当前位置:文档之家› 无刷直流电机的工作原理

无刷直流电机的工作原理

无刷直流电机的工作原理
无刷直流电机的工作原理

无刷直流电机原理

无刷直流电动机的工作原理

普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。

无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转。

无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。●电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。无刷直流电动机的原理简图如图一所示:

主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ 调制波的对称交变矩形波。永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组

通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电度角,转子跟随定子磁场转动相当于60°电度角空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电度角,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。

●无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。电动机的转矩正比于绕组平均电流;TM=Ktlav(N?M)电动机两相组反电势的差比于电动机的角速度;ELL=Keω(V)所以电动机绕组中的平均电流为:Iav=(Vm-ELL)/2Ra(A)其中,Vm=δ?VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩:Tm=δ?(VDC?Kt/2Ra)-Kt?(Keω/2Ra)Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励支流电动机电枢电压控制相同的控制特性和机械特性。无刷直流电动机的转速设定,取决于速度指令Vc的高低,如果速度指令最大值为+5V对应的最高转速:Vc(max)ón max,那么,+5V以下任何电平即对应相当的转速n,这就实现了变速设定。当Vc设定以后,无论是负载变化、电源电压变化,还是环境温度变化,当转速低于指令转速时,反馈电压Vfb变小,调制波的占空比δ就会变大,电枢电流变大,使电动机产生的电磁转矩增大而产生加速度,直到电动机的实际转速与指令转速相等为止;反之,如果电动机实际转速比指令转速高时,δ减小,Tm减小。发生减速度,直至实际转速与指令转速相等为止。可以说,无刷直流电动机在允许的电网波动范围内,在允许的过载能力以下,其稳定转速与指令转速相差在1%左右,并可以实现在调速范围内恒转矩运行。由于无刷直流电动机的励磁来源于永磁体,所以不象异步机那样需要从电网吸取励磁电流;由于转子中无交变磁通,其转子上既无铜耗又无铁耗,所以效率比同容量异步电动机高10%左右,一般来说,无刷直流电动机的能力指针(ηcosθ)比同容量三相异步电动机高12%-20%。

●由于无刷直流电动机是以自控式运行的,所以不会像变频调速下重载启动的同步电动机那样在转子上另加启动绕组,也不会在负载突变时产生振荡和失步。中小容量的无刷直流电动机的永磁体,现在多采用高磁能积的稀土钕铁硼(Nd-fe-B)材料。因此,稀土永磁无刷电动机的体积比同容量三相异步电动机缩小了一个机座号。近三十年针对异步电动机变频调速的研究,归根到底是在寻找控制异步电动机转矩的方法,而无刷直流电动机的电流或电枢的端电压,就是直接控制电动机转矩的物理量。过去,由于稀土永磁体价格比较高等因素,限制了稀土永磁无刷直流电动机的应用领域,但是随着技术的不断创新,其价格已迅速下降,例如,我公司推出推出BS系列无刷直流电动机的售价已与异步电动机和普通变频器价格之和相差无几。稀土永磁无刷直流电动机必将以其宽调速、小体积、高效率和稳态转速误差小等特点在调速领域显现优势。

无刷电机是指无电刷和换向器(或集电环)的电机,有称无换向器电机。早在上世纪诞生电机的时候,产生的实用性电机就是无刷形式,即交流鼠笼式异步电动机,这种电动机得到了广泛的应用。但是,异步电动机有许多无法克服的缺陷,以致电机技术发展缓慢。本世纪中叶诞生了晶体管,因而采用晶体管换向电路代替电刷与换向器的直流无刷电机就应运而生了。这种新型无刷电机称为电子换向式直流电机,它克服了第一代无刷电机的缺陷。

实用性新型无刷电机是与电子技术、微电子技术、数字技术、自控技术以及材料科学等发展紧密联系的。它不仅限于交直流领域,还涉及电动、发电的能量转换和信号传感等领域。在电机领域中新型无刷电机的品种是较多的,但性能优良的无刷电机因受到价格的限制,其应用还不十分广泛。下面分别就主要的新型无刷电机进行探索与研究。

1 直流无刷电动机

直流无刷电动机与一般直流电动机具有相同的工作原理和应用特性,而其组成是不一样的。除了电机本身外,前者还多一个换向电路,电机本身和换向电路紧密结合在一起。许多小功率电动机的电机本身是与换向电路合成一体,从外观上看直流无刷电动机与直流电动机完全一样。

直流无刷电动机的电机本身是机电能量转换部分,它除了电机电枢、永磁励磁两部分外,还带有传感器。电机本身是直流无刷电机的核心,它不仅关系到性能指标、噪声振动、可靠性和使用寿命等,还涉及制造费用及产品成本。由于采用永磁磁场,使直流无刷电机摆脱一般直流电机的传统设计和结构,满足各种应用市场的要求,并向着省铜节材、制造简便的方向发展。永磁磁场的发展与永磁材料的应用密切相关,第三代永磁材料的应用,促使直流无刷电机向高效率、小型化、节能方向迈进。

为了实现电子换向必须有位置信号来控制电路。早期用机电位置传感器获得位置信号,现已逐步用电子式位置传感器或其它方法得到位置信号,最简便的方法是利用电枢绕组的电势信号作为位置信号。

要实现电机转速的控制必须有速度信号。用获得位置信号相近方法取得速度信号,最简单的速度传感器是测频式测速发电机与电子线路相结合。

直流无刷电机的换向电路由驱动及控制两部分组成,这两部分是不容易分开的,尤其小功率用电路往往将两者集成化成为单一专用集成电路。

在功率较大的电机中,驱动电路和控制电路可各自成为一体。驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。目前,驱动电路已从线性放大状态转成脉宽调制的开关状态,相应电路组成也从晶体管分立电路转成模块化集成电路。模块化集成电路有功率双极晶体管、功率场效应管和隔离栅场效应双极晶体管等组成形式。虽然,隔离栅场效应双极晶体管价格较贵,但从可靠安全和性能角度看,选用它还是较合适的。

控制电路用作控制电机的转速、转向、电流(或转矩)以及保护电机的过流、过压、过热等。上述参数容易转成模拟信号,用此来控制较简单,但从发展来看,电机的参数应转换成数字量,通过数字式控制电路来控制电机。当前,控制电路有专用集成电路、微处理器和数字信号处理器等三种组成方式。在对电机控制要求不高的场合,专用集成电路组成控制电路是简单实用的方式。采用数字信号处理器组成控制电路是今后发展方向,有关数字信号处理器将在下面交流同步伺服电动机中介绍。

目前,在微小功率范畴直流无刷电动机是发展较快的新型电机。由于各个应用领域需要各自独特的直流无刷电动机,所以直流无刷电动机的类型较多。大体上有计算机外存储器以及VCD、DVD、CD主轴驱动用扁平式无铁心电机结构,小型通风机用外转子电机结构,家电用多极磁场结构及内装式结构,电动自行车用多极、外转子结构等等。上述直流无刷电动机的电机本身和电路均成一体,使用十分方便,它的产量也非常大。为了满足大批量、低成本的市场需要,直流无刷电动机的生产必须要形成规模经济。因此,

直流无刷电动机是一种高投入、高产出的行业。同时,我们应该考虑到市场也在不断地发展,如家用空调用电机正由3A转向3D,需要大量的中小功率的直流无刷直流电动机,研究和开发中小功率的直流无刷电动机也成当务之急。

无刷直流电机(BLDCM)是在有刷直流电动机的基础上发展来的,但它的驱动电流是不折不扣的交流;无刷直流电机又可以分为无刷速率电机和无刷力矩电机。一般地,无刷电机的驱动电流有两种,一种是梯形波(一般是“方波”),另一种是正弦波。有时候把前一种叫直流无刷电机,后一种叫交流伺服电机,确切地讲是交流伺服电动机的一种。

无刷直流电机为了减少转动惯量,通常采用“细长”的结构。无刷直流电机在重量和体积上要比有刷直流电机小的多,相应的转动惯量可以减少40%—50%左右。由于永磁材料的加工问题,致使无刷直流电机一般的容量都在100kW以下。

这种电动机的机械特性和调节特性的线性度好,调速范围广,寿命长,维护方便噪声小,不存在因电刷而引起的一系列问题,所以这种电动机在控制系统中有很大的应用潜力。

直流无刷电机的优越性

直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。碳刷及整流子在电机转动时会产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。交流电机没有碳刷及整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技术才能达到。现今半导体发展迅速功率组件切换频率加快许多,提升驱动电机的性能。微处理机速度亦越来越快,可实现将交流电机控制置于一旋转的两轴直交坐标系统中,适当控制交流电机在两轴电流分量,达到类似直流电机控制并有与直流电机相当的性能。

此外已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小;像模拟/数字转换器(Analog-to-digital converter,ADC)、脉冲宽度调制(pulse wide modulator,PWM)…等。直流无刷电机即是以电子方式控制交流电机换相,得到类似直流电机特性又没有直流电机机构上缺失的一种应用。

直流无刷电机的控制结构

直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)

影响:

N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。

直流无刷驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。

电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器

(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。

(图一)

直流无刷电机的控制原理

要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到

hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。

基本上功率晶体管的开法可举例如下:

AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL一组,但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管

在关与开的交错时间要将零件的响应时间考虑进去,否则当上臂(或下臂)尚未完全关闭,下臂(或上臂)就已开启,结果就造成上、下臂短路而使功率晶体管烧毁。

(图二)

当电机转动起来,控制部会再根据驱动器设定的速度及加/减速率所组成的命令(Command)与

hall-sensor信号变化的速度加以比对(或由软件运算)再来决定由下一组(AH、BL或AH、CL或BH、CL或……)开关导通,以及导通时间长短。速度不够则开长,速度过头则减短,此部份工作就由PWM来完成。PWM是决定电机转速快或慢的方式,如何产生这样的PWM才是要达到较精准速度控制的核心。高转速的速度控制必须考虑到系统的CLOCK 分辨率是否足以掌握处理软件指令的时间,另外对于hall-sensor信号变化的资料存取方式也影响到处理器效能与判定正确性、实时性。至于低转速的速度控制尤其是低速起动则因为回传的hall-sensor信号变化变得更慢,怎样撷取信号方式、处理时机以及根据电机特性适当配置控制参数值就显得非常重要。或者速度回传改变以encoder变化为参考,使信号分辨率增加以期得到更佳的控制。电机能够运转顺畅而且响应良好,P.I.D.控制的恰当与否也无法忽视。之前提到直流无刷电机是闭回路控制,因此回授信号就等于是告诉控制部现在电机转速距离目标速度还差多少,这就是误差(Error)。知道了误差自然就要补偿,方式有传统的工程控制如P.I.D.控制。但控制的状态及环境其实是复杂多变的,若要控制的坚固耐用则要考虑的因素恐怕不是传统的工程控制能完全掌握,所以模糊控制、专家系统及神经网络也将被纳入成为智能型P.I.D.控制的重要理论。

P.I.D控制简介

一般P.I.D控制如下

(dutycycle)=(dutycycle)p + (dutycycle)i + (dutycycle)d

(图三)

P.控制(比例控制) :输出与输入误差讯号成正比关系,即将误差固定比例修正,但系统会有稳态误差。

I .控制(积分控制) :当系统进入稳态有稳态误差时,将误差取时间的积分,即便误差很小也能随时间增加而加大,使稳态误差减小直到为零。

D.控制(微分控制):当系统在克服误差时,其变化总是落后于误差变化,表示系统存在较大惯性组件或(且)有滞后组件。微分即是预测误差变化的趋势以便提前作用避免被控量严重冲过头。

电机驱动器的保护措施

对于驱动器还要有保护措施,当负载过大或不当使用时会造成大电流而将功率晶体管烧毁。为了保护因电流超过规格而破坏驱动器,一般会以加大功率晶体管耐电流或加电流sensor做为保护。其次当电机负载不小的时候,在停止转动时由电机端回送至驱动器的能量及过电压都将危及驱动器,这可配合过电压保护电路加上回生能量消散电路来防治。其它尚有hall-sensor正常与否判定也会影响PWM控制的正确性,这可由控制部判断并适时警告即可。

DC无刷电机系列控制疑难杂症处理案例

·欲以电流值的大小来判断目前电机的负载状况是否有过载的迹象,该如何测量?

将电源线的其中一条拔起后,将电表(请先调至安培档)的一端接至驱动器的电源CONNECTOR其中一接脚,另一端则接至电源插座的另一接脚(如下图四),如此即可测量出在现阶段的负载下所必须耗费的电流值,之后再依此电流值来对照电机的电流/扭力对照表,如此即可得知目前的负载状况是正常或是否有过载的情形发生。

有刷直流电机原理应用及实用控制方案探讨

有刷直流电机原理应用及实用控制方案探讨时间:2008-11-14 来源:51chaoban 作者:Jenny 点击:476 有刷直流(BDC)电机的工作原理 图1示出的是BDC电机的基本构造。图中画出的组件包括定子、转子、电刷和换向器。定子和转子磁场相互作用驱动电机旋转。有刷直流电机的类型根据电机定子或外壳中磁场的产生方式来划分。根据有刷直流电机的类型,定子磁场可以由永磁铁或定子中的绕组产生。对于后一种情况,定子绕组与转子绕组可以是并行、串行、或混合方式连接。这三种有刷直流电机分别称为并激电动机、串激电动机和复激电动机。 定子产生静止磁场。这一静止磁场围绕在电枢(或称转子)的周围。外加电源激发出电枢磁场。BDC电机轴上还有两个圆弧形的铜片,称为换向片。电机转动时,碳质的电刷在换向器上滑动。这样就可以产生一个与定子的静止磁场相吸引的旋转磁场。电枢和定子绕组中的电流由电池或其它直流电源供给(永磁BDC电机没有定子绕组)。电池(或直流电源)提供恒定的直流电压。电压幅度决定了电机的转速,因此是电池或直流电源是一个线性激励源。改变BDC电机速度的最有效方式是采用脉宽调制(PWM)技术。PWM技术是以固定的频率开关恒压源。改变PWM信号的脉冲宽度可以调节电机的速度。脉冲高低电平间的比例称为PWM信号的占空比。直流电池电平的幅度等于PWM信号的平均幅度。 应用实例:单片机/电机控制实例 单片机设计中带有内建的外设,因此只需要最少量的外部元器件就可以容易地实现BDC电机的速度和方向控制。选用的单片机带有内建的外设,只需要最少量的外部元器件就可以容易地实现BDC电机的速度和方向控制。这款单片机的两大特点对于BDC电机控制非常有用。首先,片上内建有增强捕获/比较/PWM(ECCP)模块,当配置为全桥模式时,可以提供直接驱动H桥电路所需要的PWM信号。H桥电路可以为电机提供双向电流驱动。第二个非常适合电机控制器的特点是可以产生频率高达31.2 kHz的8位PWM信号。对于电机控制应用来说,这一点很重要,因为低于20 kHz的频率会导致电机产生人听觉范围内的噪声。不需要增加任何外部时钟源,可以提供高于听觉频率的8位分辨率。为了获得高出听觉频率范围的频率,此前的单片机需要在运行时降低PWM的分辨率。与其它具备ECCP的单片机相比,它体积小且成本效率高。利用片上

直流电机工作原理

第二章 直流电机 2.1 概述 2.1.1 直流电机的工作原理 首先,复习e=B δlv 公式,说明e 正比于B δ。结合图2.1解释v=2πRn/60 (m/s , n (r/min)); 机械角速度Ω=v/R=2πn /60 ( r/s); 电角速度ω=p Ω=p2πn/60 (rad/s) (记下来);导体或线圈。 将直流电机的简单工作原理图结构介绍清楚。包括:N 、S 磁极和A 、B 电刷静止,换向片、线圈(导体)以及电枢逆时针旋转。将其抽象成一个平面图。 假设磁力线进入磁极为正方向,离开磁极的磁通方向为负。得气隙磁密在空间得分布曲线 B δ(θ)(0≤θ=ωt ≤2π)。进而得到导体电势e(ωt)和线圈电势e AB (ωt)。 经过合理的多个线圈均匀分布设计,按照一定规律连接起来就组成电枢绕组,便可以获得近似直流电动势。 工作原理: (1) 发电机:电枢绕组中感应的交变电势,依靠换向器的换向作用,利用静止 的电刷把同一磁极 下导体电势引出,变为直流电势输出。(发电机惯例) (2) 电动机:通过电刷和换向器的共同作用,使得同磁极下的导体边流过的电 流方向不变,导体 受力方向不变,进而产生方向恒定的电磁转矩,使电机连续转动。 结论:(1)电机内部(电刷为界),线圈中产生的感应电势、流过的电流是交流量。 (2)电机外部(电刷两端),电动机运行外加直流电;发电机运行输出直流电 (3) 从原理上讲,同一台电机既可以作电动机运行又可以作发电机运行,是可逆的。 (4)电动机惯例 发电机惯例 i i u Motor u Generator

2.1.2 直流电机的主要结构部件 定子——起机械支撑,产生磁场的作用 机座、端盖、电刷、 轴承 直流电机结构 气隙——耦合磁场 转子——产生电磁转矩、产生感应电势 电枢铁心和电枢绕组 换向器、转轴、风扇 2.1.3 直流电机的额定值 额定值:指电机正常运行时各物理量的数值。此时亦称电机满载运行。否则为欠载或过载 额定功率:指输出功率W, kW 。 发电机P N =U N I N 电动机P N =ηU N I N 额定电压U N (V), 额定电流I N (A), 额定励磁电压U fN (V), 额定励磁电流I fN (A), 额定转速n N (r/min)

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

直流电机调速器的工作原理

一、什么是直流调速器? 直流调速器就是调节直流电动机速度的设备, 由于直流电动机具有低转速大力矩的特点,是交流电动机无法取代的, 因此调节直流电动机速度的设备—直流调速器,具有广阔的应用天地。 二、什么场合下要选择使用直流调速器? 下列场合需要使用直流调速器: 1.需要较宽的调速范围。 2. 需要较快的动态响应过程。 3. 加、减速时需要自动平滑的过渡过程。 4. 需要低速运转时力矩大。 5. 需要较好的挖土机特性,能将过载电流自动限止在设定电流上。 以上五点也是直流调速器的应用特点。 三、直流调速器应用: 直流调速器在数控机床、造纸印刷、纺织印染、光缆线缆设备、包装机械、电工机械、食品加工机械、橡胶机械、生物设备、印制电路板设备、实验设备、焊接切割、轻工机械、物流输送设备、机车车辆、医设备、通讯设备、雷达设备、卫星地面接受系统等行业广泛应用。 四、直流调速器工作原理简单介绍: 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 五、直流电机的调速方案一般有下列3种方式:1、改变电枢电压;2、改变激磁绕组电压;3、改变电枢回路电阻。 最常用的是调压调速系统,即1(改变电枢电压). 六、一种模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。

直流电机工作原理

第二章直流电机的基本结构和运行分析 直流电机是电能和机械能相互转换的旋转电机之一。将机械能转换为直流电能的电机称为直流发电机;将直流电能转换为机械能的电机称为直流电动机。直流发电机可作为各种直流电源;直流电动机具有宽广的调速范围,较强的过载能力和较大的起动转矩等特点,广泛应用于对起动和调速要求较高的生产机械,如电力机车、内燃机车、工矿机车、城市电车、电梯、轧钢机等的拖动电机。 本章介绍直流电机的工作原理和基本结构;分析直流电机的磁路系统、电路系统和电磁过程;导出感应电势和电磁转矩的一般计算方法;得出直流电机在不同运行状态的各种平衡方程式和运行特性。 第一节直流电机基本工作原理 直流电机是直流发电机和直流电动机的总称。直流电机具有可逆性,既可作直流发电机使用,也可作直流电动机使用。作直流发电机使用时,将机械能转换成直流电能输出;作直流电动机使用时,则将直流电能转换成机械能输出。 一、直流电机的模型结构 图2—1所示为一台直流电机简单模型图。N、S为定子上固定不动的两个主磁极,主磁极可以采用永久磁铁,也可以采用电磁铁,在电磁铁的励磁线圈上通以方向不变的直流电流,便形成一定极性的磁极。 图2-1 直流发电机工作原理

在两个主磁极N 、S 之间装有一个可以转动的、由铁磁材料制成的圆柱体,圆柱体表面嵌有一线圈(称为电枢绕组),线圈首末两端分别连接到两个弧形钢片(称为换向片)上。换向片之间用绝缘材料构成一整体,称为换向器,它固定在转轴上(但与转轴绝缘),随转轴一起转动,整个转动部分称为电枢。为了接通电枢内电路和外电路,在定子上装有两个固定不动的电刷A 和B ,并压在换向器上,与其滑动接触。 二、直流发电机的工作原理 1.感应电势的产生 当直流发电机的电枢被原动机拖动,并以恒速v逆时针方向旋转时,如图2-2(a)所示,线圈两个有效边ab 和cd 将切割磁力线,而感应产生电势e。其方向用右手定则确定,导体ab 位于N 极下,导体cd 位于S 极下,产生电势方向分别为b →a ,d →c 。若接通外电路,电流从换向片1→A →负载→B →换向片2。电流从电刷A 流出,具有正极性,用“+”表示;从电刷B 流入,具有负极性,用“一”表示。 当电枢转到90o 时,线圈有效边ab 和cd 转到N 、S 极之间的几何中心线上,此处磁密为零,故这一瞬时感应电势为零。 当电枢转到180o 时,导体ab 和cd 及换向片1、2位置互换,如图2-1(b)所示。导体加位于S 极下,导体cd 位于N极下,线圈两个有效边产生的感应电势方向分别为a →b ,c →d ,电势方向恰与开始瞬时相反。外电路中流过的电流从换向片2→A →负载→B →换向片1。由此可见,电刷A(B)始终与转到N(S)极下的有效边所连接的换向片接触,故电刷极性始终不变A 为“+”,B 为“―”。 由以上分析可知,线圈内部为一交变电势,但电刷引出的电势方向始终不变,为一单方向的直流电势。 2.电势的波形 根据电磁感应定律,每根导体产生的感应电势e为: Lv B e X = (V ) (2-1) 式中x B ——导体所在位置的磁通密度(T ); L ——导体切割磁力线的有效长度(m); v ——导体切割磁力线的线速度(m/s)。 要想知道电势的波形,先得找出磁密的波形,前已设电枢以恒速v 旋转,v=常数,L 在电机中不变,则x B e ∝,即导体电势随时间的变化规律与气隙磁密的分布规律相同。设想将

无刷直流电机的工作原理(带霍尔传感器)

无刷直流电机的工作原理 无刷直流电机的控制结构 无刷直流电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。无刷直流电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说无刷直流电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 无刷直流驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。无刷直流电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。

(图一) 无刷直流电机的控制原理 要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如 下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下: AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL 一组, 但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则

直流无刷电机工作原理

直流无刷电机工作原理 直流电机简介 无刷直流电机(BLDC)是永磁式同步电机的一种,而并不是真正的直流电机,英文简称BLDC。区别于有刷直流电机,无刷直流电机不使用机械的电刷装置,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料,性能上相较一般的传统直流电机有很大优势,是当今最理想的调速电机。 工作原理 直流电机里边固定有环状永磁体,电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。 直流发电机的工作原理就是把电枢线圈中感应的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。 感应电动势的方向按右手定则确定(磁感线指向手心,大拇指指向导体运动方向,其他四指的指向就是导体中感应电动势的方向)。 导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 无刷电机优缺点 直流电动机具有快速响应,大起动转矩,从零速到额定转速,额定转矩可提供的性能,但直流电机的优点也是它的缺点,因为DC额定负载机密生产性能不断转移的时刻,电枢与转子磁场须保持恒定90度,这将用刷子和换向器。碳刷,换向器,继而引发电机,碳粉,所以除了元件造成损害的,有限的场合使用。交流无碳刷及整流子,免维护,可靠,应用范围广,但直流电机马达的特点,实现同等性能的必须使用复杂的控制得以实现。今天,功率半导体开关频率成分的快速发展,加快了许多,提升驱动电机的性能。微处理器的速度也越

无刷直流电机工作原理详解

无刷直流电机工作原理详解 日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 2.1 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2.1.1。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。

BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图2.1.2和图 2.1.3所示。

三相无刷直流电机系统结构及工作原理

三相无刷直流电机系统结构及工作原理

图2.3 直流无刷电动机的原理框图位置传感器在直流无刷电动机中起着测定转子磁极位置的作用,为逻辑开关电路提供正确的换相信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组换相。位置传感器种类较多,且各具特点。在直流无刷电动机中常见的位置传感器有以下几种:电磁式位置传感器、光电式位置传感器、磁敏式位置接近传感器【3】。 2.4基本工作原理 众所周知,一般的永磁式直流电动机的定子由永久磁钢组成,其主要的作用是在电动机气隙中产生磁场。其电枢绕组通电后产生反应磁场。其电枢绕组通电后产生反应磁场。由于电刷的换向作用,使得这两个磁场的方向在直流电动机运行的过程中始终保持相互垂直,从而产生最大转矩而驱动电动机不停地运转。直流无刷电动机为了实现无电刷换相,首先要求把一般直流电动机的电枢绕组放在定子上,把永磁磁钢放在转子上,这与传统直流永磁电动机的结构刚好相反。但仅这样做还是不行的,因为用一般直流电源给定子上各绕组供电,只能产生固定磁场,它不能与运动中转子磁钢所产生的永磁磁场相互作用,以产生单一方向的转矩来驱动转子转动。所以,直流无刷电动机除了由定子和转子组成电动机本体以外,还要由位置传感器、控制电路以及功率逻辑开关共同构成的换相装置,使得直流无刷电动机在运行过程中定子绕组所产生的的磁场和转动中的转子磁钢产生的永磁磁场,在空间始终保持在(π/2)rad左右的电角度。 2.5无刷直流电机参数 本系统采用的无刷电机参数 ·额定功率:100W ·额定电压:24V(DC) ·额定转速:3000r/min ·额定转矩:0.23N?m ·最大转矩:0.46N?m ·定位转矩:0.01N?m ·额定电流:4.0A

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 无刷直流电机的组成 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁 硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 转子位置检测电路

直流电机工作原理和有刷直流电机的模型建立

直流电机工作原理和有刷直流电机的模型建立 一、直流电机的基本结构 直流电机可概括地分为静止和转动两大部分。静止部分称为定子;转动部分称为转子。定、转子之间由空气隙分开,如图。 图a所示为直流电机结构,图b所示为直流电机剖面图。 1. 定子部分 定子由主磁极、换向极、机座和电刷装置等组成。 (1)主磁极它的作用是产生恒定的主极磁场,由主磁极铁心和套在铁心上的励磁绕组组成。 (2)换向极换向极的作用是消除电机带负载时换向器产生的有害火花,以改善换向。 (3)机座机座的作用有两个,一是作为各磁极间的磁路,这部分称为定子磁轭;二是作为电机的机械支撑。 (4)电刷装置其作用,一是使转子绕组能与外电路接通,使电流经电刷输入电枢或从电枢输出;二是与换向器相配合,获得直流电压。 2. 转子部分

转子是直流电机的重要部件。由于感应电势和电磁转矩都在转子绕组中产生.是机械能与电能相互转换的枢纽,因此称作电枢。电枢主要包括电枢铁心、电枢绕组、换向器等。另外转子上还有风扇、转轴和绕组支架等部件。 (1)电枢:铁心电枢铁心的作用有两个,一是作为磁路的一部分,二是将电枢绕组安放在铁心的槽内。 (2)电枢绕组:电枢绕组的作用是产生感应电势和通过电流,使电机实现机电.能量转换它由许多形状完全相同的线圈按一定规律连接而成。每一线圈的两个边分别嵌在包枢铁心的槽里,线圈的这两个边也称为有效线圈边。 (3)换向器:换向器又称整流子,在直流电动机中,是将电刷上的直流电流转换为绕组内的交变电流,以保证同一磁极下电枢导体的电流方向不变,使产生的电磁转矩恒定;在直流发电机中,是将绕组中的交流感应电势转换为电刷上的直流电势,所以换向器是直流电机中的关键部件。 换向器由许多鸽尾形铜片(换向片)组成。 换向片之间用云母片绝缘,电枢绕组每一个线圈 的两端分别接在两个换向片上,换向器的结构如 图1-2所示。 直流电机运行时在电刷与换向器之间往往会 产生火花。微弱的火花对电机运行并无危害,若 换向不良,火花超过一定程度,电刷和换向器就 会烧坏,使电机不能继续运行。 此外,在静止的主磁极与电枢之间,有一空气隙,它的大小和形状对电机的性能影响很大。空气隙的大小随容量不同而不同。空气隙虽小,但由于空气的磁阻较大,因而在电机磁路系统中有着重要的影响。

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

直流电机工作原理和有刷直流电机的模型建立

直流电机工作原理与有刷直流电机得模型建立 一、直流电机得基本结构 直流电机可概括地分为静止与转动两大部分。静止部分称为定子;转动部分称为转子.定、转子之间由空气隙分开,如图。 图a所示为直流电机结构,图b所示为直流电机剖面图。 1、定子部分 定子由主磁极、换向极、机座与电刷装置等组成。 (1)主磁极它得作用就是产生恒定得主极磁场,由主磁极铁心与套在铁心上得励磁绕组组成。 (2)换向极换向极得作用就是消除电机带负载时换向器产生得有害火花,以改善换向。 (3)机座机座得作用有两个,一就是作为各磁极间得磁路,这部分称为定子磁轭;二就是作为电机得机械支撑。 (4)电刷装置其作用,一就是使转子绕组能与外电路接通,使电流经电刷输入电枢或从电枢输出;二就是与换向器相配合,获得直流电压。 2、转子部分

转子就是直流电机得重要部件。由于感应电势与电磁转矩都在转子绕组中产生.就是机械能与电能相互转换得枢纽,因此称作电枢。电枢主要包括电枢铁心、电枢绕组、换向器等.另外转子上还有风扇、转轴与绕组支架等部件. (1)电枢:铁心电枢铁心得作用有两个,一就是作为磁路得一部分,二就是将电枢绕组安放在铁心得槽内. (2)电枢绕组:电枢绕组得作用就是产生感应电势与通过电流,使电机实现机电.能量转换它由许多形状完全相同得线圈按一定规律连接而成。每一线圈得两个边分别嵌在包枢铁心得槽里,线圈得这两个边也称为有效线圈边。 (3)换向器:换向器又称整流子,在直流电动机中,就是将电刷上得直流电流转换为绕组内得交变电流,以保证同一磁极下电枢导体得电流方向不变,使产生得电磁转矩恒定;在直流发电机中,就是将绕组中得交流感应电势转换为电刷上得直流电势,所以换向器就是直流电机中得关键部件. 换向器由许多鸽尾形铜片(换向片)组成。换 向片之间用云母片绝缘,电枢绕组每一个线圈得 两端分别接在两个换向片上,换向器得结构如图 1-2所示. 直流电机运行时在电刷与换向器之间往往会 产生火花。微弱得火花对电机运行并无危害,若换 向不良,火花超过一定程度,电刷与换向器就会烧 坏,使电机不能继续运行。 此外,在静止得主磁极与电枢之间,有一空气隙,它得大小与形状对电机得性能影响很大.空气隙得大小随容量不同而不同。空气隙虽小,但由于空气得磁阻较大,因而在电机磁路系统中有着重要得影响。 二、直流电机得基本工作原理

直流无刷和有刷电机优缺点对比

直流无刷和有刷电机优缺点对比 直流无刷电机的原理是在有刷电机的基础上开发和演变的。在未来的一段时间里将是有刷的替代品随着世界各地发起的保护地球的口号有刷终终究会被无刷所取代。无刷直流电机的基本原理去掉了碳刷用电子元器件代替。用电子元器件的开关特性取代机械碳刷使换向变得无机械接触。无刷相对有刷的电机来说有如下优点一、运行声音小这将是我们这个文明社会必将行进的方向。另何工具它都要求降低噪声来保护我们的声音环境。现在最关键的是用在一些需要安静的地方如医院、银行、机场学校等等安静的场所。二、无火花在一些场合就可以大显身手了有一些易燃易爆的地方。三、寿命长因为它用控制器代替了换向器和碳刷是有刷电机的几倍甚至十几倍。碳刷的寿命是有一定的限度的比如一千个小时碳刷就会磨损殆尽只能更换电刷可是更换电机。四、速度高因为采用了磁场感应没有实质的接触速度可以做的更快。有了这么多的优点但是也有不好的地方一、造价高控制器的成本增加至少百元拿微电机来说。原来的换向器和碳刷的成本要低的多。二、如果使用的环境是在高磁场的地方或曾经接触或和高磁场很近电机将失去作用。因为电机本身的转子部件是磁体所作是经过充磁才有磁性的经过高磁场将改变转子的磁场或是消掉了部分的磁性电机都将不能正常工作。再给你补全一点 1 有位置传感器控制方式优点①因为有霍尔位置传感器所以电机换相准确转子位置检测的准确度不受电机转速的影响②不需要外加的转子位置检测电路硬件电路简单③电机换相控制编程简单不需要处理滤波延迟等问

题。缺点①增大了电机的体积。安装了位置传感器后一方面电机结构变复杂了另一方面电机的体积相对来说变大了妨碍了电机的小型化②增加了电机成本。容量在数百瓦以下的小容量方波型无刷直流电机常用的霍尔位置传感器的成本相对于电机本体来说所占比例比较大③传感器的输出信号易受到干扰。传感器的输出信号都是弱电信号在高温、冷冻、湿度大、有腐蚀物质、空气污浊等工作环境及振动、高速运行等工作条件下都会降低传感器的可靠性。若传感器损坏还可能连锁反应引起逆变器等器件的损坏④传感器的安装精度对电机的运行性能影响很大相对增加了生产工艺的难度。2 无位置传感器控制方式优点①降低成本减小电机的体积②抗干扰能力强能在高温、湿度大、有腐蚀物质、空气污浊的环境中工作③无传感器安装的问题减小电机的生产难度。缺点①如反电势法等转子位置检测方法在低速时检测准确度都不高需要其他方法辅助电机起动②由于各种滤波、比较电路引起的相位延迟必须在算法中加以补偿所以算法编程难度较大③由于架构了转子位置检测电路所以增加了硬件的复杂性。

无刷直流电机工作原理详解

日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。 BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图和图

直流电动机工作原理

7.2.2 直流电动机工作原理与结构 图7-4 直流电动机模型 图7-4是一个最简单的直流电动机模型。在一对静止的磁极N和S之间,装设一个可以绕Z-Z'轴而转动的圆柱形铁芯,在它上面装有矩形的线圈abcd。这个转动的部分通常叫做电枢。线圈的两端a和d分别接到叫做换向片的两个半圆形铜环1和2上。换向片1和2之间是彼此绝缘的,它们和电枢装在同一根轴上,可随电枢一起转动。A和B是两个固定不动的碳质电刷,它们和换向片之间是滑动接触的。来自直流电源的电流就是通过电刷和换向片流到电枢的线圈里。

图7-5 换向器在直流电机中的作用 当电刷A和B分别与直流电源的正极和负极接通时,电流从电刷A流入,而从电刷B流出。这时线圈中的电流方向是从a流向b,再从c流向d。我们知道,载流导体在磁场中要受到电磁力,其方向由左手定则来决定。当电枢在图7-5(a)所示的位置时,线圈ab边的电流从a流向b,用表示,cd边的电流从c流向d,用⊙表示。根据左手定则可以判断出,ab边受力的方向是从右向左,而cd边受力的方向是从左向右。这样,在电枢上就产生了反时针方向的转矩,因此电枢就将沿着反时针方向转动起来。 当电枢转到使线圈的ab边从N极下面进入S极,而cd边从S极下面进入N极时,与线圈a端联接的换向片1跟电刷B接触,而与线圈d端联接的换向片2跟电刷A接触,如图7-5(b)所示。这样,线圈内的电流方向变为从d流向c,再从b流向a,从而保持在N极下面的导体中的电流方向不变。因此转矩的方向也不改变,电枢仍然按照原来的反时针方向继续旋转。由此可以看出,换向片和电刷在直流电机中起着改换电枢线圈中电流方向的作用。

无刷直流电机的工作原理

无刷直流电机原理 无刷直流电动机得工作原理?普通直流电动机得电枢在转子上,而定子产生固定不动得磁场。为了使直流电动机旋转,需要通过换向器与电刷不断改变电枢绕组中电流得方向,使两个磁场得方向始终保持相互垂直,从而产生恒定得转矩驱动电动机不断旋转。 无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样得结构正好与普通直流电动机相反;然而,即使这样改变还不够,因为定子上得电枢通过直流电后,只能产生不变得磁场,电动机依然转不起来。为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子得位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右得空间角,产生转矩推动转子旋转。 无刷直流电动机由电动机主体与驱动器组成,就是一种典型得机电一体化产品。?●电动机得定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机得转子上粘有已充磁得永磁体,为了检测电动机转子得极性,在电动机内装有位置传感器。驱动器由功率电子器件与集成电路等构成,其功能就是:接受电动机得启动、停止、制动信号,以控制电动机得启动、停止与制动;接受位置传感器信号与正反转信号,用来控制逆变桥各功率管得通断,产生连续转矩;接受速度指令与速度反馈信号,用来控制与调整转速;提供保护与显示等等。无刷直流电动机得原理简图如图一所示: ? 主电路就是一个典型得电压型交-直-交电路,逆变器提供等幅等频5-26KH Z调制波得对称交变矩形波。永磁体N-S交替交换,使位置传感器产生相位差120°得U、V、W方波,结合正/反转信号产生有效得六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态得依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生得磁场轴线在空间转动60°电度角,转子跟随定子磁场转动相当于60°电度角空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新得编码又改变了功率管得导通组合,使定子绕组产生得磁场轴再前进60°电度角,如此循环,无刷直流电动机将产

直流电机工作原理

第三章直流电机的原理 本章主要介绍直流电机的结构和基本工作原理、直流电机绕组的构成、直流电机的电枢反应、直流电机绕组的电动势和电磁转矩、直流发电机和直流电动机的功率转矩等内容。本章共有10节课,内容和时间分配如下: 1.掌握直流电机的结构及工作原理。(2节) 2.掌握直流电机绕组有关的结构。(2节) 3.掌握直流电机绕组的电枢反应。(1节) 4.掌握直流电机的电枢电动势和电磁转矩。(1节) 5.掌握直流发电机的基本方程式和运行特性、并励发电机的条件。( 2.5节) 6.掌握直流电动机的基本方程式和运行特性。( 1.5节) 第一节直流电机的基本工作原理 一直流电机的用途 直流电动机的优点: 1 调速范围广,易于平滑调节 2 过载、启动、制动转矩大 3 易于控制,可靠性高 4 调速时的能量损耗较小 缺点: 换向困难,容量受到限制,不能做的很大。 应用: 轧钢机、电车、电气铁道牵引、造纸、纺织拖动。 直流发电机用作电解、电镀、电冶炼、充电、交流发电机励磁等的直流电源。 二、直流电机的工作原理 原理:任何电机的工作原理都是建立在电磁感应和电磁力这个基础上。 为了讨论直流电机的工作原理,我们把复杂的直流电机结构简化为工作原理图。(一)直流发电机的工作原理 1.工作原理:导体在磁场中运动时,导体中会感应出电势e 。 e=Blv。 B:磁密l:导体长度;v:导体与磁场的相对速度。 正方向:用右手定则判断。电势e正方向表示电位升高的方向,与U相反。如果同一元件上e和U正方向相同时,e= -U。

理解:电磁感应原理的变形(变化的磁通产生感应电动势) 2 发电机工作过程分析:两磁极直流发电机的工作原理图。 (1)构成: 磁场:图中N和 S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。 励磁绕组——容量较小的发电机是用永久磁铁做磁极的。容量较大的发电机的磁场是由直流电流通过绕在磁极铁心上的绕组产生的。用来形成N极和S极的绕组称为励磁绕组,励磁绕组中的电流称为励磁电流If。 电枢绕组:在N极和 S极之间,有一个能绕轴旋转的圆柱形铁心,其上紧绕着一个线圈称为电枢绕组(图中只画出一匝线圈),电枢绕组中的电流称为电枢电流Ia。 换向器:电枢绕组两端分别接在两个相互绝缘而和绕组同轴旋转的半圆形铜片——换向片上,组成一个换向器。换向器上压着固定不动的炭质电刷。 电枢:铁心、电枢绕组和换向器所组成的旋转部分称为电枢。

无刷直流电动机简介和基本工作原理

无刷直流电动机简介和基本工作原理 无刷直流电动机简介和基本工作原理 无刷直流电动机简介 直流无刷电机 : 又称“无换向器电机交一直一交系统”或“直交系统” 。是将交流电源整流后变成直流, 再由逆变器转换成 频率可调的交流电, 但是, 注意此处逆变器是工作在直流斩波方式。 无刷直流电动机Brushless Direct Current Motor ,BLDC, 采用方波自控式永磁同步 电机,以霍尔传感器取代碳刷换向器, 以钕铁硼作为转子的永磁材料; 产品性能超越传统直流电机的所有优点, 同时又解决了直流电机碳刷滑环的缺点, 数字式控 制, 是当今最理想的调速电机。 无刷直流电动机具有上述的三高特性, 非常适合使用在24 小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载; 低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动; 其稳速运转精度比直流有刷电机更高, 比矢量控制或直接转矩控制速度闭环的变频驱动还要高, 性能价格比更好, 是现代化调速驱动的最佳 选择。 基本工作原理 无刷直流电动机由同步电动机和驱动器组成,是一种典型的机电一体化产品。同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速 度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始

相关主题
文本预览
相关文档 最新文档