当前位置:文档之家› 坐标转换三参数计算器使用说明

坐标转换三参数计算器使用说明

坐标转换三参数计算器使用说明
坐标转换三参数计算器使用说明

坐标转换三参数计算器使用说明

一、软件功能

该软件可实现在北京54坐标系、西安80坐标系、WGS84坐标系(GPS通常采用WGS84坐标系)之间进行三参数条件下的高精度相互转换,求取手持GPS 的北京54(或西安80)DA、DF、DX、DY、DZ坐标转换的参数。

二、使用说明

软件分成上下二部分,上半部为在两个不同椭球体间求坐标转换的三参数DX、DY、DZ,下半部为在两个不同椭球体间的坐标转换(如下图)。

在两个不同椭球体间进行坐标转换首要条件是必需知道坐标转换参数,通常有三参数和七参数转换二种方式,本程序提供三参数转换方式。

实例1:我要求手持GPS的北京54(或西安80)坐标转换参数。

向有关部门收集所在工作区内已知点(只要一个控制点)的WGS84坐标系经纬度坐标,以及同点的北京54(或西安80)坐标系中的直角坐标,即可进行本软件操作了。如某一个控制点的WGS84经度、纬度、高程为: 109度34分28.94343秒, 31度02分25.65526秒, 104.967米,该控制点北京54坐标为:x=3436391.566m,y=37363926.964m(37为带号),h=108.717m ,将上述数据输入在软件上半部相应栏中,注意勾选前后坐标系正确(坐标系A,坐标系B),

输入中央经线(37带,输111),点击参数计算,计算结果为

DA=-108,DF=0.00000048,dx=32.284979,dy=-90.792978,dz=-57.993043, 此参数即为手持GPS北京54坐标参数。此三参数为不同椭球体间进行坐标转换奠定了基础。以上计算是精确算法,不存在漏洞。

如果收集控制点确实很困难,在不严谨的情况下,用手持GPS在工作区内某点上设置在WGS84状态下长时间观察读数,取平均值,获取WGS84经度、纬度、高程。北京54(或西安80)坐标你再想办法得到(因为你那已经有测量成果了就好说,如果还没开展测量的话,你就得在大比例尺图上读坐标,越精确越好),也能解决问题,但这个办法不推荐使用,你把求得的参数在其它地貌特征点上检验一下是否提高了定点精度,没提高的话,请重复几次,直到符合定点精度要求。

以上方法求得的坐标转换参数为北京54坐标系、西安80坐标系、WGS84坐标系之间相互转换提供了基础,请注意不同地区参数是不一样的。

实例2:如何将WGS84坐标转换为北京54坐标

已知某点WGS84坐标经纬度、高程(GPS通常采用WGS84坐标系)为: 113度12分34.5678秒, 34度56分12.3456秒, 123.888米,已知WGS84坐标转换为北京54坐标三参数为dx=32.284979,dy=-90.792978,dz=-57.993043。输入软件下半部相应栏中,中央经线111输入右上角相应栏中,点击单点转换,北京54坐标结果为X=3869865.711m, Y=19701880.461m(19带),H=127.052m

实例3:如何将北京54坐标转换为西安80坐标

收集某国家控制点北京54坐标: X=2222777.77 Y=19333933.33 及西安80坐标为:X=2222733.88 Y=19333833.44 H=1117.5 。

求出区内附近求另一点北京54坐标X=2223333.66 Y=19333444.55,

H=1111.1的西安80坐标。

答:第一步,求当地北京54坐标转换为西安80坐标的三参数:

按实例1方法求三参数,在程序上半部输入有关数据,注意勾选坐标系A、B正确,求得转换参数DX=-128.676765,DY=56.618394,DZ=43.687273,点保存参数方便下次调用,如下图:

第二步,求待求点北京54坐标的西安80坐标

将待求点坐标及三参数输入程序下半部,注意勾选坐标系1,坐标系2,求得待求点北京54坐标的西安80坐标为X=2223289.772, Y=19333244.766,

H=1111.1如下图:

注意:同一地区3度带和6度带三参数是一致的。

实例3:批量转换

批量转换前请在程序下半部设置好DX、DY、DZ三参数和右上角中央经线,勾选好坐标系1、2,点击批量转换,原始数据文件为文体文件,格式为“点号1,X坐标(或为纬度),Y坐标(或为经度),高程”,请严格控制为每行4个数据,如没有高程请用任意数字代替,以逗号或空格分开。如下所示:

1,2570000,525000,135.1

2,2570000,524000,147.1

D1,1234567.89,555444.11,444

D2,45.12121212,111.2345,444

输出文件为文本文件,格式为:

点号1,转换前的X坐标(或为纬度),Y坐标(或为经度),高程 > 转换后的X坐标(或为纬度),Y坐标(或为经度),高程。

坐标转换之计算公式

坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ???+-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半 径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1*2-= W a N B W e =-=22sin *1( 3 参心空间直角坐标转换参心大地坐标

[]N B Y X H H e N Y X H N Z B X Y L -+=+-++==cos ))1(**)()(*arctan( )arctan(2 2222 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工 程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 5 2224253 2236 4254 42232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24 cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++=) 3、高斯投影反算公式:

手持GPS参数设置及全国各地坐标转换参数复习过程

如何设置手持GPS相关参数及全国各地坐标转换参数一、如何设置手持GPS相关参数 (一)手持GPS的主要功能 手持GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS 智能手机为终端的GIS系统,是继桌面Gis、WebGis之后又一新的技术热点。目前功能最强的手持GPS,其集成GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、USB/RS232端口于一身,能全面满足您的使用需求。 主要功能:移动GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些内置全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持GPS的技术参数 因为GPS卫星星历是以WGS84大地坐标系为根据建立的,手持GPS单点定位的坐标属于WGS84大地坐标系。WGS84坐标系所采用的椭球基本常数为:地球长半轴a=6378137m;扁率F=1/298.257223563。 常用的北京54、西安80及国家2000公里网坐标系,属于平面高斯投影坐标系统。北京54坐标系,采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:地球长半轴a=6378245m;扁率F=1

/298.2。西安80坐标系,其椭球的参数为:地球长半轴 a=6378140m;扁率F=1/298.257。国家2000坐标系,其椭球的参数为:地球长半轴a=6378137m;扁率F=1/298.298.257222101。 (三)手持GPS的参数设置 要想测量点位的北京54、西安80及国家2000公里网高精度坐标数据,必须学习坐标转换的基础知识,并分别科学设置手持GPS的各项参数。 首先,在手持式GPS接收机应用的区域内(该区域不宜过大),从当地测绘部门收集1至两个已知点的北京54、西安80或国家2000坐标系统的坐标值;然后在对应的点位上读取WGS84坐标系的坐标值;之后采用《万能坐标转换》软件,可计算出DX、DY、DZ的值。 将计算出的DX、DY、DZ三个参数与DA、DF、中央经线、投影比例、东西偏差、南北偏差等六个常数值输入GPS接收机。将GPS接收机的网格转换为“UserGrid”格式,实际测量已知点的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进行比较,二者相差较大时要重新计算或查找出现问题的原因。详细过程可查看《万能坐标转换》软件的【手持GPS参数设置】界面。 (四)自定义坐标系统(User)投影参数的确定

南方gps坐标转换参数设置

注:新版本已将"控制点坐标库"改为"求转换参数",实现的功能不变! 一、控制点坐标库的应用 GPS 接收机输出的数据是WGS-84 经纬度坐标,需要转化到施工测量坐标,这就需要软件进行坐标转换参数的计算和设置,控制点坐标库就是完成这一工作的主要工具。 控制点坐标库是计算四参数和高程拟合参数的工具,可以方便直观的编辑、查看、调用参与计算四参数和高程拟合参数的校正控制点。 利用控制点坐标库可以计算GPS 原始记录坐标到当地施工坐标的参数。在计算之前,需新建工程,输入当地的施工坐标系及中央子午线、投影高等。假设我们利用A、B 这两个已知点来求取参数,那么首先要有A、B 两点的GPS 原始记录坐标和测量施工坐标。 A、B 两点的GPS原始记录坐标的获取有两种方式: 一种是布设静态控制网,采用静态控制网布设时后处理软件的GPS 原始记录坐标; 另一种是GPS 移动站在没有任何校正参数起作用的Fixed(固定解)状态下记录的GPS 原始坐标。 1.1、校正参数 操作:工具→校正向导或设置→求转换参数(控制点坐标库) 所需已知点数:1个 校正参数是工程之星软件很特别的一个设计,它是结合国内的具体测量工作而设计的。校正参数实际上就是只用同一个公共控制点来计算两套坐标系的差异。根据坐标转换的理论,一个公共控制点计算两个坐标系误差是比较大的,除非两套坐标系之间不存在旋转或者控制的距离特别小。因此,校正参数的使用通常都是在已经使用了四参数或者七参数的基础上才使用的。

在工程之星新版本中,在校正向导中已经取消了两点校正功能,如果两个以上的已知点请使用控制点坐标库来求取参数。习惯使用校正向导的人请尽快学习新版本。 1.2 四参数 操作:设置→求转换参数(控制点坐标库) 四参数是同一个椭球内不同坐标系之间进行转换的参数。在工程之星软件中的四参数指的是在投影设置下选定的椭球内GPS 坐标系和施工测量坐标系之间的转换参数。工程之星提供的四参数的计算方式有两种,一种是利用“工具/参数计算/计算四参数”来计算,另一种是用“控制点坐标库”计算。。需要特别注意的是参予计算的控制点原则上至少要用两个或两个以上的点,控制点等级的高低和分布直接决定了四参数的控制范围。经验上四参数理想的控制范围一般都在5-7 公里以内。 四参数的四个基本项分别是:X 平移、Y 平移、旋转角和比例。 从参数来看,这里没有高程改正,所以建议采用“控制点坐标库”来求取参数,而根据已知点个数的不同所求取的参数也会不同,具体有以下几种。 1.2.1 四参数+校正参数 所需已知点个数:2个

大地坐标与直角空间坐标转换计算公式

大地坐标与直角空间坐标转换计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1 *2-= W a N B W e = -=22 sin *1( 西安80椭球参数: 长半轴a=6378140±5(m )

短半轴b=6356755.2882m 扁 率α=1/298.257 3 参心空间直角坐标转换参心大地坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ))1(**)() (*arctan() arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 52224253 2236 425442232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++ =) 3、高斯投影反算公式:

国家坐标系与地方独立坐标系坐标转换方法与计算2(1)

国家坐标系与地方独立坐标系坐标转换方法与计算 作者姓名:岳雪荣 学号: 20142202001 系(院)、专业:建筑工程学院、测绘工程14-1 2016 年 6 月 6 日

国家坐标系与地方独立坐标系坐标转换方法与计算 (建筑工程学院14测绘工程专业) 摘要 随着我国经济的发展的突飞猛进,对测量精度要求的建设也越来越高,就是以便满足实际运行要求。但在一些城市或大型工程建设中可能刚好在两个投影带的交界处,布设控制网时如果按照标准的3度或者1.5度带投影,投影变形会非常大,给施工作业带来不便,此时需要建立地方独立坐标系。认识国家坐标系的转换和地方独立坐标系统有一定的现实意义,如何实现两者的换算,一直是关注的工程建设中的热点问题。因此,完成工程测量领域国家坐标定位成果与地方独立坐标成果的转换问题,以适应城市化和实际工程的需要。 关键词:国家坐标;独立坐标;坐标转换

目录 1绪论 1.1背景和意义 1.2主要内容 1.3解决思路和方法 2 建立独立坐标系的方法3 2.1常用坐标系统的方法介绍 2.2确定独立坐标系的三大要素9 2.3减少长度变形的方法10 2.4建立独立坐标系的意义12 3 国家坐标系与地方坐标系的坐标转换13 3.1常用坐标系的坐标转换模型13 3.2投影面与中央子午线及椭球参数的确定14 3.3国家坐标与地方坐标的转换思路15 4算例分析17 结论20 参考文献错误!未定义书签。

1绪论 1.1背景和意义 随着社会的经济快速发展,尤其是近十多年来空间测量技术突飞猛进,得到了长足的发展,其精度也大幅提高。从测量的发展史来看,从简单到复杂,从人工操作到测量自动化、一体化,从常规精度测量到高精度测量,促使大地坐标系有参心坐标系到大地坐标系的转化和应用。大地测量工作已有传统的二维平面坐标向三位立体空间坐标转化,逐步形成四维空间坐标系统。 在测绘中,地方独立坐标系和国家坐标系为平面坐标系的两种坐标系统。对于工程测量和城市建设过程,建设区域不可能都有合适的投影子午线,势必可能有所差异,这样一来作业区域的高程和坐标或者是工程关键区域的高程和坐标能够与国家大地基准的参考椭球有较大的出入,在这种情况下,根据不同的投影区国家坐标系统,可能就会出现投影变形导致严重错误。建立地方独立坐标系统来降低高程归化影响和是归化投影变形,误差控制在一个小范围的数据计算和实际大致相符,不需要任何修改,从而可以满足工程建设和实际应用。 就当前而言,测量工作重要的触及应用三种常用的大地坐标系统,即为地方独立坐标系,地心坐标系,参心坐标系 [1]。地心坐标系:以地球质心为根据建立的坐标系,包括CGCS2000国家大地坐标系,GPS平差后的WGS-84坐标系等。参心坐标系:参心坐标系是以参考椭球为基准的大地坐标系,包括54北京坐标系和80西安坐标系等。独立坐标系:以自己情况而定的独立坐标,采用新椭球,投影到高斯平面上,计算参数,在结合相关数据解算得到,如城市建设坐标系。它们统称为地固坐标系统。有机结合在一起对于整个坐标系统来说具有很大的应用价值,解决了实际生活中各种的工程测量问题,如土地申报工程,矿产调查工程,全国土地调查工程等等。根据现在的经济建设情况,我们应该结合实际,展开建立国家大地坐标与地方独立坐标的研究工作是非常必要的。这一点也是目前需要解决的问题。 为了更方面的需求和发展,也使得更好地创建国家坐标系与地方独立坐标系的关系。在这里引入了”GPS坐标”这个概念。在这里我们用以工程测量,成为大型工程建设控制网和城建控制网的主要手段。基以GPS坐标系建立的精度高的独立坐标系,将方便于GPS较高精确的、高效的获取城建坐标和高程需求,有利于GPS与GIS的有机结合,进一步提升城市的综合能力,加速城市的现代化建设,对工程建设具有巨大的辅助作用[2]。根据GPS坐标系建立的地方独立坐标系是未来的希望。

手持GPS全参数设置及全国各地坐标转换全参数.docx

实用标准文档 如何设置手持 GPS 相关参数及全国各地坐标转换参数 一、如何设置手持GPS 相关参数 (一)手持 GPS的主要功能 手持 GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS智能手机为终端的GIS系统,是继桌面 Gis、WebGis 之后又一新的技术热点。目前功能最强的手持GPS,其集成 GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、 USB/RS232 端口于一身,能全面满足您的使用需求。 主要功能:移动 GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测 量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些内置 全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持 GPS的技术参数 因为 GPS卫星星历是以 WGS84 大地坐标系为根据建立的,手持 GPS单点定位 的坐标属于 WGS84 大地坐标系。 WGS84 坐标系所采用的椭球基本常数为:地球长半轴a=6378137m ;扁率 F=1 /298.257223563 。 常用的北京 54 、西安 80 及国家 2000 公里网坐标系,属于平面高斯投影坐标系统。北京 54 坐标系,采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:地球长半 轴a=6378245m;扁率F=1/298.2。西安80坐标系,其椭球的参数为:地球长半 轴a=6378140m;扁率F=1/298.257。国家2000坐标系,其椭球的参数为:地球长半轴 a=6378137m;扁率F=1/298. 257222101。 (三)手持 GPS的参数设置

要想测量点位的北京 54 、西安 80 及国家 2000 公里网高精度坐标数据,必须学 习坐标转换的基础知识,并分别科学设置手持 GPS的各项参数。 首先,在手持式 GPS接收机应用的区域内 (该区域不宜过大 ),从当地测绘部门收 集 1至两个已知点的北京 54 、西安 80 或国家 2000 坐标系统的坐标值;然后在对应的 点位上读取WGS84 坐标系的坐标值;之后采用《万能坐标转换》软件,可计算出DX 、DY、 DZ 的值。 将计算出的 DX 、 DY、 DZ 三个参数与 DA 、DF、中央经线、投影比例、东西偏差、南北偏差等六个常数值输入GPS接收机。将 GPS接收机的网格转换为 “UserGrid ”格式,实际测量已知点的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进行比较,二者相差较大时要重新计算或查找出现问题的原因。详细 过程可查看《万能坐标转换》软件的【手持GPS参数设置】界面。 (四)自定义坐标系统(User )投影参数的确定 1、自己观测计算 新机拿到手之后,供应商都给提供一个投影参数,这对于要求不高的一般用户 来说基本可以满足工作需要,而对于一些专业用户来说,就要自己来测算参数。一 般型号的导航型手持GPS自定义坐标系统( User )投影参数设置界面都提供了五个 变量(△X、△Y、△Z、△A 、△F)需要设置,而实际工作中,后两个参数(△A 、△F)针对某一坐标系统来说为固定参数(北京 54 坐标系△A=-108 、△F=0.0000005 ),无需改动,需要自己测算的参数主要为前三个(△ X、△Y、△Z),一般称为三参数。 2、经验坐标

坐标转换三参数计算器使用说明

坐标转换三参数计算器使用说明 4.0升级及使用说明: 1、增加了批量处理数据功能。 2、经纬度数据与直角坐标数据可混合输入(经纬度格式:DDD.MMSS,109度04分08.94343秒表示为109.040894343,直角坐标格式单位为米,如X为1234567.89,Y为123456.78,Y坐标无带号)。 3、批量处理数据文件为文本文件,格式为严格每行4个数据,以逗号或空格分开。 点号1,X坐标(或为纬度),Y坐标(或为经度),高程 4、输出文件为文本文件,格式为: 点号1,转换前的X坐标(或为纬度),Y坐标(或为经度),高程 > 转换后的X坐标(或为纬度),Y坐标(或为经度),高程 5、未注册软件无批量处理功能,部分参数隐形显示,但内部坐标转换仍可正常进行。 工作界面:

=========================================== 3.0使用说明 本软件分成上下二部分,上半部为在两个不同椭球体间求坐标转换的三参数,下半部为在两个不同椭球体间的坐标转换。在两个不同椭球体间进行坐标转换首先必需知道坐标转换参数,通常有三参数和七参数转换二种方式,本程序提供三参数转换方式。 例1:我要求手持GPS的北京54(或西安80)坐标转换参数。 向有关部门收集所在工作区内已知点(只要一个控制点)的WGS84坐标系中的经度、纬度、高程,以及同点的北京54(或西安80)坐标系中的直角坐标,即可进行本软件操作了。如某一个控制点的WGS84经度、纬度、高程为: 109度34分28.94343秒, 31度02分25.65526秒, 104.967米该控制点北京54坐标为:

坐标转换计算方式

72绝对坐标转换为相对坐标在直线段施工测量中,可以把绝对坐标转换为相对坐标进行放线测量,此方法比较快捷实用。 如,已知直线段线路中线A点的里程与绝对坐标X1,Y1.和其直线A点至线路前进方向的方位角a。同样已知附近的控制点Q的绝对坐标QX1,QY1.那么现在为了使用方便,要将其Q点的绝对坐标转换为相对于直线段的相对坐标,计算方法如下: 根据以上所知,根据坐标发算可以得出点A至控制点Q 的距离为L,以及点A至控制点Q方向的方位角简称R。已知线路中心线前进方向的方位角a,那么由点A至线路前进方向,和点A至控制点Q方向就形成一个夹角r,r=R-a。现在做控制点到线路中线的垂直线Y,(也就是所谓的Y坐标数据)。根据直角三角形计算方式得出Y=SIN r×L(L,是点A至点Q的距离)那么相对于线路X的坐标计算方式(X坐标表示里程)。X=COSr×L+A点里程。 即得出控制点Q相对于直线的相对坐标。 例题:例如,ZDK400至ZDK700为直线段,已知里程400的线路中心线坐标X=22580.40165 Y=27356.42893 里程700的线路中心线坐标X=22558.58105 Y=27655.63522 欲求J2点X=22562.1789 Y=27510.4874相对于400至700的相对坐标,图示如下:

解:根据已知,经过坐标反算可以求得点A至点B的坐标方位角为94 10 16 AB距离为300。 A 至D的坐标方位角为96 44 45.26 距离为155.132 那么可求得角FAD=2 34 29.26 因现已知AD=155.132 角FAD=2 24 29.26 根据三角函数可计算DF=sinfa d×AD=0.045×155.132=6.969 AF=cosfad×AD=0.999×155.132=154.975

坐标转换问题

坐标转换问题 坐标转换问题的详细了解对于测量很重要,那么请和我一起来讨论这个问题。 首先,我们要弄清楚几种坐标表示方法。大致有三种坐标表示方法:经纬度和高程,空间直角坐标,平面坐标和高程。我们通常说的WGS-84坐标是经纬度和高程这一种,北京54坐标是平面坐标和高程着一种。 现在,再搞清楚转换的严密性问题,在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换这时不严密的。举个例子,在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。 那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法,即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点,如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K 视为0,所以三参数只是七参数的一种特例。在本软件中提供了计算三参数、七参数的功能。 在一个椭球的不同坐标系中转换需要用到四参数转换,举个例子,在深圳既有北京54坐标又有深圳坐标,在这两种坐标之间转换就用到四参数,计算四参数需要两个已知点。本软件提供计算四参数的功能。 现在举个例子说明:在珠江有一个测区,需要完成WGS-84坐标到珠江坐标系(54椭球)的坐标转换,整个转换过程是这样的:

COORD软件使用说明: COORD软件采用文件化管理,用户可以将一种转换作为一个文件保存下来,下次使用时从文件菜单中选择打开这个文件来调用所有已有的转换参数。 实例一: 转换要求: 用户在一个佛山测区内使用RTK GPS接收机接受了一些点的WGS-84的坐标,现在希望将其转换为北京54和佛山坐标系下的坐标。用户有佛山测区的一些控制点,这些控制点有WGS-84坐标,也有北京-54坐标也有佛山坐标。 分析: WGS-84坐标和北京54坐标是不同两个椭球的坐标转换,所以要求得三参数或七参数,而北京54和佛山坐标都是同一个椭球,所以他们之间的转换是地方坐标转换,需要求得地

手持GPS参数设置及全国各地坐标转换参数17597

如何设置手持GPS相关参数及全国各地坐标转换参数、如何设置手持GPS相关参数 (一)手持GPS的主要功能 手持GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS 智能手机为终端的GIS系统,是继桌面Gis、WebGis之后又一新的技术热点。目前功能最强的手持GPS,其集成GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、USB/RS232端口于一身,能全面满足您的使用需求。 主要功能:移动GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些内置全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持GPS的技术参数因为GPS卫星星历是以WGS84大地坐标系为根据建立的,手 持GPS单点定位的坐标属于WGS84大地坐标系。WGS84坐标系 所采用的椭球基本常数为:地球长半轴a=6378137m;扁率F=1 / 298.257223563。 常用的北京54、西安80及国家2000公里网坐标系,属于平面 高斯投影坐标系统。北京54坐标系,采用的参考椭球是克拉索夫 斯基椭球,该椭球的参数为:地球长半轴a=6378245m;扁率F=1

/298.2。西安 80坐标系,其椭球的参数为:地球长半轴 a=6378140m ;扁率F=1 /298.257。国家2000坐标系,其椭球的参 数为:地球长半轴 a=6378137m ;扁率 F=1 /298.298.257222101。 (三)手持GPS 的参数设置 要想测量点位的北京 54、西安80及国家2000公里网高精度坐 标数据,必须学习坐标转换的基础知识,并分别科学设置手持 GPS 的各项参数。 首先,在手持式GPS 接收机应用的区域内(该区域不宜过大), 从当地测绘部门收集 1至两个已知点的北京 54、西安80或国家 2000坐标系统的坐标值;然后在对应的点位上读取 WGS84坐标 系的坐标值;之后采用《万能坐标转换》软件,可计算出 DY 、DZ 的值。 将计算出的DX 、DY 、DZ 三个参数与DA 、DF 、中 投影比例、东西偏差、南北偏差等六个常数值输入 GPS 接收机。 将GPS 接收机的网格转换为“ UserGrid ”格式,实际测量已知点 的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进 行比较, 二者相差较大时要重新计算或查找出现问题的原因。 细过程可查看《万能坐标转换》软件的【手持 GPS 参数设置】界 面。 (四)自定义坐标系统(User )投影参数的确定 DX 、 央经线、

手持GPS参数设置及全国各地坐标转换参数

如何设置手持GPS相关参数及全国各地坐标转换参数 一、如何设置手持GPS相关参数 (一)手持GPS的主要功能 手持GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS智能手机为终端的GIS 系统,是继桌面Gis、WebGis之后又一新的技术热点。目前功能最强的手持GPS,其集成GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、USB/RS232端口于一身,能全面满足您的使用需求。 主要功能:移动GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些置全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持GPS的技术参数 因为GPS卫星星历是以WGS84坐标系为根据建立的,手持GPS单点定位的坐标属于WGS84坐标系。WGS84坐标系所采用的椭球基本常数为:地球长半轴a=6378137m;扁率F=1/298.257223563。 常用的54、80及国家2000公里网坐标系,属于平面高斯投影坐标系统。54坐标系,采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:地球长半轴 a=6378245m;扁率F=1/298.2。80坐标系,其椭球的参数为:地球长半轴a=6378140m;扁率F=1/298.257。国家2000坐标系,其椭球的参数为:地球长半轴a=6378137m;扁率F=1/298. 257222101。 (三)手持GPS的参数设置

要想测量点位的54、80及国家2000公里网高精度坐标数据,必须学习坐标转换的基础知识,并分别科学设置手持GPS的各项参数。 首先,在手持式GPS接收机应用的区域(该区域不宜过大),从当地测绘部门收集1至两个已知点的54、80或国家2000坐标系统的坐标值;然后在对应的点位上读取WGS84坐标系的坐标值;之后采用《万能坐标转换》软件,可计算出DX、DY、DZ 的值。 将计算出的DX、DY、DZ三个参数与DA、DF、中央经线、投影比例、东西偏差、南北偏差等六个常数值输入GPS接收机。将GPS接收机的网格转换为“UserGrid”格式,实际测量已知点的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进行比较,二者相差较大时要重新计算或查找出现问题的原因。详细过程可查看《万能坐标转换》软件的【手持GPS参数设置】界面。 (四)自定义坐标系统(User)投影参数的确定 1、自己观测计算 新机拿到手之后,供应商都给提供一个投影参数,这对于要求不高的一般用户来说基本可以满足工作需要,而对于一些专业用户来说,就要自己来测算参数。一般型号的导航型手持GPS自定义坐标系统(User)投影参数设置界面都提供了五个变量(△X、△Y、△Z、△A、△F)需要设置,而实际工作中,后两个参数(△A、△F)针对某一坐标系统来说为固定参数(54坐标系△A=-108、△F=0.0000005),无需改动,需要自己测算的参数主要为前三个(△X、△Y、△Z),一般称为三参数。

坐标计算公式

坐标计算公式 一、计算公式 1、圆曲线坐标计算公式β=180°/π×L/R (L= βπ R/180°)弧长公式β为圆心角 △X=sinβ×R △Y=(1-cosβ)×R C= 弦长 X=X1+cos (α ± β/2)×C Y=Y1+sin (α ± β/2)×C β代表偏角,(既弧上任一点所对的圆心角)。β/2是所谓的偏角(弦长与切线的夹角)△X、 △Y代表增量值。 X、Y代表准备求的坐标。 X1、Y1代表起算点坐标值。 α代表起算点的方位角。 R 代表曲线半径 2、缓和曲线坐标计算公式 β= L2/2RLS ×180°/π C= L - L5/90R2LS2 X=X1+cos (α ± β/3)×C Y=Y1+sin (α ± β/3)×C L代表起算点到准备算的距离。 LS代表缓和曲线总长。 X1、Y1代表起算点坐标值。 3、直线坐标计算公式

X=X1+cosα×L Y=Y1+sinα×L X1、Y1代表起算点坐标值 α代表直线段方位角。 L代表起算点到准备算的距离。 4、左右边桩计算方法 X边=X中+cos(α±90°)×L Y边=Y中+sin(α±90°)×L 在计算左右边桩时,先求出中桩坐 标,在用此公式求左右边桩。如果 在线路方向左侧用中桩方位角减去 90°,线路右侧加90°,乘以准备算 的左右宽度。 二、例题解析 例题:直线坐标计算方法 α(方位角)=18°21′47″ DK184+714.029 求DK186+421.02里程坐标X1=84817.831 Y1=352.177 起始里程解:根据公式X=X1+cosα×L X=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901 Y=Y1+sinα×L Y=352.177+sin18°21′47″×(86421.02—84714.029)=889.943 求 DK186+421.02里程左右边桩,左侧3.75m,右侧7.05m. 解:根据公式线路左侧计算:

MAPGIS中坐标转换中七参数法

MAPGIS 中坐标转换中七参数法 京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,丫平移,Z平移,X旋转(WX,丫旋转(WY,Z旋转(WY,尺度变化(DM。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面具体的步骤: 启动“投影变换模块”,单击“文件”菜单下“打开文件”命 令,将演示数据“演示数据_北京54.WT、“演示数据_北京 54.WL、“演示数据—北京54.WP打开。1、单击“投影转换” 菜单下“S坐标系转换”命令,系统弹出“转换坐标值” “话框⑴、在“输入”一栏中,坐标系设置为“北京54坐标系”,单位设置为“线类单位—米”;⑵、在“输出”一栏中,坐标系设置为“西 安80坐标系”,单位设置为“线类单位—米”;⑶、在“转换方法”一栏中,单击“公共点操作求系数”项;⑷、在“输入”一栏中, 输入北京54坐标系下一个公共点的(x、y、z),如图2所示;⑸、在“输出”一栏中,输入西安80坐标系下对应的公共点的(x、y、z), 如图2所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表示输入了一个公共点对,如图2所示;⑺、依照相同的方法,再输入另外的2个公共点对;⑻、在“转换方法”一

栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、 单击“求转换系数”菜单下“求转换系数”命令,系统根据输入的3个公共点对坐标自动计算出7个参数,如图3所示,将其记录下来;2、单击“投影转换”菜单下“编辑坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4所示;在“坐标系选项”一栏中,设置各项参数如下:源坐标系:北京54坐标系;目的坐标系:西安80坐标系;转换方法:七参数布尔莎模型;长度单位:米;角度单位:弧度;然后单击“添加项”按钮,则在窗口左边的“不同椭球间转换”列表中将该转换关系列出;在窗口下方的“参数设置”一栏中,将上一步得到的七个参数依次输入到相应的文本框中,如图4所示;单击“修改项”按钮,输入转换关系,并单击“确定”按钮;接下来就是文件投影的操作过程了。 3、单击“投影转换”菜单下“ MAPGI毀影转换/选转换线文件”命令,系统弹出“选择文件”对话框 选中待转换的文件“演示数据_北京54.WL',单击“确定”按 钮; 4、设置文件的Tic点,在“投影变换”模块下提供了两种方法:手工设置和文件间拷贝,这里不作详细的说明; 5、单击“投影转换”菜单下“编辑当前投影参数”命令,系统弹出 “输入投影参数”对话框,如图6所示,根据数据的实际情况来设置 其地图参数坐标系类型:大地坐标系 椭球参数:北京54投影类型:高斯-克吕格投影比例尺分母:1坐标单

关于三维坐标转换参数的讨论

关于三维坐标转换参数的讨论

关于三维坐标转换参数的讨论 摘要:首先对坐标转换的物理意义进行解释,又把传统3个旋转角参数用反对称矩阵的3个元素代替,推出用3个和4个公共点直接计算转换参数的严密公式,在此基础上推导出严密的线性化公式。由于不用进行三角函数计算,只用简单加减乘除,也不用迭代计算,所以该模型计算速度快。 关键词:三维坐标转换;转换参数;转换矩阵;反对称矩阵;罗德里格矩阵 一、引言 三维直角坐标转换中,采用7参数Bursa2Wolf 模型、Molodensky 模型和武测模型[1 ] ,当在两坐标系统下有3 个公共点,就可惟一解算出7个转换参数;多余3个公共点时,就要进行平差计算,转换参数的初值(特别是旋转角) 的大小,直接影响平差系统稳定性和计算速度,有时使得解算的参数均严重偏离其值[2 ] 。随着移动测图系统(Mobile Mapping System ,简称MMS) 技术的成熟和应用,对运动载体(飞机、轮船、汽车等) 姿态的测量( GPS + INS) 也越来越多[3~5 ] ,任意角度的3 维坐标转换计算也越来越多。在平台上安装3 台或4 台GPS 接收机,来确定运动载体的位置和空间姿态,这时的旋转角可以说是任意的,取值范围是- 180°至180°,就需要准确计算转换参数模型,适应于任意旋转角的坐标转换。 本文在解释坐标转换的物理意义的基础上,导出3 维坐标转换7

参数直接计算的模型,以旋转矩阵的确定为核心,导出了3 点法和4 点法(两坐标系统下公共点数) ,用反对称矩阵和罗德里格矩阵性质推出的公式严密,该模型计算速度快。 二、三维坐标转换的物理意义和数学模型 1. 物理意义 如图1 所示,在两坐标系统下有4个公共点,在不同坐标系统内, 看成四面的刚体, 如图1(a) , (b)坐标转换的物理意义就是通过平移、旋转和缩放,使两个刚体大小和形状完全相同。具体过程是,设公共点1 为参考点,将图1 (b) 坐标轴和刚体平移,与对应的图1 (a) 刚体的点1 重合,如图1 (c) , 平移量为[ u v w ]T;然后以点1 为顶点,绕3 轴旋转,使两坐标系统的坐标轴平行, 以参考点为顶点的边重合,其他各边平行,两刚体是相似体,只是大小不同,如图1 ( d) ; 最后进行缩放, 使两刚体大小也相同。这样两坐标系统和3 个轴重合,原点统一,从而形成坐标系统转换。

坐标换算公式

关于A u t o C A D在变电所工程测量定位中的一些应用在变电所土建总平面图上,所内各建(构)筑物的平面位置系用施工坐标系和测量坐 标系分别表示的。变电所的施工坐标系的原点一般虚设在变电所围墙的西南角上,从而使 所内所有建(构)筑物的坐标皆为正值;而整个变电所的整体平面位置则用测量坐标系来 表示,测量坐标系统系平面直角坐标,一般有国家坐标系统、城市坐标系统等。所以在我 们进行变电所工程定位及所内施工控制网的布设时就需要将施工坐标系统与测量坐标系统 进行转换计算。 在我们以往的工程施工中,较为常用的是采用施工坐标系统与测量坐标系统的转换公 式进行换算,但是这种较为繁琐的公式计算,包括距离计算、角度计算,工作量大,且很 容易出现计算错误或计算精度达不到施工要求的问题。现在我向大家介绍一种无需进行公 式计算,仅使用Auto CAD进行变电所两种坐标系统自由转换的方法,我们以110kV宁阳变 电所工程的测量定位为例,分别采用上述两种方法进行计算、比较。 根据《总平面布置图》宁阳变电所的测量坐标系统是1954年的北京坐标系。所区建(构)筑物采用施工坐标系统,取变电所西南角围墙轴线交点为施工坐标系的原点(A=0.00 B=0.00),其中A=0.00相当于X0=3386346.750m,B=0.00相当于Y0=496024.938m,A轴与指 北针的夹角为北偏西18°。设计院交桩记录中给出的三个城市测量坐标控制点分别为:A1(X1=3386375.145m Y1=496019.325m)、A2(X2=3386418.782m Y2=496011.617m)、A3(X3=3386462.756m Y3=495977.459m)。在实际工程施工中需要根据施工场地的面积、建(构)筑物的位置及实际施工需要,布设四个控制桩点作为施工控制网:K1(A=48.00 B=10.00)、K2(A=48.00 B=38.00)、K3(A=77.00 B=10.00)、K4(A=77.00 B=38.00)。 为了测定上述四个主控网控制桩点,则需要根据设计院提供的测量控制桩点进行坐标 换算,从而在同一坐标系中进行距离及角度计算。由于两个坐标系的旋向不同,则施工坐 标系与测量坐标系之间的换算关系式为: X=X0+A*COSθ-B*SINθ Y=Y0+A*SINθ+B*COSθ 式中:θ=-18° 代入坐标数据 K1: X1=3386346.750+48.00×COS(-18°)-10.00×SIN(-18°)=3386395.491 Y1=496024.938+48.00×SIN(-18°)+10.00×COS(-18°)=496019.616

坐标系转换问题及转换参数的计算方法

坐标系转换问题及转换参数的计算方法 对于坐标系的转换,给很多GPS的使用者造成一些迷惑,尤其是对于刚刚接触的人,搞不明白到底是怎么一回事。我对坐标系的转换问题,也是一知半解,对于没学过测量专业的人来说,各种参数的搞来搞去实在让人迷糊。在我有限的理解范围内,我想在这里简单介绍一下,主要是抛砖引玉,希望能引出更多的高手来指点迷津。 我们常见的坐标转换问题,多数为WGS84转换成北京54或西安80坐标系。其中WGS84坐标系属于大地坐标,就是我们常说的经纬度坐标,而北京54或者西安80属于平面直角坐标。对于什么是大地坐标,什么是平面直角坐标,以及他们如何建立,我们可以另外讨论。这里不多罗嗦。 那么,为什么要做这样的坐标转换呢? 因为GPS卫星星历是以WGS84坐标系为根据而建立的,我国目前应用的地形图却属于1954年北京坐标系或1980年国家大地坐标系;因为不同坐标系之间存在着平移和旋转关系(WGS84坐标系与我国应用的坐标系之间的误差约为80),所以在我国应用GPS进行绝对定位必须进行坐标转换,转换后的绝对定位精度可由80提高到5-10米。简单的来说,就一句话,减小误差,提高精度。 下面要说到的,才是我们要讨论的根本问题:如何在WGS84坐标系和北京54坐标系之间进行转换。 说到坐标系转换,还要罗嗦两句,就是上面提到过的椭球模型。我们都知道,地球是一个近似的椭球体。因此为了研究方便,科学家们根据各自的理论建立了不同的椭球模型来模拟地球的形状。而且我们刚才讨论了半天的各种坐标系也是建立在这些椭球基准之上的。比如北京54坐标系采用的就是克拉索夫斯基椭球模型。而对应于WGS84坐标系有一个WGS84椭球,其常数采用IUGG第17届大会大地测量常数的推荐值。WGS84椭球两个最常用的几何常数:长半轴:6378137±2(m);扁率:1:298.257223563 之所以说到半长轴和扁率倒数是因为要在不同的坐标系之间转换,就需要转换不同的椭球基准。这就需要两个很重要的转换参数dA、dF。 dA的含义是两个椭球基准之间半长轴的差;dF的含义是两个椭球基准之间扁率倒数的差。 在进行坐标转换时,这两个转换参数是固定的,这里,我们给出在进行84—〉54,84—〉80坐标转换时候的这两个参数如下: WGS84>北京54:DA:-108;DF:0.0000005 WGS84>西安80:DA: -3 ;DF: 0 椭球的基准转换过来了,那么由于建立椭球的原点还是不一致的,还需要在dXdYdZ这三个空间平移参量,来将两个不同的椭球原点重合,这样一来才能使两个坐标系的椭球完全转换过来。而由于各地的地理位置不同,所以在各个地方的这三个坐标轴平移参量也是不同的,因此需要用当地的已知点来计算这三个参数。具体的计算方法是: 第一步:搜集应用区域内GPS“B”级网三个以上网点WGS84坐标系B、L、H值及我国坐标系(BJ54或西安80)B、L、h、x值。(注:B、L、H分别为大地坐标系中的大地纬度、大地经度及大地高,h、x分别为大地坐标系中的高程及高程异常。各参数可以通过各省级测绘局或测绘院具有“A”级、“B”级网的单位获得。) 第二步:计算不同坐标系三维直角坐标值。计算公式如下: X=(N+H)cosBcosL

手持GPS福建省坐标转换参数

福建省地区GPS坐标转换参数 福建省GPS坐标转换参数: 中央经线:E117或E114或E111 投影比例:+1.0000000 东西偏差:+500000.0 南北偏差:0.0 WGS-84转北京54坐标参数: 序 DX DY DZ DA DF 适宜地区 号 1 -7 -115 -48 -108 0.0000005 福州、宁德 2 -19 -116 -57 -108 0.0000005 漳州、泉州、厦门 3 -19 -120 -47 -108 0.0000005 南平、三明 4 -20 -123 -42 -108 0.000000 5 龙岩 5 -21 -120 -54 -108 0.0000005 莆田 备注:“坐标转换” 开机,按两秒“菜单”键进入主菜单页面,选择“设置”按“输入”键确定,选择坐标页面,在坐标系统下拉框中选择:“USER”按“输入”键确定,在坐标格式下拉框中选择:“USER UTM GRID”(自定义坐标值)。按“菜单”键,选择“自定义坐标格式”按“输入”进入自定义坐标格式页面,输入相关数值。按“输入”键储存,选择“自定义坐标系统”按“输入”进入,输入“DX.DY 等数值,按“输入”键储存即可。

手持GPS现有矿区转换参数: WGS-84转北京54坐标参数: 序 DX DY DZ DA DF 适宜地区 号 1 -22.5 -106.7 -49. 2 -108 0.0000005 尤溪峰岩矿区 2 -22.2 -112.7 -53.2 -108 0.0000005 将乐将溪井田 3 -21.1 -116.3 -50. 4 -108 0.000000 5 德化安石坑矿区 4 -22.4 -110.1 -47.7 -108 0.000000 5 清流仁场矿区 5 -21.1 -116.3 -50.4 -108 0.0000005 大田铭溪井田 6 -21. 7 -111.6 -48.7 -10 8 0.0000005 漳平员当井田 7 -106.7 -53.3 -0.1 -3 0 安溪角安(西安 80) 8 -21.5 -111.8 -51.5 -108 0.0000005 大田后洋

相关主题
文本预览
相关文档 最新文档