当前位置:文档之家› 函数与极限习题与答案

函数与极限习题与答案

函数与极限习题与答案
函数与极限习题与答案

第一章 函数与极限

(A )

一、填空题 1、设x x x f lg lg 2)(+-=

,其定义域为 。

2、设)1ln()(+=x x f ,其定义域为 。

3、设)3arcsin()(-=x x f ,其定义域为 。

4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。

5、设)(x f y =的定义域是[0,2] ,则)(2

x f y =的定义域为 。

6、43

2lim

23=-+-→x k

x x x ,则k= 。 7、函数x

x

y sin =

有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x

x

x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。

9、=++++++∞→)21(lim 222n

n n

n n n n n Λ 。

10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。

11、=++++∞→352352)

23)(1(lim x

x x x x x 。 12、3)

2

1(lim -∞

→=+e n

kn

n ,则k= 。

13、函数2

31

22+--=x x x y 的间断点是 。

14、当+∞→x 时,

x

1

是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x

e y 1=在x=0处是第 类间断点。

17、设1

1

3

--=

x x y ,则x=1为y 的 间断点。 18、已知33=??

?

??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设??

???>+<=0)1(02sin )(1x ax x x

x

x f x 若)(lim 0

x f x →存在 ,则a= 。 20、曲线2sin 2

-+=x

x

x y 水平渐近线方程是 。 21、1

14)(2

2-+

-=

x x x f 的连续区间为 。

22、设??

?>≤+=0

,cos 0

,)(x x x a x x f 在0=x 连续 ,则常数

a= 。 二、计算题

1、求下列函数定义域 (1)2

11

x

y -= ; (2)x y sin = ;

(3)x

e y 1= ;

2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2

== ;

(2)2)(,)(x x g x x f == ;

(3)x x x g x f 22tan sec )(,

1)(-== ;

3、判定函数的奇偶性

(1))1(2

2

x x y -= ; (2)3

2

3x x y -= ;

(3))1)(1(+-=x x x y ;

4、求由所给函数构成的复合函数 (1)22

,sin ,x v v u u y === ;

(2)21,x u u

y +==

5、计算下列极限 (1))2141211(lim n n ++++

→Λ ; (2)2)

1(321lim n

n n -++++∞→Λ ;

(3)35

lim 22-+→x x x ; (4)1

12lim 221-+-→x x x x ; (5))12)(11(lim 2x x x -+∞→ ; (6)2232)

2(2lim -+→x x x x ; (7)x x x 1

sin lim 2

0→ ; (8)x

x x x +---→131lim 21 ;

(9))1(lim 2

x x x x -++∞

→ ;

6、计算下列极限 (1)x

wx x sin lim 0→ ; (2)x x

x 5sin 2sin lim 0→ ;

(3)x x x cot lim 0

→ ; (4)x

x x

x )1(

lim +∞

→ ; (5)1

)1

1(lim -∞→-+x x x x ; (6)x x x 1

0)1(lim -→ ;

7、比较无穷小的阶

(1)3

2

2

20x x x x x --→与,时 ;

(2))1(2

1112

x x x --→与,时 ;

8、利用等价无穷小性质求极限

(1)3

0sin sin tan lim x x x x -→ ; (2)),()(sin )

sin(lim

0是正整数m n x x m n x → ;

9、讨论函数的连续性

在???=>-≤-=11

,31

,1)(x x x x x x f

10、利用函数的连续性求极限

(1))2cos 2ln(lim 6

x x π

; (2))(lim 22

x x x x x --

++∞

→ ;

(3)x x x sin ln

lim 0

→ ; (4)x

x x

2)11(lim +∞→ ;

(5))1

1

(lim ,)

1(lim )(1

--=+

→∞

→t f n

x x f t n

n 求设 ;

(6))1

1

ln(

lim +-∞

→x x x x ;

11、设函数???≥+<=0

,0

,)(x x a x e x f x

应当怎样选择a ,使得)()(∞+-∞,成为在x f 内的连续函数。

12、证明方程135

=-x x 至少有一个根介于1和2之间。

(B )

1、设)(x f 的定义域是[0 ,1] ,求下列函数定义域 (1))(x

e f y = (2))(ln x f y =

2、设???>-≤=???>≤=0

,0

,0)(0,,0)(2

x x x x g x x o x x f 求)]([,)]([,

)]([,)]([x f g x g f x g g x f f

3、利用极限准则证明: (1)111lim =+

→n n (2)1]1

[lim 0=+→x

x x ;

(3)数列Λ,222,22,2+++的极限存在 ;

4、试比较当0→x 时 ,无穷小232-+x

x 与x 的阶。

5、求极限

(1))1(lim 2

x x x x -++∞

→ ; (2)1

)1

232(

lim +∞

→++x x x x ; (3)30sin tan lim x

x

x x -→ ;

(4))0,0,0()3

(

lim 1

0>>>++→c b a c b a x x x x x ;

6、设?????

≤+>=0

,0,1sin

)(2

x x a x x

x x f 要使),()(∞+-∞在x f 内连续, 应当怎样选择数a ?

7、设?????≤<-+>=-0

1,)1ln(0,)(11x x x e x f x 求)(x f 的间断点,并说明间断点类型。

(C )

1、已知x x f e x f x -==1)]([,)(2

? ,且0)(≥x ? ,求)(x ?并写出它的定义域。

2、求下列极限:

(1)、]ln cos )1ln([cos lim x x x -++∞

→ ;(2)、x

x

x x x cos sin 1lim

-+→ ;

(3)、求x

x x x 2sin 3553lim 2?++∞→ ;(4)、已知9)(lim =-+∞→x

x a x a x ,求常数a 。

(5)、设)(x f 在闭区间],[b a 上连续 ,且b b f a

a f <>)(,)( ,

证明:在开区间),(b a 内至少存在一点ξ ,使ξξ=)(f 。

第一章 函数与极限 习 题 答 案

(A )

一、填空题 (1)]2,

1( (2)),1(∞+- (3)[2 ,4]

(4){}z k k x k x ∈+≤≤,)12(2ππ (5)]2,

2[-

(6)-3 (7)0;,=∈=x z k k x π (8)2 (9)1

(10)充分 (11)

21 (12)2

3

- (13)x=1 , x=2 (14)高阶 (15)同阶 (16)二 (17)可去 (18)2 (19)-ln2 (20)y=-2 (21)]2,1(]1,2[Y - (22)1 二、计算题

1、(1) ),1()1,1()1,(∞+---∞Y Y

(2) ),0[∞+ (3)),0()0,(∞+-∞Y

2、(1)不同,定义域不同 (2)不同,定义域、函数关系不同

(3)不同,定义域、函数关系不同 3、(1)偶函数 (2)非奇非偶函数 (3)奇函数

4、(1)[]

22)(sin x y = (2)]1[2x y += (3)][sin 2x

e

y = 5、(1)[ 2 ] (2)]2

1

[ (3)-9 (4)0 (5)2 (6)∞ (7)0 (8)22- (9)2

1 6、(1)w (2)

5

2 (3)1 (4)1-e (5)2e (6)1-e 7、(1)的低阶无穷小是3

2

2

2x x x x -- (2)是同阶无穷小

8、(1)21 (2)??

?

??>∞=

m n m n

m ,,1,0

9、不连续

10、(1)0 (2)1 (3)0 (4)2

e (5)0 (6)-2 11、a=1

(B )

1、(1)提示:由10≤≤x

e 解得:]0,(∞-∈x (2)提示:由1ln 0≤≤x 解得:],1[e x ∈

2、提示:分成o x ≤和0>x 两段求。)()]([x f x f f = ,0)]([=x g g ,

0)]([=x g f , )()]([x g x f g =

4、(1)提示:n n 11111+<+

< (2)提示:x

x x x x x 1

]1[)11(?<<- (3)提示:用数学归纳法证明:222=+

5、提示:x

x x x x x x 1312232-+-=-+ 令t x =-12(同阶)

6、(1)提示:乘以x x ++12 ;

21

(2)提示:除以x 2 ;e (3)提示:用等阶无穷小代换 ;2

1

(4)提示: x

x x x c b a 1

)3

(

++ x

c b a c b a x x x x x x x x x c b a 31

111113

13111-+-+--+-+-?

?

?

????????????????? ??+-+-+-=(3abc )

7、提示:)0()(lim )(lim 00f x f x f x x ==+

-

→→ (0=a )

8、1=x 是第二类间断点 ,0=x 是第一类间断点

(C )

1、解:因为()[]x e x f

x -==1)

(2

?

? ,故)1ln()(x x -=? ,再由0)1ln(≥-x ,

得:11≥-x ,即0≤x 。所以:)

1ln()(x x -=?,0≤x 。

2、解:原式=)cos sin 1(cos sin 1lim 20x x x x x

x x x ++-+→=x

x x x x 20sin sin 21lim +?→

=

)sin (sin lim 210x x x

x x +?→=0 3、解:因为当∞→x 时 ,x

x 2

~2sin ,

则x x x x 2sin 3553lim 2?++∞→=x x x x 23553lim 2?++∞→=x x x x 35106lim 22++∞→=5

6

4、解:因为:9=x x a

x a x )(

lim -+∞→=x

x x a x a ?

????? ?

?

-+∞→11lim =a a e e -=a e 2

所以92=a

e

,3ln =a

5、证明:令x x f x F -=)()( ,)(x F 在[]b a ,上连续 ,且

0)()(>-=a a f a F ,0)()(<-=b b f b F 。由闭区间上连续函数的零点定理 ,在开

区间),(b a 内至少存在一点),(b a ∈ξ ,使0)(=ξF ,即ξξ=)(f 。

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

函数与极限习题与答案计算题(供参考)

高等数学 二、计算题(共 200 小题,) 1、设x x x f +=12)(,求)(x f 的定义域及值域。 2、设x x x f -+= 11)(,确定)(x f 的定义域及值域。 3、设)ln(2)(22x x x x x f -+-= ,求)(x f 的定义域。 4、的定义域,求设)(sin 51 2arcsin )(x f x x x f π+-=。 5、的定义域,求设??? ??++-=x f x f x x x f 1)(22ln )(。 6、的定义域求函数22112arccos )(x x x x x f --++=。 7、设)(x f 的定义域为[) )()()(m x f m x f x F b a ++-=,.,)0(++=。 19、及其定义域,求, 设)(02)(ln 2x f x x x x f +∞<<+-=。

函数与极限测试题及标准答案(二)

函数与极限测试题(二) 一. 选择题 1.设F()x 是连续函数()f x 的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有( ). (A )F()x 是偶函数?()f x )是奇函数. (B )F()x 是奇函数?()f x 是偶函数. (C )F()x 是周期函数?()f x 是周期函数. (D )F()x 是单调函数?()f x 是单调函数 2.设函数,1 1)(1 -= -x x e x f 则( ) (A ) 0x =,1x =都是()f x 的第一类间断点. (B ) 0x =,1x =都是()f x 的第二类间断点 (C ) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点. (D ) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. 3.设()1x f x x -= ,01x ≠、,,则1 [ ]() f f x = ( ) A ) 1x - B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( ) A ) 0 lim 11(1+ )x x x + →= B )0lim 1(1+ ) x x e x + →= C ) lim 1(1)x x e x →∞ =-- D )lim 1(1) x x e x -→∞ =+ 5.已知9)( lim =-+∞→x x a x a x ,则=a ( )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1( lim ( ) A.1; B.∞; C.2 -e ; D.2 e 。 7.极限:∞ →x lim 3 32x x +=( ) A.1; B.∞; C.0; D.2.

定义证明二重极限_1

定义证明二重极限 定义证明二重极限就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与A的差的绝对值会灰常灰常的接近。那么就说f(x,y)在(x0,y0)点的极限为A关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点P(X,y)所对应的函数值都满足不等式那末,常数A就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于D的点,若对于任意给定的正数。,总存在正数a,使得对D内适合不等式0户几卜8的一切点P,有不等式V(P)一周。成立,则称A为函数人P)当P~P。时的极限.定义3设函数X一人工,”的定义域为D,点产人工。,人)是D的聚点,如果对于任意给定的正数。,总存在正数8,使得对于适合不等式的一切点P(X,…ED,都有成立,则称A为函数当时的极限.以上三种定义的差异主要在于对函数的前提假设不尽相同.定义1要求人X,…在点P 入x。,汕)的某去心邻域内有定义,而定义2允许人工,y)在点P。(X。,入)的任一去心邻域内都有使人X,y)无定义的点,相应地,定义I要求见的去心邻域内的点P都适合/(P)一A卜利用极限存在准则证明:(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;(2)证明数列{Xn},其中a0,Xo0,Xn=[(Xn-1) (a/Xn-1)]/2,n=1,2,…收敛,并求其极限。1)用夹逼准则:x大于1时,lnx0,x^20,故lnx/x^20且lnx1),lnx/x^2(x-1)/x^2.而(x-1)/x^2极限为0故(Inx/x^2)的极限为02)用单调有界数列收敛:分三种情况,x0=√a时,显然极限为√ax0√a时,Xn-X(n-1)=[-(Xn-1) (a/Xn-1)]/20,单调递减且Xn=[(Xn-1) (a/Xn-1)]/2√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.对原始两边求极限得A=[A (a/A)]/2.解得A=√a同理可求x0√a时,极限亦为√a综上,数列极限存在,且为√(一)时函数的极限:以时和为例引入.介绍符号: 的意义, 的直观意义.定义( 和. )几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“ ”定义.几何意义.用定义验证函数极限的基本思路.例4 验证例5 验证例6验证证由=为使需有为使需有于是, 倘限制, 就有例7验证例8验证( 类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:Th类似有: 例10证明: 极限不存在.例11设函数在点的某邻域内单调. 若存在, 则有= §2 函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。教学重点:函数极限的性质及其计算。教学难点:函数极限性质证明及其应用。教学方法:讲练结合。一、组织教学:我们引进了六种极限: , .以下以极限为例讨论性质. 均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性( 不等式性质):Th 4若和都存在, 且存在点的空心邻域,使,都有证设= ( 现证对有)註:若在Th 4的条件中, 改“ ”为“ ”, 未必就有以举例说明.5.迫敛性:6.四则运算性质:( 只证“ ”和“ ”)(二)利用极限性质求极限:已证明过以下几个极限:(注意前四个极限中极限就是函数值)这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.例1( 利用极限和)例2例3註:关于的有理分式当时的极限.例4 [ 利用公式]例5例6例7

函数与极限练习题

题型 一.求下列函数的极限 二.求下列函数的定义域、值域 三.判断函数的连续性,以及求它的间断点的类型 内容 一.函数 1.函数的概念 2.函数的性质——有界性、单调性、周期性、奇偶性 3.复合函数 4.基本初等函数与初等函数 5.分段函数 二.极限 (一)数列的极限 1.数列极限的定义 2.收敛数列的基本性质 3.数列收敛的准则 (二)函数的极限 1.函数在无穷大处的极限 2.函数在有限点处的极限 3.函数极限的性质 4.极限的运算法则 (三)无穷小量与无穷大量 1.无穷小量 2.无穷大量 3.无穷小量的性质 4.无穷小量的比较 5.等价无穷小的替换原理 三.函数的连续性 x处连续的定义 1.函数在点0 2.函数的间断点 3.间断点的分类 4.连续函数的运算 5.闭区间上连续函数的性质 例题详解 题型I函数的概念与性质 题型II求函数的极限(重点讨论未定式的极限) 题型III求数列的极限 题型IV已知极限,求待定参数、函数、函数值 题型V无穷小的比较 题型VI判断函数的连续性与间断点类型 题型VII与闭区间上连续函数有关的命题证明

自测题一 一. 填空题 二. 选择题 三. 解答题 3月18日函数与极限练习题 一.填空题 1.若函数121)x (f x -??? ??=,则______)x (f lim x =+∞ → 2.若函数1 x 1 x )x (f 2--=,则______)x (f lim _1x =→ 3. 设23,,tan ,u y u v v x === 则复合函数为 ()y f x = = _________ 4. 设 cos 0()0 x x f x x x ≤??=? >?? ,则 (0)f = __________ 5.已知函数 2 ()1 ax b x f x x x +

函数极限的十种求法

函数极限的十种求法 信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。时的极限。 1.利用极限的四则运算法则: 极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。例 1 求lim( x 2 ? 3x + 5). x→ 2 解:lim( x 2 ? 3x + 5) = lim x 2 ? lim 3x + lim 5 = (lim x) 2 ? 3 lim x + lim 5 = 2 2 ? 3 ? 2 + 5 = 3. x→2 x →2 x →2 x →2 x →2 x →2 x →2 2.利用洛必达法则 洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零比零或无穷比无穷的类型。 利用洛必达求极限应注意以下几点: 设函数f(x)和F(x)满足下列条件: (1)x→a时,lim f(x)=0,lim F(x)=0; (2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0; (3)x→a时,lim(f'(x)/F'(x))存在或为无穷大 则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x)) 例1: 1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2 xsinx = 2xsin(x/2)cos(x/2) 原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x 对分子分母同时求导(洛必达法则) (tgx)' = 1 / (cosx)^2 (x)' = 1 原式= lim 1/(cosx)^2 当x --> 0 时,cosx ---> 1 原式= 1 3.利用两个重要极限: 应用第一重要极限时,必须同时满足两个条件: ①分子、分母为无穷小,即极限为0 ; ②分子上取正弦的角必须与分母一样。 应用第二重要极限时,必须同时满足四个条件:

函数与极限测试题及答案(一)

函数与极限测试题(一) 一、 填空题 1、若1ln 1 1ln x f x x +??= ?-??,则()f x =_____。 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 3、若0x →时,无穷小2 21ln 1x x -+与2sin a 等价,则常数a =_____。 4、设()()2 1lim 1 n n x f x nx →∞ -=+,则()f x 的间断点为x =_____。 二、 单选题 1、当0x →时,变量 2 11 sin x x 是( ) A 、无穷小 B 、无穷大 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 2、设函数()bx x f x a e =+在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) A 、0,0a b << B 、0,0a b >> C 、0,0a b ≥< D 、0,0a b ≤> 3、设()232x x f x =+-,则当0x →时( ) A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞ -=????, 则()lim x f x →∞ 为( ) A 、存在且等于零 B 、存在但不一定等于零 C 、一定不存在 D 、不一定存在

例:()()()11 ,,22 1 x x f x x g x x x x ?==+ =+ ++ 三、 求下列极限 1 、 lim x 2、()2 21212lim 1x x x x x -→?? ?+?? 四、 确定,a b 的值,使() 32 2ln 10 011ln 0 1ax x f x b x x x x x x x ?+<==??-+?>++?? 在(),-∞+∞内连续。 五、 指出函数()1 11x x x e e f x e e --= -的间断点及其类型。 六、 设1234,,,a a a a 为正常数,证明方程 31240123 a a a a x x x x +++=---有且仅有三个实根。 七、 设函数()(),f x g x 在[],a b 上连续,且满足()()()(),f a g a f b g b ≤≥,证明: 在[],a b 内至少存在一点ξ,使得()()f g ξξ=。 函数与极限测试题答案(一) 一、1、 11x x e -+; 2、 11, 2 2a b ++?? ???? ; 3、 4-; 4、0 ; 二、1—4、DCBD 三、1 、解:原式lim 3x ==;

两个重要极限的证明

两个重要极限的证明第六节极限存在准则、两个重要极限 教学目的:1 使学生掌握极限存在的两个准则;并会利用它们求极限; 2使学生掌握利用两个重要极限求极限的方法; 教学重点:利用两个重要极限求极限 教学过程: 一、讲授新课: 准则I:如果数列满足下列条件: (i)对 ; (ii) 那么,数列的极限存在,且。 证明:因为,所以对,当时,有,即 ,对,当时,有,即,又因为,所以当时,有, 即有:,即,所以。 准则I′如果函数满足下列条件: (i)当时,有。 (ii)当时,有。 那么当时,的极限存在,且等于。 第一个重要极限: 作为准则I′的应用,下面将证明第一个重要极限:。 证明:作单位圆,如下图: 设为圆心角,并设见图不难发现:,即:,即, (因为,所以上不等式不改变方向) 当改变符号时,及1的值均不变,故对满足的一切 ,有。 又因为, 所以而,证毕。 【例1】。 【例2】。 【例3】。 【例4】。 准则Ⅱ:单调有界数列必有极限 如果数列满足:,就称之为单调增加数列;若满足:,就称之为单调减少数列;同理亦有严格单增或单减,以上通称为单减数列和严格单减数列。 如果,使得:,就称数列为有上界;若,使得:,就称有下界。 准则Ⅱ′:单调上升,且有上界的数列必有极限。 准则Ⅱ″: 单调下降,且有下界的数列必有极限。 注1:由前已知,有界数列未必有极限,若加单调性,就有极限。 2:准则Ⅱ,Ⅱ′,Ⅱ″可推广到函数情形中去,在此不一一陈述了。 第二个重要极限: 作为准则Ⅱ的一个应用,下面来证明极限是不存在的。 先考虑取正整数时的情形:对于,有不等式:,即:, 即: (i)现令,显然,因为将其代入,所以,所以为单调数列。 (ii)又令,所以, 即对,又对所以{ }是有界的。 由准则Ⅱ或Ⅱ′知存在,并使用来表示,即

函数与极限习题与答案

第一章 函数与极限 (A ) 一、填空题 1、设x x x f lg lg 2)(+-= ,其定义域为 。 2、设)1ln()(+=x x f ,其定义域为 。 3、设)3arcsin()(-=x x f ,其定义域为 。 4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。 5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。 6、43 2lim 23=-+-→x k x x x ,则k= 。 7、函数x x y sin = 有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 9、=++++++∞→)21(lim 222 n n n n n n n n 。 10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。 11、=++++∞→352352) 23)(1(lim x x x x x x 。 12、3) 2 1(lim -∞ →=+e n kn n ,则k= 。 13、函数2 31 22+--=x x x y 的间断点是 。 14、当+∞→x 时, x 1 是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x e y 1=在x=0处是第 类间断点。 17、设1 1 3 --= x x y ,则x=1为y 的 间断点。 18、已知33=?? ? ??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 20、曲线2sin 2 -+=x x x y 水平渐近线方程是 。 21、1 14)(2 2-+ -= x x x f 的连续区间为 。 22、设?? ?>≤+=0 ,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数 a= 。 二、计算题 1、求下列函数定义域 (1)2 11 x y -= ; (2)x y sin = ; (3)x e y 1= ; 2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2 == ; (2)2)(,)(x x g x x f = = ; (3)x x x g x f 22tan sec )(, 1)(-== ; 3、判定函数的奇偶性 (1))1(2 2 x x y -= ; (2)3 2 3x x y -= ;

二元函数极限证明

二元函数极限证明 设p=f(x,y),p0=(a,b),当p→p0时f(x,y)的极限是x,y同时趋向于a,b时所得到的称为二重极限。 此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。 我们必须注意有以下几种情形:’ (1)两个二次极限都不存在而二重极限仍有可能存在 (2)两个二次极限存在而不相等 (3)两个二次极限存在且相等,但二重极限仍可能不存在 2 函数f(x)当x→x0时极限存在,不妨设:limf(x)=a(x→x0) 根据定义:对任意ε>0,存在δ>0,使当|x-x0|<δ时,有|f(x)-a|<ε 而|x-x0|<δ即为x属于x0的某个邻域u(x0;δ) 又因为ε有任意性,故可取ε=1,则有:|f(x)-a|<ε=1,即:a-1 再取m=max{|a-1|,|a+1|},则有:存在δ>0,当任意x属于x0的某个邻域u(x0;δ)时,有|f(x)| 证毕 3首先,我的方法不正规,其次,正确不正确有待考察。

1,y以y=x^2-x的路径趋于0limitedsin(x+y)/x^2=limitedsinx^2/x^2=1而y=x的路径趋于0结果是无穷大。 2,3可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是p(x,y)以任何方式趋向于该点。 4 f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x) 显然有y->0,f->(x^2/|x|)*sin(1/x)存在 当x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0处是波动的所以不存在 而当x->0,y->0时 由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|) 而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^2 所以|f|<=|x|+|y| 所以显然当x->0,y->0时,f的极限就为0 这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的 正无穷或负无穷或无穷,我想这个就可以了 就我这个我就线了好久了 5

关于函数极限如何证明

关于函数极限如何证明 函数极限的性质是怎么一回事呢?这类的性质该怎么证明呢?下面就是学习啦给大家的函数极限的性质证明内容,希望大家喜欢。 X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限求极限我会 |Xn+1-A| 以此类推,改变数列下标可得|Xn-A| |Xn-1-A| …… |X2-A| 向上迭代,可以得到|Xn+1-A| 只要证明{x(n)}单调增加有上界就可以了。 用数学归纳法: ①证明{x(n)}单调增加。 x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则 x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1<4, 设x(k)<4,则 x(k+1)=√[2+3x(k)]<√(2+3*4)<4。

当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则: lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞ (2)lim[(3n+1)/(2n+1)]=3/2 n→∞ (3)lim[根号(n+1)-根号(n)]=0 n→∞ (4)lim0.999…9=1 n→∞n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。 n/(n^2+1)=0

函数与极限练习题

第一章 函数与极限 §1 函数 一、是非判断题 1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。 [ ] 2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有 B x f A ≤≤)( [ ] 3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。 [ ] 4、定义在(∞+∞-,)上的常函数是周期函数。 [ ] 5、任一周期函数必有最小正周期。 [ ] 6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。 [ ] 7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。 [ ] 8、f(x)=1+x+ 2 x 是初等函数。 [ ] 二.单项选择题 1、下面四个函数中,与y=|x|不同的是 (A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中 既是奇函数,又是单调增加的。 (A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是 (A )x 2log (B )x 2 (C )22log x (D )2 x 4、若)(x f 为奇函数,则 也为奇函数。 (A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D) )].([x f f - 三.下列函数是由那些简单初等函数复合而成。 1、 y=) 1arctan(+x e 2、 y=x x x ++ 3、 y=x ln ln ln

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

二元函数极限证明

经典合同 二元函数极限证明姓名:XXX 日期:XX年X月X日

二元函数极限证明 目录 第一篇:二元函数极限证明 第二篇:二元函数的极限 第三篇:二元函数极限的研究 第四篇:二元函数的极限与连续 第五篇:函数极限的证明 正文 第一篇:二元函数极限证明 二元函数极限证明 设p=f(x,y),p0=(a,b),当p→p0时f(x,y)的极限是x,y同时趋向于a,b时所得到的称为二重极限。 此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。 我们必须注意有以下几种情形:’ (1)两个二次极限都不存在而二重极限仍有可能存在 (2)两个二次极限存在而不相等 (3)两个二次极限存在且相等,但二重极限仍可能不存在 2 函数f(x)当x→x0时极限存在,不妨设:limf(x)=a(x→x0) 根据定义:对任意ε>0,存在δ>0,使当|x-x0|<δ时,有 |f(x)-a|<ε 而|x-x0|<δ即为x属于x0的某个邻域u(x0;δ) 第 2 页共 26 页

又因为ε有任意性,故可取ε=1,则有:|f(x)-a|<ε=1,即:a-1 再取m=max{|a-1|,|a+1|},则有:存在δ>0,当任意x属于x0的某个邻域u(x0;δ)时,有|f(x)| 证毕 3首先,我的方法不正规,其次,正确不正确有待考察。 1,y以y=x^2-x的路径趋于 0limitedsin(x+y)/x^2=limitedsinx^2/x^2=1而y=x的路径趋于0结果是无穷大。 2,3可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是p(x,y)以任何方式趋向于该点。 4 f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x) 显然有y->0,f->(x^2/|x|)*sin(1/x)存在 当x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0处是波动的所以不存在 而当x->0,y->0时 由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|) 而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^2 所以|f|<=|x|+|y| 所以显然当x->0,y->0时,f的极限就为0 这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的 正无穷或负无穷或无穷,我想这个就可以了 就我这个我就线了好久了 第 3 页共 26 页

函数、极限与连续复习题参考答案Word版

函数、极限与连续 复习题 一.填空题: 1. 函数1 1ln +-=x x y 的奇偶性是奇函数. 2. 设1 2)11(-=-x x x f ,则=)(x f 1 1x -. 3. 函数x e y -=1的复合过程是,1u y e u x ==-. 4. 函数y =sin ,12y u u v x ===+. 5. 设)(x f 的定义域是[0,1] , 则函数y=)(ln x f 的定义域[1,]e 6. =∞→x x x sin lim 0 . 7. =-∞→n n n )1 1(lim 1e - 8. 5 432lim 42-+-∞→n n n n =0 9. 设43 2lim 23=-+-→x k x x x ,则k =___-3_. 10. 设b ax x x x f ++-+= 1 3 4)(2,0)(lim =∞→x f x ,则=a __-4_,=b __-4. 11. 设0→x 时,b ax 与x x sin tan -为等价无穷小,则=a __1 2 __,=b __3__. 12. 函数3 21 2 --=x x y 的间断点有x=-1,x=3 连续区间是(,1),(1,3),(3,)-∞--+∞. 二、选择题 1、ln(1) y x =+ A ) A 、(—1,+∞) B 、]1,1(- C 、(—1,1) D 、(1,+∞) 2、当0→x 时,下列变量为无穷小量的是( D ) A 、x 1sin B 、x 1 cos C 、x e 1 D 、) 1ln(2x +

3、A x f x x =→)(lim 0 (A 为常数),则)(x f 在0x 处( D ) A 、一定有定义 B 、一定无定义 C 、有定义且A x f =)(0 D 、不一定有定义 4、设???≥+<=0,20,)(2x a x x e x f x 当时;当在点0=x 连续,则a 的值等于(D ) A 、0 B 、1 C 、—1 D 、2 1 5、函数)(x f = 3 2 -x ,则x=3是函数)(x f 的(D ) A 、连续点 B 、可去间断点 C 、跳跃间断点 D 、无穷间断点 6、)(x f 在0x 处左、右极限存在是)(x f 在0x 处连续的( B ) A 、充分条件 B 、必要条件 C 、充要条件 D 、以上都不是 三.求下列极限: 1. )1(lim 2x x x x -++∞ → 解:)1(lim 2 x x x x -++∞ → =lim x lim x = lim x =1 2 2. 3 tan sin lim x x x x →- 解:30tan sin lim x x x x →-=32 00 sin (1cos )sin 11cos lim lim()cos cos x x x x x x x x x x x →→--= =20 1cos lim x x x →-=2 202lim x x x →=12 3. x x x x ?? ? ??+-∞→11lim 解:x x x x ??? ??+-∞→11lim =11lim 11x x x x →∞??- ? ? ? +? ?=1e e -=2e - 4. x x x x x 3sin 2sin lim 0-+→

(完整版)函数极限与连续习题含答案,推荐文档

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。 函数的极限与连续训练题 1、已知四个命题:(1)若在点连续,则在点必有极限 )(x f 0x )(x f 0x x →(2)若在点有极限,则在点必连续 )(x f 0x x →)(x f 0x (3)若在点无极限,则在点一定不连续 )(x f 0x x →)(x f 0x x =(4)若在点不连续,则在点一定无极限。 )(x f 0x x =)(x f 0x x →其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若,则下列说法正确的是( C ) a x f x x =→)(lim 0A 、在处有意义 B 、)(x f 0x x =a x f =)(0 C 、在处可以无意义 D 、可以只从一侧无限趋近于)(x f 0x x =x 0 x 3、下列命题错误的是( D ) A 、函数在点处连续的充要条件是在点左、右连续 0x 0x B 、函数在点处连续,则)(x f 0x )lim ()(lim 00x f x f x x x x →→=C 、初等函数在其定义区间上是连续的 D 、对于函数有)(x f )()(lim 00 x f x f x x =→4、已知,则的值是( C )x x f 1)(= x x f x x f x ?-?+→?)()(lim 0A 、 B 、 C 、 D 、21x x 21x -x -5、下列式子中,正确的是( B )A 、 B 、 C 、 D 、1lim 0=→x x x 1)1(21lim 21=--→x x x 111lim 1=---→x x x 0lim 0=→x x x 6、,则的值分别为( A )51lim 21=-++→x b ax x x b a 、A 、 B 、 C 、 D 、67和-67-和67--和6 7和7、已知则的值是( C ),2)3(,2)3(-='=f f 3)(32lim 3--→x x f x x A 、 B 、0 C 、8 D 、不存在4-8、( D ) =--→33lim a x a x a x

1第一章 函数与极限答案

第一章 函数与极限 第一节 映射与函数 1.填空题: (1)函数)(x f y =与其反函数)(x y ?=的图形关于 x y = 对称. (2 )函数 2 1 ()1f x x = +-的定义域为__________________________; (3)若)(x f 的定义域是[0,1],则)1(2+x f 的定义域是 {0} . (4)设b ax x f +=)(,则=-+= h x f h x f x ) ()()(? a . (5)若,11)(x x f -=则=)]([x f f x x 1- ,=)]}([{x f f f x . (6)函数2 x x e e y --=的反函数为 。 (7 )函数y =: x ≥0,值域: 0≤y <1 ,反函数: x =-ln(1-y 2), 0≤y <1 2. 选择题: (1)下列正确的是:(B ,C ) A.2 lg )(x x f =与x x g lg 2)(=是同一函数. B.设)(x f 为定义在],[a a -上的任意函数,则)()(x f x f -+必为偶函数,)()(x f x f --必为奇函数. C.?? ? ??<-=>==0,10,00,1sgn x x x x y 是x 的奇函数. D.由任意的)(u f y =及)(x g u =必定可以复合成y 为x 的函数. . (2))sin()(2 x x x f -=是( A ). A.有界函数; B. 周期函数; C. 奇函数; D. 偶函数. (3)设54)(2 ++=bx x x f ,若38)()1(+=-+x x f x f ,则b 为( B ). A.1; B.–1; C.2; D.–2. (4)函数 2 1 arccos 1++-=x x y 的定义域是( )

高等数学函数极限练习试题

设x x x f += 12)(,求)(x f 的定义域及值域。 ,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。 在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。 的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。)()(x I x x -=? 的奇偶性。 判定函数)1ln()1()(x x e x f x x -+?-=+ [ )设,问在,上是否有界?f x e x f x x ()sin ()=+∞0 函数的图形是图中所示的折线,写出的表达式。y f x OBA y f x ==()() ???≤≤-<≤=????≤≤+<≤=., ; ,.,;, 设64240)(42220)(2 x x x x x x x x x x f [][].及求)()(x f x f ?? [][]设,; ,. ,求及.f x x x x x f x f x ()()()()=-≤>???=-101021??? ???>-≤=????>≤-=. ,; ,., ;,设000)(00)(2 x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ? []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥???1 2002?? []设,; , .求.f x x x x f f x ()()=+<≥???2020 .求.,; ,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ?+? ??≥<+=????≥<=

相关主题
文本预览
相关文档 最新文档