当前位置:文档之家› (精编资料推荐)Watesr G2-S UPLC-QTOF 液相色谱-高分辨质谱联用仪 操作规程

(精编资料推荐)Watesr G2-S UPLC-QTOF 液相色谱-高分辨质谱联用仪 操作规程

(精编资料推荐)Watesr G2-S UPLC-QTOF 液相色谱-高分辨质谱联用仪 操作规程
(精编资料推荐)Watesr G2-S UPLC-QTOF 液相色谱-高分辨质谱联用仪 操作规程

Waters UPLC-QTOF 高分辨液质联用仪

操作规程

一、仪器操作

1.准备工作

1)检查管道氮气、高纯氩气气路与压力是否正常。如不合适请调整气路与

气源。

2)检查应急供电UPS是否工作正常。如不合适请联系相关维修人员。

3)检查实验室环境,包括温度、湿度等是否正常。温度保持在21-25 oC,

一天内温度变化波动不超过5 oC;湿度保持在70%以下。如不合适请联

系相关维修人员

4)确认各流动相瓶内溶液体积大于瓶体积50%;有机流动相使用HPLC级

与HPLC级以上的乙腈与甲醇;离子对添加剂使用HPLC级与HPLC级

以上的甲酸、甲酸铵、乙酸铵等;高纯水存放时间不超过一周。

5)流动相中仅能加入5 mM浓度以下的挥发性缓冲盐,如甲酸铵、乙酸铵

等。

6)所有新配置的流动相均充分混匀后在超声10分钟,排除气泡。

2.开机过程:

1)打开电脑,输入密码: waters 进入windows的桌面。

2)打开液相各个模块的电源(没有顺序)。

3)打开氮气发生器的电源(或液氮瓶的开关),确证压力指示在100psi;打

开氩气减压阀确证压力指示在7psi。

4)打开MS tune窗口,点击右下角operate图标,右侧方块变绿色后仪器可

以使用。

5)在Inlet Method窗口中编辑液相方法并保存。

6)在Inlet Method窗口中,使用Start up System功能平衡液相系统。

7)在MS tune窗口中设置质谱的参数。(主要是MS tune/ESI界面中各种电

压,气体和温度)

8)在MS Console\Xevo QTOF\Intellistart窗口中完成:Creat calibration 和

Lockspray Setup两项内容,结果均应为Pass。

9)在MS method窗口中编辑质谱方法,确保调用最新的Lockspray方法和

Enable MS event。

10)在Masslynx的主界面上编辑进样序列(确保Sample name,ms method,

inlet method, bottle position and Injection volume都选择相应的参数)。

11)点击进样按钮开始进样。

3.待机过程:

1)待机前,将色谱流动相流路切换至90%乙腈水溶液,以0.3 mL/min流速

冲洗色谱柱20分钟。

2)在5分钟内将色谱流速从0.3 mL/min 缓慢降至0 mL/min。

3)打开MS Tune窗口,将质谱流路均切换至“Wash”模式,充分清洗质谱流

路。

4)点击“Stand by”按钮,仪器进入待机模式

4.长假关机过程:

1)打开MS tune窗口,点击Vacuum/Vent,在弹出的对话框中选择yes。

2)等待约5分钟。(在这个过程中应该能听到分子泵降速的声音,也可以观

察MS tune\View\vacuum, 三个Turbo speed的转速会逐渐下降,直至三

个分子泵的转速均降至5以下,表明真空已经关闭)。

3)关闭所有软件和电脑。

4)关闭液相所有模块的电源。

5)关闭质谱前面板的电源。

6)关闭氮气发生器的电源(或是液氮罐的开关)。

7)关闭氩气减压阀。

8)关机结束。

二、仪器维护

1.做完实验:将sample spray和lockspray用50:50=MeOH:H20冲洗防止毛细

管的堵塞;

2.平时放在source standby; 周末放在instrument standby;

3.偶尔检查真空泵油的液面位置;

4.废气排放空间通畅;

5.更换密封垫(建议一年一次),

三、质谱可能存在的问题与排查方法

1.可能存在的问题

1)灵敏度突然间降低

2)空白溶液背景很高吗

2.排查方法

1)检查喷雾是否稳定

2)检查各个温度,气体流速,电压

3)检查进样系统是否正常工作

4)检查LE溶液浓度是否正确,长时间放置则需要重新配制

5)检查Lockspray毛细管是否堵塞,是否漏液,喷针位置是否正常

6)准备好仪器序列号,拨打800-820-2676获取维修支持。

高效液相色谱法简介

高效液相色谱法简介 “色谱”一词是由俄国科学家斯威特提出的。色谱法是基于补充物质在相对运动物的两相之间分布时,物理或物理化学性质的微小的差异而使混合物相互分离的一类分离或分析方法。发展与上世纪初,飞速发展于五十年代,有超过30位科学家家因为它而获得诺贝尔奖,其有自己的理论和研究方法,同时也有众多的应用领域。 色谱法常见的方法有:柱色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。 柱色谱:柱色谱法是最原始的色谱方法,这种方法将固定相注入下端塞有棉花或滤纸的玻璃管中,将被样品饱和的固定相粉末摊铺在玻璃管顶端,以流动相洗脱。常见的洗脱方式有两种,一种是自上而下依靠溶剂本身的重力洗脱,一种是自下而上依靠毛细作用洗脱。收集分离后的纯净组分也有两种不同的方法,一种方法是在柱尾直接接受流出的溶液,另一种方法是烘干固定相后用机械方法分开各个色带,以合适的溶剂浸泡固定相提取组分分子。柱色谱法被广泛应用于混合物的分离,包括对有机合成产物、天然提取物以及生物大分子的分离。 薄层色谱:薄层色谱法是应用非常广泛的色谱方法,这种色谱方法将固定相图布在金属或玻璃薄板上形成薄层,用毛细管、钢笔或者其他工具将样品点染于薄板一端,之后将点样端浸入流动相中,依靠毛细作用令流动相溶剂沿薄板上行展开样品。薄层色谱法成本低廉操作简单,被用于对样品的粗测、对有机合成反应进程的检测等用途。

气相色谱:GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。气相色谱被广泛应用于小分子量复杂组分物质的定量分析。 高效液相色谱:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9-107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。高效液相色谱(HPLC)是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效

高效液相色谱仪操作步骤

高效液相色谱仪操作步骤: 1).过滤流动相,根据需要选择不同的滤膜(0.45um)。 2).对抽滤后的流动相进行超声脱气10-20分钟。 3).打开HPLC工作站(包括计算机软件和色谱仪),连接好流动相管道,连接检测系统。 4).进入HPLC控制界面主菜单,点击manual,进入手动菜单。 5).有一段时间没用,或者换了新的流动相,需要先冲洗泵和进样阀。冲洗泵,直接在泵的出水口,用针头抽取。冲洗进样阀,需要在manual菜单下,先点击purge,再点击start,冲洗时速度不要超过10 ml/min。 6).调节流量,初次使用新的流动相,可以先试一下压力,流速越大,压力越大,一般不要超过2000。点击injure,选用合适的流速,点击on,走基线,观察基线的情况。 7).设计走样方法。点击file,选取select users and methods,可以选取现有的各种走样方法。若需建立一个新的方法,点击new method。选取需要的配件,包括进样阀,泵,检测器等,根据需要而不同。选完后,点击protocol。一个完整的走样方法需要包括:a.进样前的稳流,一般2-5分钟;b.基线归零;c.进样阀的loading-inject转换;d.走样时间,随不同的样品而不同。 8).进样和进样后操作。选定走样方法,点击start。进样,所有的样品均需过滤。方法走完后,点击postrun,可记录数据和做标记等。全部样品走完后,再用上面的方法走一段基线,洗掉剩余物。 9).关机时,先关计算机,再关液相色谱。 10).填写登记本,由负责人签字。 注意事项: 1).流动相均需色谱纯度,水用20M的去离子水。脱气后的流动相要小心振动尽量不引起气泡。 2).柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。 3).所有过柱子的液体均需严格的过滤。

岛津LC-20A高效液相色谱仪操作规程

岛津高效液相色谱仪LC-20A操作规程 一、目的:为了安全、规、正确使用岛津LC-20A型高效液相色谱仪,特制订本操作规程。 二、围:仅适用于岛津LC-20A型高效液相色谱仪。 三、环境要求:温度4 ~35℃,相对湿度为40~80% ,最好是恒温、恒湿,远离高电干扰、高振动设备。 四、L C-20A高效液相色谱仪工作原理: 高效液相色谱仪的系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相),由于样品溶液中的各组分在两相中具有不同的分配系数, 在两相中作相对运动时, 经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别, 被分离成单个组分依次从柱流出, 通过检测器时,样品浓度被转换成电信号传送到工作软件,数据以图谱形式表现出来。 4.1高效液相色谱仪外观图: 图1:高效液相色谱仪外观图 开机顺序:A泵→B泵→柱温箱→自动进样器→检测器→系统控制器后→电脑显示器→主机(注:仪器各单元的开关均在左下角) 4.2高效液相色谱仪的基本流路:

五、样品准备: 5.1开机之前,准备好所用的流动相和样品,检查储液器的吸滤头是否在液面以下。流动相和样品必须通过0.45um过滤器过滤。 5.2 流动相:必须使用HPLC级或相当于该级别的流动相,并通过0.45um过滤器过滤。过滤后的流动相必须经过充分脱气,以除去其中溶解的气体O2等,如不脱气易产生气泡、基线噪声增加、灵敏度下降,甚至无法分析。 5.3 查看仪器使用记录,了解仪器当前状况。 图2:真空过滤器图3:超声波清洗器 5.4 样品前处理:样品也要尽可能清洁,可选用样品过滤器或样品预处理柱(SPE)对样品进行预处理。 图4 样品前处理 六、操作规流程: 工作软件操作流程概述:

高效液相色谱法备课资料

第二十章高效液相色谱法 Chapter 20 High performance liquid chromatography 本章讨论高效液相色谱法的主要类型和原理、固定相和流动相及其选择、高效液相色谱仪、高效液相色谱分析方法。本次课将重点讨论前半部分的内容,并注重与常规液相色谱、薄层色谱以及气相色谱的比较复习。 本章的结构编排比气相色谱法合理、流畅。 方法基本构架:经典LC【1964年Giddings发明了高效液相色谱法】 理论参考:GC 传统TLC: 1、缺乏强劲驱动力,达不到“HP”; 2、重现性较差; 3、缺乏通用灵敏的检测器; 4、由此造成的研究、生产投入的不足。 仪器化、自动化差,普及认知率相对低,恶性循环 HPLC: 1、以高压泵产生强劲驱动力,有了“HP”的基础; 2、ODS的问世(50%以上的应用) 3、仪器化、自动化,认知程度不断提高,良性循环(导致更多的优良的SP 的诞生、更灵敏更强大适用面更广的检测器的诞生、仪器性能更稳定更智能)HPLC cf经典LC 1、以高压泵产生强劲驱动力,快速高效(分钟计/小时计) 2、SP颗粒细、均匀,C项小,柱效高(<10um/>100um) *:TLC都是“离线检测”的方法,结果较粗,效率较低。 GC都是“在线检测”的方法,结果较精密,效率较高。 3、在线检测器种类更多、更灵敏、功能更强大、适用面更广 HPLC cf GC 1、适用样品种类多(80%的有机化合物) 【2、柱效、分析速度稍逊于GC】 3、不受试样挥发性低、热稳定性差的限制 4、HPLC选择MP的余地相对大,GC选择SP的余地相对大 目前HPLC已发展为分析领域一项最重要的分离分析方法,涉及各大行业的各类样品。在药学领域中,在生物样品、中药等复杂体系分析等方面举足轻重!

实例解析——高效液相色谱(hplc)

实例解析——高效液相色谱(HPLC) 一、原理 利用不同物质在两相中(液液、液固、离子交换、尺寸排阻)具有不同的分配系数,当二者相对运动时候,物质在两相中反复多次分配,从而使得物质得到完全分离 二、适用范围 高沸点、热不稳定的天然产物、生物大分子、高分子化合物、离子型样品、生化样品三、特点 高压、高效、高灵敏度 四、仪器组成 流动液贮存提供脱气,输液系统、进样系统、分离系统、检测系统,控制记录系统贮液瓶、高压泵、进样器、分离柱、检测器、记录仪 五、仪器选择 由实验条件确定是选用二元高压还是四元低压、一般来说,二元高压的准确度较高。四元低压是先将样品按比例混合再泵入,而二元高压是先泵入不同比例的溶剂再混合。确定采用的脱气系统,一般采用在线脱气。确定进样方式,人工手动六通阀进样,还是进样针自动进样,一个适用于少量样品,一个适用于大量样品。 选择检测器,如果是有较强的紫外吸收的可用紫外可见检测器(二极管阵列检测器),如果是芳香族化合物,可选用荧光检测器,对于离子可采用电导检测器。 六、实验条件优化 配置待测物质的标准溶液 1、色谱柱的确定 分析样本确定是采用何种类型的色谱柱 (1)分配色谱,两项间分配系数 流动相选用极性的物质(甲醇、乙腈、水)则固定相选择非极性物质。一般用 C18 ODS柱。 (2)吸附色谱, (3)离子交换色谱 各种离子与树脂上交换集团的交换能力不同。固定相:离子交换树脂,流动相 为无机酸、无机碱。常用于分离离子或者可解离的化合物 (4)排阻色谱法 配置含待测物质的标准品溶液,采用不同C18柱分离,检测,对照不同色谱图像,可得到分离效能最高的色谱柱 2、最佳流动相梯度洗脱程序的确定 梯度洗脱:按照一定的程度,不断改变流动相中个溶剂组成的比例以改变流动相的 极性。将色谱柱上不同的组分洗脱出来。 配置不同的梯度洗脱方案,用标准溶液进行试验,并选取能达到最高分离效能的梯 度洗过方案作为最佳流动相梯度洗脱程序 3、流动相的确定 在分离效能相似条件下选择更经济、毒性小的流动相 4、流速确定 流速太大,待分离组分来不及与固定相充分作用,故其中的组分较易被洗脱下来,出峰时间变短,而且柱压比较高,会引起泵负荷的增加,进而导致色谱柱的使用命

高效液相色谱仪检定规程

LC10AD型高效液相色谱仪检定规程 更多免费资料下载请进:https://www.doczj.com/doc/4d907146.html,好好学习社区

LC-10AD型高效液相色谱仪检定规程 1.适用范围 适用于岛津LC-10AD型高效液相色谱仪的检定。 2.职责 检验员:严格按照检定规程进行周期检定。 QC主管:监督检查检定规程执行情况。 3.检定项目和技术要求 3.1.输液系统 3.1.1.泵流量设定值误差:Ss<±2%;流量稳定性误差:<±2% 3.1.2.定性测量重复性误差(5次定量管进样):RSD≤1.5% 3.1.3.定量测量重复性误差(5次定量管进样):RSD≤1.5% 3.2.紫外检测器性能 3.2.1.可调波长紫外—可见光检测器波长示值误差:<±2nm;重复性误差:<±1nm 3.2.2.基线漂移:≤5×10-3(AU/h);基线噪声:≤5×10-4(AU) 3.2.3.最小检定浓度(静态):4×10-8g/ml(萘的甲醇溶液) 4.检定条件 4.1.环境温度为10~30℃,8小时内温度波动不超过±3℃,相对湿度低于65%。 4.2.电源电压:220±22V,电源频率:50±0.5Hz。 4.3.检定设备 4.3.1.秒表:分度值小于0.1s。 4.3.2.分析天平:最大称量200g,最小分度值0.1mg。 4.3.3.容量瓶 4.3.4.微量注射器 4.3. 5.标准物质和试剂 5.检定方法

5.1.泵流量设定值误差Ss、流量稳定性误差S R的检定。 将仪器的输液系统、进样器、色谱柱和检测器联接好,以甲醇为液动相,按表1设定流量,待流速稳定后,在流动相排出口用事先清洗称重过的容量瓶收集流动相,同时用秒表计时,准确地收集10~25分钟,称重,按下式计算Ss和S R。 Ss=(Fm—Fs)/Fs×100% S R=(Fmax—Fmin)/F×100% 式中Ss为流量设定值误差(%); Fm=(W2—W1)ρt·t为流量实测值; W2:容量瓶+流动相的重量(g); W1:容量瓶的重量(g); Fs:流量设定值(ml/min); ρt:实验温度下流动相的密度(g/cm3); t:收集流动相的时间(min); S R:流量稳定性误差(%); Fmax:同一组测量中流量最大值(ml/min); Fmin:同一组测量中流量最小值(ml/min); F:同一组测量中的算术平均值(ml/min)。 5.2.定性、定量测量重复性的检定 将仪器联接好,使之处于正常工作状态,用进样阀的定量管注入适当的标准溶液(萘或联苯)或稳定的待分析样品溶液,记录保留时间和峰面积,连续测量5次,按下式计算相对标准偏差RSD。 RSD= [Σ(Xi—X)2]/(n—1)×1/X×100% 式中,RSD为定性、定量重复性的相对标准偏差; Xi为第i次测得的保留时间或峰面积;

岛津高效液相色谱LC-20AT操作流程

岛津高效液相色谱LC-20AT操作流程 1.开机 依次打开泵、自动进样器、柱温箱、检测器和控制台(最后打开控制台),再打开电脑,开启LCsolution 软件,点击“仪器1”按钮,出现设置界面。 2.装载方法文件 打开液相操作方法文件(如有更改,更改完后先保存),点击软件中“仪器开关”和“泵开关”按钮(若设置柱温,点击“柱温箱”的按钮)。开启仪器和电脑的连接;点击“下载”按钮,装载操作方法。 3.进样 将样品加入进样瓶中,放在样品架上,记下放置的位置编号。 3.1 单次进样 点击“单次运行”按钮,出现单次运行的对话框。核实方法文件的出处和名称,核实数据文件的出处和名称。输入样品瓶和进样体积。 (样品架输入“1”;如果是空针,样品瓶输入“-1”)。完成后,点击“确定”,开始检测。 3.2自动进样 点击“批处理”按钮,出现批处理表。依次输入“样品瓶”

(样品瓶编号)、“样品架名称”(输入1)、方法文件、数据文件、进样体积。输完后,保存批处理文件,然后点击“批处理开始”按钮。 4.关机 点击“仪器开关”和“泵开关”按钮(包括柱温箱),将其从凹陷状态,变成凸出状态。关闭软件,关掉电脑。依次关掉控制台、检测器、柱温箱、自动进样器、泵。 5.脱气 5.1 泵的脱气 更换流动相,或者其他操作,只要吸滤头与空气接触,都需进行在线脱气。 将泵的脱气阀逆时针转动45~90度,点击仪器上“purge”按钮,进行脱气。脱气自动结束,再将脱气阀顺时针拧紧。 5.2 自动进样器的脱气 在方法文件中设置脱气的条件,装载方法文件后,点击“进样器脱气”按钮。 6.方法设置 打开软件后,在页面下方设置方法文件。一般需设置的条件有,洗脱“模式”(一般设置为低压梯度)、“泵A总流速”、“压力限制(泵A)” (最大值一般设为20.0MPa,最小设置为0.0MPa)、“L C时间程序”、 “采集时间”(开始和结束时间)、“通道波长”、“柱温箱温 度”、自动进样器和自动排气相关设置以及L C时间程序。 附:L C时间程序设置如下图:结束时,分别选择“Controller”和“Stop”

(完整)高效液相色谱仪的结构

四、高效液相色谱仪的结构 高效液相色谱仪由高压输液系统、进样系统、分离系统、检测系统、记录系统等五大部分组成(图3-1-2)。分析前,选择适当的色谱柱和流动相,开泵,冲洗柱子,待柱子达到平衡而且基线平直后,用微量注射器把样品注入进样口,流动相把试样带入色谱柱进行分离,分离后的组分依次流入检测器的流通池,最后和洗脱液一起排入流出物收集器。当有样品组分流过流通池时,检测器把组分浓度转变成电信号,经过放大,用记录器记录下来就得到色谱图。色谱图是定性、定量和评价柱效高低的依据。 图3-1-2 高效液相色谱仪的结构示意图 1.高压输液系统 高压输液系统由溶剂贮存器、高压泵、梯度洗脱装置和压力表等组成。 (1) 溶剂贮存器。溶剂贮存器一般由玻璃、不锈钢或氟塑料制成,容量为1~2L,用来贮存足够数量、符合要求的流动相。 (2) 高压输液泵。高压输液泵(图3-1-3)是高效液相色谱仪中关键部件之一,其功能是将溶剂贮存器中的流动相以高压形式连续不断地送入液路系统,使样品在色谱柱中完成分离过程。 由于液相色谱仪所用色谱柱径较细,所填固定相粒度很小,因此,对流动相的阻力较大,为了使流动相能较快地流过色谱柱,就需要高压泵注入流动相。对泵的要求:输出压力高、流量范围大、流量恒定、无脉动,流量精度和重复性为0.5%左右。此外,还应耐腐蚀,密封性好。高压输液泵,按其性质可分为恒压泵和恒流泵两大类。恒流泵是能给出恒定流量的泵,其流量与流动相粘度和柱渗透无关。恒压泵是保持输出压力恒定,而流量随外界阻力变化而变化,如果系统阻力不发生变化,恒压泵就能提供恒定的流量。

图3-1-3 恒流柱塞泵 (3) 梯度洗脱装置。梯度洗脱就是在分离过程中使两种或两种以上不同极性的溶剂按一定程序连续改变它们之间的比例,从而使流动相的强度、极性、pH值或离子强度相应地变化,达到提高分离效果,缩短分析时间的目的。梯度洗脱装置分为两类: 一类是外梯度装置(又称低压梯度),流动相在常温常压下混合,用高压泵压至柱系统,仅需一台泵即可。 另一类是内梯度装置(又称高压梯度),将两种溶剂分别用泵增压后,按电器部件设置的程序,注入梯度混合室混合,再输至柱系统。 梯度洗脱的实质是通过不断地变化流动相的强度,来调整混合样品中各组分的k值,使所有谱带都以最佳平均k值通过色谱柱。它在液相色谱中所起的作用相当于气相色谱中的程序升温,所不同的是,在梯度洗脱中溶质k值的变化是通过溶质的极性、pH值和离子强度来实现的,而不是借改变温度(温度程序)来达到。 2.进样系统 进样系统包括进样口、注射器和进样阀等,它的作用是把分析试样有效地送入色谱柱上进行分离。六通进样阀是最理想的进样器,其结构如图3-1-4。 图3-1-4 六通进样阀装置 3.分离系统 分离系统包括色谱柱、恒温器和连接管等部件。色谱柱一般用内部抛光的不锈钢制成,如图3-1-5。其内径为2 ~ 6mm,柱长为10 ~50cm,柱形多为直形,内部充满微粒固定相,柱温一般为室温或接近室温。 图3-1-5 常见色谱柱外形

(完整word版)高效液相色谱仪常用的检测器及其性能

高效液相色谱仪常用的检测器及其性能 (1)紫外吸收(UV)检测器 UV检测器是目前HPLC应用最广泛的检测器。它是依据光吸收原理,以适当的光路和电路,输出一个与试样组分浓度成正比的紫外一可见光吸收信号,其结构与一般光度计相似。其流通池是组分流过的光学通道,池体积一般为8μl,内径小于lmm,长度10mm左右。这种检测器灵敏度高,线性范围宽,对流速和温度变化不敏感,可用于梯度洗脱分离。紫外吸收检测要求被检测样品组分有紫外一可见光吸收,而使用的流动相无吸收,或在被测组分吸收波长处无吸收。一般选择在欲分析物有最大吸收的波长处进行检测,以获得最大灵敏度和抗干扰能力。在没有最大吸收时,可采用末端吸收。检测波长的选择除取决于待测物质的成分和分子结构外,还必须考虑流动相组成、共存组分干扰等因素。特别是各种溶剂都有一定的透过波长下限值,超过这个波长,溶剂的吸收会变得很强,以至于不能很好地测出待测物质的吸收强度。表1列出了HPLC中一些常用的溶剂透过波长的下限。 (2)光电二极管阵列(IJDA)检测器 PDA检测器又称为二极管阵列检测器(diode array UV detector,DAD),这种检测器以光电二极管阵列作为检测元件,可进行多通道并行检测,在一次色谱测量中,可同时获得时间、波长、吸光度三者的关系,通过计算机处理,在荧光屏上显示出三维图谱,也可作出任意波长的吸光度一时问曲线和任意时间的吸光度一波长曲线。DAD的光路与紫外检测器不同,光源发出的光聚焦后先通过检测池,通过检测池的透射光由全息光栅色散成多色光,不同波长的色散光按波长顺序聚焦在阵列元件上,每个元件对应一定的纳米数。当光照射到光电二极管时,光电二极管产生讯号。由于色散过程及透射光的检测是全波长范围的,可在瞬间检测流经检测池的全吸收光谱,得到三维色谱一光谱图。计算机化的数据处理,还可进行色谱峰光谱相似性比较、峰纯度检测及利用谱图库对掣定样品进行检索等,为定性、定量分析提供更丰富的信息。 ①多通道多波长检测可以同时得到多个波长的色谱图,每个成分均可在最佳波长下检测定量。 ②光谱相似性比较在HPLC中,两个物质出峰时间一致并不能完全说明为同一物质,通过色谱峰紫外光谱一致性比较,可提高测定的可靠性。 ③峰纯度检测对色谱峰峰顶、上、下3个点的光谱进行比较,完全吻合意味这是1个单组分峰,不吻合则表示为未分离峰。并可计算出纯度系数PI,PI值在0~1之问,越接近1,表示峰纯度越好,PI可由计算机自动计算。 ④光谱检索与比较二极管阵列检测器得到的光谱图可分类存储到光谱库中,当测定类似成分时,可调出相关谱图,进行检索和比较,也可通过比较光谱相似系数比较相似性。

岛津液相色谱仪操作规程

编号:SM-ZD-11850 岛津液相色谱仪操作规程Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

岛津液相色谱仪操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、开机操作规程 1. 开机 按Power键,按以下顺序依次开启HPLC系统各设备的电源:总电源→泵→柱温箱 2. 脱气 将吸滤头分别放入流动相中,旋转排液阀至180度,启动键板上的Purge键,排液1~2min;再按一次Purge键停止冲洗操作,关紧排液阀。 3. 设定参数 按Func键依次设定仪器参数:流速(或压力)、压力最大限、压力最小限。当屏幕显示区闪烁时,提示可以输入数值,按Enter键确认。在A泵面板上,按Conc键,根据流动相比例,设置B泵比例。 4. 启动流速

先按CE键显示初始屏幕,然后按一下Func键,屏幕显示区闪烁,提示可以输入数值,按Enter键确认。以0.2ml/min的梯度逐步升至所需流速(一般为1.0ml/min)。按Enter键之前,按CE键可以删除新设定的数值。 5. 准备进样 平衡10min后,开启检测器、计算机以及信号收集器。待基线平衡后(约15~30min),进样,即可进行等度洗脱。 6. 梯度洗脱 先按照上述方法,设定好0时刻流动相比例,然后按edit 键编辑梯度程序,然后按Enter键,按照规定流程进行设定。 6.1 如有要删除的程序步骤,就按Enter键查找需要删除的程序,然后按del键即可。 6.2切记:最后设定好程序,按CE键返回原始状态,升至需要流速,等基线平衡后(约15~30min),进样,立即按run键,启动梯度程序。 7. 清洗 首先关闭检测器,然后按照参数方法,降低流速,换用流动相,具体内容见注意事项。

高效液相色谱仪简介

高效液相色谱仪简介 系统组成、工作原理 高效液相色谱仪的系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内, 由于样品溶液中的各组分在两相中具有不同的分配系数, 在两相中作相对运动时, 经过反复多次的吸附- 解吸的分配过程, 各组分在移动速度上产生较大的差别, 被分离成单个组分依次从柱内流出, 通过检测器时, 样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 高效液相色谱 (high performance liquid chromatography, HPLC)也叫高压液相色谱(high pressure liquid chromatography)、高速液相色谱(high speed liquid chromatography)、高分离度液相色谱(high resolution liquid chromatography)等。是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱。又因分析速度快而称为高速液相色谱。 高效液相色谱是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效液相色谱的色谱柱一般比较粗,长度也远小于气相色谱柱。HPLC应用非常广泛,几乎遍及定量定性分析的各个领域。 使用高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待侧物所含有的物质。高效液相色谱作为一种重要的分析方法,广泛的应用于化学和生化分析中。高效液相色谱从原理上与经典的液相色谱没有本质的差别,它的特点是采用了高压输液泵、高灵敏度检测器和高效微粒固定相,适于分析高沸点不易挥发、分子量大、不同极性的有机化合物。 发展历史

高效液相色谱仪的综述

题目:高效液相色谱仪的综述 院 部 生命科学院 学科门类 生物仪器分析 专 业 生物技术一班 学 号 1111431017 姓 名 王伟康 指导教师 陈金武 2014年6月15日 装 订 线

摘要 目前,高效液相色谱(HPLC)法由于对复杂样品中的分析物具有极高的分离效率而成为最有效的分离方法。将具有高灵敏度的化学发光分析法和具有高分离效率的高效液相色谱分离法相结合已引起了国内外分析化学家的极大兴趣。本文简单概述了高效液相色谱化学发光的特点、发展史、检测原理、化学发光反应体系以及发展前景。 关键词:高效液相色谱仪发展历史原理应用 ABSTRACT At present, high performance liquid chromatography (HPLC) and become the most effective method for separating the separation efficiency of the analysis method of complex samples with high. Luminescence analysis method and high performance liquid with high separation efficiency of chemical with high sensitivity of chromatographic separation method has aroused great interest of chemists at home and abroad. This paper briefly introduces the characteristics, chemiluminescence HPLC detection principle, development history, chemiluminescence reaction system and the development prospects. Key words:High performance liquid chromatography;Development history;Principle;Application

高效液相色谱以理论常识-测含量

被分离组分在柱中的洗脱原理 Ⅱ基本概念和理论 一、基本概念和术语 1.色谱图和峰参数 ⊕色谱图(chromatogram)--样品流经色谱柱和检测器,所得到的信号-时间曲线,又称色谱流出曲线(elution profile). ⊕基线(base line)--流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。一般应平行于时间轴。 ⊕噪音(noise)――基线信号的波动。通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。 ⊕漂移(drift)基线随时间的缓缓变化。主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。 ⊕色谱峰(peak)--组分流经检测器时相应的连续信号产生的曲线。流出曲线上的突起部分。正常色谱峰近似于对称性正态分布曲线(高斯Gauss曲线)。不对称色谱峰有两种:前延峰(leading peak)和脱尾峰(tailing peak ).前者少见。 ⊕拖尾因子(tailing factor,T)--T=B/A,用以衡量色谱峰的对称性。也称为对称因子(symmetry factor)或不对称因子(asymmetry factor)《中国药典》规定T应为0.95~1.05。T<0.95为前延峰,T>1.05为拖尾峰。 ⊕峰底――基线上峰的起点至终点的距离。 ⊕峰高(Peak height,h)――峰的最高点至峰底的距离。 ⊕峰宽(peak width,W)--峰两侧拐点处所作两条切线与基线的两个交点间的距离。W=4σ。⊕半峰宽(peak width at half-height,Wh/2)--峰高一半处的峰宽。W h/2=2.355σ。 ⊕标准偏差(standard deviation, σ)--正态分布曲线x=±1时(拐点)的峰宽之半。正常峰宽的拐点在峰高的0.607倍处。标准偏差的大小说明组分在流出色谱柱过程中的分散程度。σ小,分散程度小、极点浓度高、峰形瘦、柱效高;反之,σ大,峰形胖、柱效低。 ⊕峰面积(peak area,A)――峰与峰底所包围的面积。A=×σ×h=2.507σh=1.064Wh/2h 2.定性参数(保留值) ⊕死时间(dead time,t0)--不保留组分的保留时间。即流动相(溶剂)通过色谱柱的时间。在反相HPLC中可用苯磺酸钠来测定死时间。 ⊕死体积(dead volume,V0)――由进样器进样口到检测器流动池未被固定相所占据的空间。它包括4部分:进样器至色谱柱管路体积、柱内固定相颗粒间隙(被流动相占据,Vm)、柱出口管路体积、检测器流动池体积。其中只有Vm参与色谱平衡过程,其他3部粉只起峰扩展作用。为防止峰扩展,这3部分体积应尽量减小。V0=F×t0(F为流速) ⊕保留时间(retention time,tR)--从进样开始到某个组分在柱后出现浓度极大值的时间。⊕保留体积(retention volume,VR)--从进样开始到某个组分在柱后出现浓度极大值时流出溶剂的体积。又称洗脱体积。VR=F*tR . ⊕调整保留时间(adjusted retention time,tR’)--扣除死时间后的保留时间。也称折合保留时间(reduced retention time)。在实验条件(温度、固定相等)一定时,tR’只决定于组分的性质,因此,tR’(或tR)可用于定性。TR’=tR-t0 ⊕调整保留体积(adjusted retention volume,VR’)--扣除死体积后的保留体积。VR=VR-V0 或VR=F*tR’ 3.柱效参数 ⊕理论塔板数(theoretical plate number,N)用于定量表示色谱柱的分离效率(简称柱效)。 N取决于固定相的种类、性质(粒度、粒径分布等)、填充状况、柱长、流动相的种类和流速及测定柱效所用物质的性质。如果峰形对称并符合正态分布,N可近似表示为: N=(tR/σ)2=16(tR)2/W =5.54(tR/W1/2)2 W:峰宽;σ:曲线拐点处峰宽的一半,即峰高0.607处峰宽的一半。 N为常量时,W随tR成正比例变化。在一张多组分色谱图上,如果各组份含量相当,则后洗脱的峰比前面的峰要逐渐加宽,峰高则逐渐降低。 用半峰宽计算理论塔板数比用峰宽计算更为方便和常用,因为半峰宽更容易准确测定,尤其是对稍有拖尾的峰。

高效液相色谱仪操作规程-U3000(已打印)

戴安中国有限公司 液相色谱操作规程-U3000 一、操作前准备: 1.1流动相的配制: 1.1.1根据所供试品的性质、相关的文献资料、工作经验等按比例配制流动相。 1.1.2根据流动相的性质确定采用有机膜(0.45um)还是水相膜(0.45um)对流动相进行过滤。 1.1.3将过滤后的流动相进行超声脱气10~15分钟。 1.2对照品供试品处理: 1.2.1称取或量取适量的对照品或供试品,用适当的溶剂(最好采用流动相或流动相的主成分)进行充分溶解(也可借助超声波进行超声溶解),使其浓度为0.1~1mg/mL(根据检测结果再适当调节溶液的浓度)。 1.2.2根据对照品或供试品的性质确定采用有机针头滤膜(0.45um)还是水相针头滤膜(0.45um)进行过滤。 1.3色谱柱的选择:根据样品的性质选择适当的色谱柱。 二、开机: 2.1打开UPS(不间断电源)电源,打开仪器接线板电源开关; 2.2打开电脑显示器电源,打开电脑主机电源(POWER),启动电脑; 2.3依次打开泵、自动进样器、柱温箱、检测器的电源; 2.4选择开始>程序>Chromeleon>Sever Monitor或双击屏幕右下角快捷图标,出现对话界面后点击Start启动,等Dongle序号出来以后(表示Sever Monitor程序运行正常)可以点击Close来关闭界面。 2.5打开“开始”/“程序”/“Chromel”/“Chromeleon”或双击在桌面上的Chromeleon图标(工作站主程序)打开HPLC软件系统主界面。 2.6 在左窗口中单击根目录,此时会在右边的窗口中出现一个“hplc.pan”文件,双击此文件打开HPLC控制面板程序。 2.7在控制面板“Pump”控制框中选中“connect”选框,Purge流路中气泡,设置总流速为适当的数值(建议要由0.2ml/min逐渐增加到适当的流速)后并按回车键(“Enter”)以示确定。此时泵自动会以设置的流速进行运行。若是多元梯度泵可以分别设置B、C、D等流动相的流

Agilent1260高效液相色谱仪操作规程

四川中安检测有限公司 作业指导书 Agilent1260高效液相色谱仪 操作规程 文件编号ZAJC-3T-001 批准人 批准日期 编制人 编制日期

1.目的 正确使用仪器,确保化验结果的准确度、精密度,延长仪器使用寿命。2.范围 适用于Agilent1260高效液相色谱仪及色谱数据工作站的操作。 3.职责 3.1操作人员:按照本操作规程操作仪器,对仪器进行自检,作使用登记。 3.2负责人:负责监督仪器操作是否符合规程,对仪器进行定期自检、仪器综合管理。 4.要求 4.1开机 4.1.1溶剂准备 按要求准备所需流动相,每瓶均超声10min排气,将原来浸泡在甲醇中的滤头取出对应放在各个流动相中(A:二次蒸馏水;D:缓冲溶液;B:色谱纯甲醇C:色谱纯乙腈)。 4.1.2开启工作站 4.1.2.1启动计算机 打开计算机电源,登陆windows 操作系统。 4.1.2.2启动工作站 打开Agilent 1260 各模块电源,待Agilent 1260 各模块自检完成后(各模块右上角指示灯为黄色或者无色),点击屏幕桌面图标“HPLC -1260(联机)”,则进入工作界面。 模块右上角状态灯颜色说明: 无色:未开电源或者模块准备就绪; 黄色:模块未准备就; 绿色:正在进样分析;

红色:模块出错; 所有模块红色:仪器有漏液 工作站图形颜色说明: 绿色:模块准备就绪; 黄色:模块未准备就绪; 蓝色:正在进样分析; 红色:出错或者不能联机; 灰色:此模块没启用。 将鼠标移至系统或各个模块的状态指示栏,系统会自动显示未就绪或出错的原因。 4.1.3冲洗流动相管路 反时针旋开泵模块上的溶液排空阀,右键单击泵视图的空白处,选择“方法”,设置“流速”为5ml/min。将实验中需要的各个通道分别设置“溶剂”为100%,点击确定开始冲洗,每个通道冲洗3-5分钟,若冲洗通道时压力显示超过10 bar,则可换过滤白头。 4.1.4平衡柱子 冲洗完柱子,按要求调整流动相速率及流动相比例,顺时针旋转排空阀,关闭溶液排空阀(确认泵流量为1ml/min),然后右键点击需用检测器模块视图的空白处,选择“方法”进入检测器的参数设置界面,按要求设置参数(停止时间与泵一致),后点击右键,选择“控制”,在弹出的窗口选择打开,开始平衡柱子,监视信号基线和压力,等待平稳后即可进样(若用缓冲溶液和有机相作为流动相,先用水和有机相平衡30 min,比例与所要求的缓冲溶液和有机相比例一致),待基线平稳后换用所要求的缓冲溶液和有机相按比例混合平衡柱子30 min)。 4.1.5保存方法 将编辑好的方法保存起来。 4.2进样分析 在每个样品进样前,从“运行控制”菜单中点击“样品信息”,编辑好数据的保存路径。进样时,逆时针旋动进样器六通阀旋钮,进样完毕立即顺时针旋回该旋

UltiMate3000高效液相色谱仪

UltiMate3000高效液相色谱仪 配 置 说 明 南京途威仪器设备有限公司 免费热线:4008-585-600 优谱佳UHPLC+高效液相色谱系统 ? UHPLC+设计理念贯穿纳升液相、常规液相和快速液相整个范围 ? 基础型和标准分析型系统的最大压力创立了高效液相的新标准—620bar ? 双三元液相系统—为常规分析设计,增加产率并拓展色谱分析技术应用范围? 变色龙色谱软件—智能化、专业化、人性化 ? Viper和nanoViper接头系统—可手动安装拆卸,适应超快速液相范围并保证零死体积。 RSLCnano系统 ? 提供20 nL/min到50 μL/min的纳升/毛细管/微升流速范围

? 柱最高耐压可达800bar ? 连续直流输送 ? 上样泵可提供从10 μL/min到2.5 mL/min的流速 RSLC系统 ? 二元或四元系统都可用于超快速液相和常规液相的应用 ? 更广的压力—流速范围兼容超快速、超高分离度的分析应用 ? 系统最高耐压1000bar ? 可提供高效双三元RSLC系统 标准分析型系统 ? 为常规液相应用提供最佳性能和可靠性 ? 620bar耐压和100Hz的数据采集频率均兼容超快速液相应用 ? 可根据不同应用灵活配置 ? 最高流速可达10mL/min,满足全方位应用需求 基础型系统 ? 满足常规应用需求且更加耐用 ? 分析结果一致可靠 ? 提供620bar耐压和高达100Hz数据采集频率,全面兼容UHPLC应用 ? 自动进样器与柱温箱整合,可提供样品和色谱柱温控功能 检测器选项 ? 提供多种光学检测器选择-紫外/可见,荧光和示差折光检测器 ? 创新型Corona通用电喷雾式检测器 ? 高灵敏度库仑电化学检测器 ? 支持AB、布鲁克和赛默飞质谱检测器 软件与备件 ? 变色龙软件—直观的仪器控制,先进的数据处理 ? D-Library数据库提供应用搜索支持 ? Viper与nanoViper手旋接头系统,真正零死体积,简化安装拆卸过程 ? 色谱柱加工制造—包括整体柱技术和先进的多基质键合技术 UltiMate? 3000 RSLCnano 系统 目前,RSLCnano系统研发的重点是提高样品通量。UltiMate? 3000 RSLCnano 系统采用稳定、连续的直流输送方式,可实现样品的不间断分析。UltiMate? 3000 RSLCnano系统流速-压力范围广,即使在纳升级别针对最复杂的酶解肽段样品时,仍可保证最高的分离度和最快的分析要求。是唯一可以同时满足分离速度、分离能力和灵敏度高要求的系统。涵盖纳升、毛细管和微流水平的分离能力以及强大的双梯度泵为使用者提供了良好的灵活性。UltiMate? 3000RSLCnano支持更高水平工作流程,如自动化离线二维分离(该技术采用了双泵、双切换阀以及自动进样器的微量组分收集功能)。

岛津液相色谱仪的日常维护与注意事项

岛津液相色谱仪的日常维护与注意事项 Document number:PBGCG-0857-BTDO-0089-PTT1998

岛津液相色谱仪的日常维护与注意事项 一、日常维护: 1. 定期清洗单向阀:将单向阀卸下,一般先用纯净水超声10分钟,然后用异 丙醇超声10分钟;也可直接用异丙醇超声10分钟。 2.定期清洗吸滤头:将吸滤头卸下,一般先用纯净水超声10分钟,然后用异丙醇超声10分钟;也可直接用异丙醇超声10分钟。 3.定期冲洗检测池:把色谱柱卸下,在流速min的状态下先用纯净水冲洗30分钟,然后再用30%磷酸(色谱级)冲洗30分钟左右,再用超纯水冲洗至流出液为中性,最后用甲醇冲洗,待用。 二、注意事项: 1. 开始进样前30分钟开氘灯即可,节约灯的能量和使用时间。 2. 流动相的使用和注意事项:①所用流动相必须预先滤过和脱气,流动相 一般贮存于玻璃不锈钢容器内。贮存容器一定要盖严,防止溶剂挥发引起组成变化。磷酸盐、乙酸盐缓冲液很易长霉,应尽量新鲜配制使用,不要长期贮存。容器应定期清洗,特别是盛水、缓冲液和混合溶液的瓶子,以除去底部的杂质沉淀和可能生长的微生物。 ②配制流动相用水需为娃哈哈牌纯净水或经超声过滤后的纯化水,流动相配 制好后先用直径为5cm,孔径为um的滤膜,通过沙芯过滤器的过滤,然后在超声仪上超声。 ③不得将装流动相的容器直接放置与超声仪内,需放与筛网上进行超声。

3. 六通阀的使用和维护注意事项:①样品溶液进样前必须用滤膜过滤,以 减少微粒对进样阀的磨损。②转动阀芯时不能太慢,更不能停留在中间位置,否则流动相受阻,使泵内压力剧增,甚至超过泵的最大压力;再转到进样位时,过高的压力将使柱头损坏。③为防止缓冲盐和样品残留在进样阀中,每次分析结束后应冲洗进样阀。通常可用水冲洗,或先用能溶解样品的溶剂冲洗,再用水冲洗。 4. 色谱柱柱压升高的主要因素:① LC-10AT/20AT/10ATPlus泵的单向阀堵 塞。②色谱柱的入口筛板堵塞。③吸滤头堵塞。④ PEEK管接口处堵 塞。 5. 色谱柱柱压不稳的因素:①泵内有空气。②泵密封垫损坏。③溶剂中的 气泡。④系统检漏,找出漏点。 6. 样品峰保留时间漂移的主要因素:①室内温度变化过大。②流动相成分 发生变化。③色谱柱未平衡好。④泵中有气泡。⑤该流动相是否适宜此样品的检测。 7. 基线漂移的主要因素:①柱温波动。②流动相不均匀。③流通池被污染 或有气体。④检测器出口阻塞。⑤流动相配比不当或流速变化。⑥流动相污染、变质。⑦使用循环溶剂。 8. 检测器灵敏度不够的主要因素:①样品进样量不足。②波长设置不正 确。③检测器池窗污染。④检测池中有气泡。⑤电压不稳。⑥流动相流速不合适。 9. 色谱柱的使用和维护注意事项:①避免压力和温度的急剧变化及任何机 械震动。柱压的突然升高或降低也会冲动柱内填料,因此在调节流速时

相关主题
文本预览
相关文档 最新文档