is are commonly used for the tube shell type structure, because of its simple structure, low cost and wide selection, easy to clean, strong adaptability, the most widely used in various industry departments. Fixed tube plate heat exchanger is a kind of typical structure of tube and shell heat exchanger, also is a kind of heat exchanger is applied more widely. This kind of heat exchanger has simple and compact structure, high reliability, the characteristics of wide adaptability, and the production of low cost, wide range of selection of materials, heat exchange surface cleaning more convenient. Fixed tube plate heat exchanger can operate under high pressure and temperature, therefore, the heat exchanger in high temperature and high pressure and large in its possession of absolute advantage. Fixed tube plate heat exchanger is mainly composed of shell, heat

板式换热器选型与计算方法(DOC)

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

板式换热器的计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数 曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得 快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和 压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度* A3 F7 y& G7 S+ Q T2 = 热侧出口温度3 s' _% s5 s. T" D0 q4 b t1 = 冷侧进口温度& L8 ~: |; B: t2 M2 w$ z t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:0 B N/ I" A+ m0 z' H9 ~ (热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W;# Q/ p3 p: I4 ~0 N' I) W mh,mc-----热、冷流体的质量流量,kg/s;+ Z: I9 b- h9 h" r3 P) {/ ^ Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K);6 L8 t6 b3 o& m/ n T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡 算式为:& w3 v) j4 I4 R 一侧有相变化1 Y# e$ B6 c& z% C3 W- W* J 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中

固定管板式换热器

固定管板式换热器 一 换热管 1换热管外径 取换热管外径为25*2.5。 2换热管数量及长度 *(0.1)A n d L π=- A 换热面积 D 换热管外径 l 换热管长度 A=402m 取安全系数1.125,1*1.12546A A == 140*1.125 248*(0.1) 3.14*0.02*(30.1)A n d L π==≈-- n=248 L=3

3布管 (1)换热管排列方式 采用正三角形排列 (2)换热管中心距 查阅课本139页表5-3确定换热管中心距是32mm 。 二换热器壳体 1换热器内径计算 0*(1)(2~3)*D t b d =-+ t 管心距 d 0 换热管外径 D 壳体内径 17.32281b === 0*(1)(2~3)*D t b d =-+ t=32mm 32*(17.322811)2*25572.32992 D =-+= 取D=600mm

2筒体壁厚计算 水蒸气工作压力1.27Mpa ,脱盐水工作压力1.28Mpa 。 材料选16MnR 工作温度T=150/170℃ 查阅课本32页确定设计设计温度T W =170/190℃ 脱盐水走壳程,水蒸气走管程。 *2*[]*c i t c p D p δσφ=- δ 圆筒的计算壁厚 c p 圆筒的计算压力 []t σ 许用应力 φ 焊接接头系数 []t σ 156 查阅课本32页确定c p =1.28+0.18=1.46Mpa GB150规定焊接接头系数容器受压元件焊接接头的工艺特点以及无损检测的抽查率确定,查阅课本38页确定φ=0.85。 * 1.46*600 3.322*[]*2*156*0.86 1.46 c i t c p D mm p δσφ==≈-- d C δδ=+ 查阅课本40也确定C 2=1.5mm 。 查阅课本39页确定C 1=0.3mm C= C 1 + C 2=1.8mm 3.321 1.8 5.121d C mm δδ=+=+= 元整后6n mm δ= (3)布管限定圆 查阅GB15132*L i D D b =-

化工原理课程设计说明书(换热器的设计)

中南大学 化工原理课程设计 2010年01月22日 题目设计说明书指导老师夏柳荫 学生姓名徐春波学院化学化工学院学生学号1503070127 专业班级制药0701班

目录 一、设计题目及原始数据(任务书) (3) 二、设计要求 (3) 三、列环式换热器形式及特点的简述 (3) 四、论述列管式换热器形式的选择及流体流动空间的选择 (8) 五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热 面积、压强降等等) (10) ①物性数据的确定 (14) ②总传热系数的计算 (14) ③传热面积的计算 (16) ④工艺结构尺寸的计算 (16) ⑤换热器的核算 (18) 六、设计结果概要表(主要设备尺寸、衡算结果等等) (22) 七、主体设备计算及其说明 (22) 八、主体设备装置图的绘制 (33) 九、课程设计的收获及感想 (33) 十、附表及设计过程中主要符号说明 (37) 十一、参考文献 (40)

一、设计题目及原始数据(任务书) 1、生产能力:17×104吨/年煤油 2、设备形式:列管式换热器 3、设计条件: 煤油:入口温度140o C,出口温度40 o C 冷却介质:自来水,入口温度30o C,出口温度40 o C 允许压强降:不大于105Pa 每年按330天计,每天24小时连续运行 二、设计要求 1、选择适宜的列管式换热器并进行核算 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。一剖面图,两个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。) 三、列环式换热器形式及特点的简述 换热器概述 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

固定管板式换热器的设计

固定管板式换热器的设计 第一章.设计方案概述和简介 一、概述 在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。化工生产中换热器的使用十分普遍,由于物料的性质、要求各不相同,换热器的种类很多。了解各种换热器的特点,根据工艺要求正确选用适当类型的换热器是非常重要的。 按照热量交换的方法不同,分为间壁式换热器、直接接触式换热器、蓄热式换热器三种。化工生产中绝大多数情况下不允许冷、热两流体在传热过程中发生混合,所以,间壁式换热器的应用最广泛。在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量:另一种流体温度较低,吸收热量。换热器在化工、石油、动力、制冷、食品等行业中都有广泛应用,且它们是上述这些行业的通用设备,并占有十分重要的地位 二、列管式换热器的分类 1、 U型管换热器 U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。其缺点是管内清洗困难;由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。此外,其造价比管定管板式高10%左右。 2、固定管板式换热器 固定管板式换热器主要是由筒体、封头、管板、换热管、管箱、折流板及法兰等组成,管束两端固定在管板上,管板和筒体之间是刚性连接在一起,相互之间无相对移动,换热器结构简单、制造方便、造价较低;在相同直径的壳体内可排列较多的换热管,而且每根换热管都可单独进行更换和管内清洗;但管外壁清洗较困难。当两种流体的温差较大时,会在壳壁和管壁中产生温差应力,一般当温差大于50摄氏度时就应考虑在壳体上设置膨胀节以减小温差应力。但当管、壳温差大于70摄氏度时,壳程压力超过0.6Mpa时,导致膨胀节过厚失去温差补偿作用。因此,固定管板式换热器适用于壳程流体清洁,不易结垢,管程常用要清洗,冷热流体温差不太大的场合。

固定管板式换热器课设

江汉大学 课题名称:固定管板式换热器设计系别:化学与环境工程学院 专业:过控121班 学号: 122209104119 姓名:库勇智 指导教师:杨继军 时间: 2016年元月

课程设计任务书 设计题目:固定管板式换热器设计 一、设计目的: 1.实用国家最新压力容器标准、规范进行设计,掌握典型的过程装 备设计的全过程。 2.掌握查阅和综合分析文献资料的能力,进行设计方法和设计方案 的可行性研究和论证。 3.掌握软件强度设计计算,要求设计思路清晰,计算数据准确可靠, 正确掌握计算机操作和专业软件的实用。 4.掌握图纸的计算机绘图。 二、设计条件: 设计条件单

管口表 三、设计要求: 1.换热器机械设计计算及整体结构设计 2.绘制固定管板式换热器装配图(一张一号图纸) 3.管长与壳体内径之比在3-20之间 四、主要参考文献 1.国家质量监督检验检疫总局,GB150-2011《压力容器》,中国标准出版社,2011. 2.国家质量监督检验检疫总局,TSG R0004-2009《固定式压力容器安全技术监察规程》,新华出版社,2009. 3.国家质量监督检验检疫总局,GB151-1999《管壳式换热器》,中国标准出版社,1999. 4.天津大学化工原理教研室,《化工原理》上册,姚玉英主编,天津科学技术出版社,2012. 5.郑津样,董其伍,桑芝富主编,《过程装备设计》,化学工业出版社,

2010.

6.赵惠清,蔡纪宁主编,《化工制图》,化学工业出版社,2008。 7.潘红良,郝俊文主编,《过程装备机械设计》,华东理工大学出版社,2006。 8.E.U.施林德尔主编,《换热器设计手册》第四卷,机械工业出版社,1989.

固定管板式换热器设计-过程设备设计课程设计报告书

目录 1.换热器选型和工艺设计 (3) 1.1设计条件 (3) 1.2换热器选型 (3) 1.3工艺设计 (3) 1.3.1传热管根数的确定 (4) 1.3.2传热管排列和分程方法 (4) 1.3.3壳体径 (4) 2 换热器结构设计与强度校核 (4) 2.1 管板设计 (4) 2.1.1管板材料和选型 (5) 2.1.2管板结构尺寸 (5) 2.1.3管板质量计算 (6) 2.2法兰与垫片 (6) 2.2.1管箱法兰与管箱垫片 (7) 2.3 接管 (8) 2.3.1接管的外伸长度 (9) 2.3.2 接管位置设计 (9) 2.3.3 接管法兰 (10) 2.4管箱设计 (12) 2.4.1管箱结构形式选择 (12) 2.4.2管箱最小长度 (12) 2.5 换热管 (13) 2.5.1 布管限定圆 (13) 2.5.2 换热管与管板的连接 (13) 2.6 拉杆与定距管 (14) 2.6.1 拉杆的结构形式 (14) 2.6.2 拉杆的直径、数量及布置 (14) 2.6.3 定距管 (15)

2.7防冲板 (15) 2.7.1防冲板选型 (15) 2.7.2防冲板尺寸 (16) 2.8 折流板 (16) 2.8.1 折流板的型式和尺寸 (16) 2.8.2 折流板的布置 (17) 2.8.3 折流板重量计算 (17) 3.强度计算 (18) 3.1壳体和管箱厚度计算 (18) 3.1.1 壳体、管箱和换热管材料的选择 (18) 3.1.2 圆筒壳体厚度的计算 (18) 3.1.3 管箱厚度计算 (19) 3.2 开孔补强计算 (20) 3.2.1 壳体上开孔补强计算 (20) 3.3 水压试验 (20) 3.4支座 (21) 3.4.1支反力计算如下: (21) 3.4.2 鞍座的型号及尺寸 (22) 4焊接工艺设计 (23) 4.1.壳体与焊接 (23) 4.1 .1壳体焊接顺序 (23) 4.1.2 壳体的纵环焊缝 (24) 4.2 换热管与管板的焊接 (24) 4.2.1 焊接工艺 (24) 4.2.2 法兰与短节的焊接 (25) 4.2.3管板与壳体、封头的焊接 (26) 4.2.4接管与壳体焊接 (26) 总结 (28) 参考文献 (28)

换热器设计固定管板式

化学工程基础课程设计 设计题目:管壳式换热器(固定管板式)学生姓名:X X X 专业班级:1001 学号:1115020126 指导教师: 西安科技大学化学与化工学院 2013年1月14日

管壳式换热器设计任务书 一、设计目的 培养学生综合运用本门课程及有关选修课程基础理论和基本知识去完成换热单元操作设备设计任务的实践能力 二、设计目标 设计的设备必须在技术上是可行的,经济上是合理的,操作上是安全的,环境上是友好的 三、设计题目 管壳式换热器设计——固定管板式 四、设计任务及操作条件 1. 设计任务 设备型式:管壳式换热器 ——固定管板式 处理任务:物 料:原油 处理量 4900kg/h 2. 操作条件 (1)热流体(原油):入口温度140℃; 出口温度40℃ (2)冷却介质:水(入口30℃,出口40℃) (3)允许压降:不大于0.1MPa (4)物性数据 原油定性温度下的物性数据 ( ) () C m W C kg kJ c s Pa m kg o o o po o o ?=?=??==-/128.0/2.2100.3/81533λμρ导热系数定压比热容粘度密度 水的定性温度35℃下的物性数据: ) (10725.0)/(626.0) /(08.4) /(99433s Pa k m w k Kg KJ C m Kg p ??=?=?==-μλρ

目录 一、设计概述 (2) 1、换热器的简单介绍 (2) 2、设计的目的及意义 (3) 二、方案设计 (4) 1、工艺设计计算 (4) 1.1确定设计方案 (4) 1.2确定物性数据 (4) 1.3计算总传热系数 (5) 1.4计算传热面积 (6) 2、换热器设备结构设计计算 (6) 2.1管径和管内流速 (6) 2.2管程数和传热管数 (6) 2.3传热管排列和分程方法 (7) 2.4壳体内经 (7) 3、换热器的核算 (8) 3.1面积核算 (8) 3.2换热器内流体的流动阻力核算 (10) 三、设计结果一览表 (12) 四、参考文献 (13) 五、主要符号说明 (14) 六、设计感想 (15)

基于ANSYS的固定管板式换热器的热应力分析及评定_陈满儒

基于ANS YS的固定管板式 换热器的热应力分析及评定 陈满儒,孙文迪 (陕西科技大学设计与艺术学院,陕西西安 710021) 摘要:应用ANS YS有限元分析软件对固定管板式换热器进行热应力分析及评定。由应力强度云图可知最大应力强度发生在管板锻件的管程侧过渡圆角处。设定3条应力评定路径,进行线性化处理,在内压与热载荷作用下,对各路径上的一次加二次应力进行评定,得到应力评定结果。关键词:ANS YS;换热器;应力分析;应力评定 中图分类号:TH222 文献标识码:A 文章编号:1672-1616(2011)05-0040-03 换热器是石油、化工、冶金、电力、轻工、食品等行业普遍应用的一种换热工艺设备[1]。换热器设计的好坏直接影响其工艺过程,为了有效地利用能源,对换热器性能进行分析和研究是非常有意义的。 固定管板式换热器是由管箱、壳体、管板、管子等零部件组成的。管板与壳体通过焊接固定在一起,而管板与管子要通过胀接、焊接或胀焊结合连接在一起。由于管内流体与壳程流体存在温差,因此换热器中必定存在温差应力,这种温差应力将与管壳程流体压力造成的机械应力叠加。当应力较高时则会在换热器的不同部位造成不同形式的失效,如壳体强度或稳定性破坏、管子的强度或稳定性破坏、管子与管板之间拉脱、管板与壳体连接部位的破坏、管板强度破坏等,当温差应力太大时还应考虑使用膨胀节[2]。因此,换热器应力分析应包括不同危险工况并对不同部位进行分析与评定,才能保证其安全可靠的运行。 1 固定管板式换热器参数及热应力分析模型 1.1 工作条件及结构参数 某固定管板式换热器结构示意图如图1所示,管板为带凸肩的整锻件,凸肩高度为35mm,壳程侧凸肩计算壁厚为17mm,管程侧凸肩计算壁厚为18mm,凸肩与管板连接处锻造圆角半径为15m m,管板外直径为840mm,管板计算厚度为100mm。壳程金属设计温度下的设计应力强度S m= 183M Pa,管程金属设计温度下的设计应力强度S m=118MPa,壳程设计压力为0.58MPa,管程设计压力为2.00MPa,壳程操作温度为140.5℃,管程操作温度为250.0℃,空气环境温度设为20.0 ℃。 图1 固定管板式换热器结构简图 1.2 热应力分析模型 建立如图2所示的热应力分析模型,其中与管板锻件连接的壳程筒体及管程筒体的长度足够长,远大于2.5倍的边缘应力衰减长度,一般而言,当不必考虑两侧管板轴向差异时,才可利用轴向对称性建模,而壳程分析长度应为壳程总长度的一半。由于主要讨论管板及其与两端筒体连接区的应力分布规律,因而忽略开孔接管、管箱封头及支座等。考虑到结构和载荷的对称性,沿换热器的纵向对称面切开取其1/4作为分析模型体。结构纵向对称面约束了法向位移,壳程筒体横截面约束了轴向位移,管箱筒体端面施加相应的轴向平衡力。 收稿日期:2011-01-08 作者介绍:陈满儒(1957-),男,陕西西安人,陕西科技大学教授,硕士,主要研究方向为包装工程。 402011年3月 中国制造业信息化 第40卷 第5期

相关主题
文本预览
相关文档 最新文档