当前位置:文档之家› 高中物理选修3-2全册学案

高中物理选修3-2全册学案

高中物理选修3-2全册学案
高中物理选修3-2全册学案

第四章电磁感应

4.1划时代的发现

教学目标

(一)知识与技能

1.知道与电流磁效应和电磁感应现象的发现相关的物理学史。

2.知道电磁感应、感应电流的定义。

(二)过程与方法

领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性。

(三)情感、态度与价值观

1.领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。

2.以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。

教学重点、难点

教学重点

知道与电流磁效应和电磁感应现象的发现相关的物理学史。领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。

教学难点

领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。

教学方法

教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。

教学手段

计算机、投影仪、录像片

教学过程

一、奥斯特梦圆“电生磁”------电流的磁效应

引导学生阅读教材有关奥斯特发现电流磁效应的内容。提出以下问题,引导学生思考并回答:

(1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景?

(2)奥斯特的研究是一帆风顺的吗?奥斯特面对失败是怎样做的?

(3)奥斯特发现电流磁效应的过程是怎样的?用学过的知识如何解释?

(4)电流磁效应的发现有何意义?谈谈自己的感受。

学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。

二、法拉第心系“磁生电”------电磁感应现象

教师活动:引导学生阅读教材有关法拉第发现电磁感应的内容。提出以下问题,引导学生思考并回答:

(1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的

观点?

(2)法拉第的研究是一帆风顺的吗?法拉第面对失败是怎样做的?

(3)法拉第做了大量实验都是以失败告终,失败的原因是什么?

(4)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的“秘诀”是什么?

(5)从法拉第探索电磁感应现象的历程中,你学到了什么?谈谈自己的体会。

学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。

三、科学的足迹

1、科学家的启迪教材P4

2、伟大的科学家法拉第教材

四、实例探究

【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C)

A.安培B.赫兹C.法拉第D.麦克斯韦

【例2】发现电流磁效应现象的科学家是__奥斯特__,发现通电导线在磁场中受力规律的科学家是_安培_,发现电磁感应现象的科学家是_法拉第_,发现电荷间相互作用力规律的的科学家是_库仑_。

【例3】下列现象中属于电磁感应现象的是(B)

A.磁场对电流产生力的作用B.变化的磁场使闭合电路中产生电流

C.插在通电螺线管中的软铁棒被磁化D.电流周围产生磁场

五、学生的思考:

1、我们可以通过哪些实验与现象来说明(证实)磁现象与电现象有联系

2、如何让磁生成电?

4.2、探究电磁感应的产生条件

教学目标

(一)知识与技能

1.知道产生感应电流的条件。

2.会使用线圈以及常见磁铁完成简单的实验。

(二)过程与方法

学会通过实验观察、记录结果、分析论证得出结论的科学探究方法

(三)情感、态度与价值观

渗透物理学方法的教育,通过实验观察和实验探究,理解感应电流的产生条件。举例说明电磁感应在生活和生产中的应用。

教学重点、难点

教学重点:通过实验观察和实验探究,理解感应电流的产生条件。

教学难点:感应电流的产生条件。

教学方法

实验观察法、分析法、实验归纳法、讲授法

教学手段

条形磁铁(两个),导体棒,示教电流表,线圈(粗、细各一个),学生电源,开关,滑动变阻器,导线若干,

教学过程

一、基本知识

(一)知识准备

①磁通量

定义:公式:φ=BS 单位:符号:

推导:B=φ/S,磁感应强度又叫磁通密度,用Wb/ m2表示B的单位;

计算:当B与S垂直时,或当B与S不垂直时,φ的计算

②初中知识回顾:当闭合电路的一部分做切割磁感线运动时,电路中会产生感应电流。

电磁感应现象:由磁产生电的现象

(二)新课讲解

1、实验一:闭合电路的部分导线在匀强磁场中切割磁感线,教材P6图4.2-1

探究导线运动快慢与电流表示数大小的关系.

实验二:向线圈中插入磁铁,或把磁铁从线圈中抽出,教材P6图4.2-2

探究磁铁插入或抽出快慢与电流表示数大小的关系

2、模仿法拉第的实验:通电线圈放入大线圈或从大线圈中拔出,

或改变线圈中电流的大小(改变滑线变阻器的滑片位置),

教材P7图4.2-3

探究将小线圈从大线圈中抽出或放入快慢与电流表示数的关系

3、分析论证:

实验一:磁场强度不发生变化,但闭合线圈的面积发生变化;

实验二:①磁铁插入线圈时,线圈的面积不变,但磁场由弱变强;

②磁铁从线圈中抽出时,线圈的面积也不改变,磁场由强变弱;

实验三:①通电线圈插入大线圈时,大线圈的面积

不变,但磁场由弱变强;

②通电线圈从大线圈中抽出时,大线圈的

面积也不改变,但磁场由强变弱;

③当迅速移动滑线变阻器的滑片,小线圈

中的电流迅速变化,电流产生的磁场也随

之而变化,而大线圈的面积不发生变化,

但穿过线圈的磁场强度发生了变化。

4、归纳总结:

在几种实验中,有的磁感应强度没有发生变化,面积发生了变化;而又有的线圈的面积没有变化,但穿过线圈的磁感应强度发生了变化。其共同点是穿过线圈的磁通量发生了变化。磁通量变化的快慢与闭合回路中感应电流的大小有关。

结论:只要穿过闭合回路的磁通量发生变化,闭合电路中就有感应电流产生。

5、课堂总结:1、产生感应电流的条件:①电路闭合;②穿过闭合电路的磁通量发生改变

2、电磁感应现象:利用磁场产生电流的现象叫电磁感应现象

3、感应电流:由磁场产生的电流叫感应电流

6、例题分析

例1、右图哪些回路中比会产生感应电流

例2、如图,要使电流计G发生偏转可采用的方法是

A、K闭合或断开的瞬间

B、K闭合,P上下滑动

C、在A中插入铁芯

D、在B中插入铁芯

7、练习与作业

1、关于电磁感应,下列说法中正确的是

A导体相对磁场运动,导体内一定会产生感应电流

B导体做切割磁感线的运动,导体内一定会产生感应电流

C闭合电路在磁场中做切割磁感线的运动,电路中一定会产生感应电流

D穿过闭合电路的磁通量发生变化,电路中一定会产生感应电流

2、恒定的匀强磁场中有一圆形闭合圆形线圈,线圈平面垂直于磁场方向,当线圈在此磁场中做下列哪种运动时,线圈中能产生感应电流

A线圈沿自身所在的平面做匀速运动

B线圈沿自身所在的平面做加速直线运动

C线圈绕任意一条直径做匀速转动

D线圈绕任意一条直径做变速转动

3、如图,开始时距形线圈平面与磁场垂直,且一半在匀强磁场外,另一半在匀强磁场内,若要使线圈中产生感应电流,下列方法中可行的是

A以ab为轴转动

B以oo/为轴转动

C以ad为轴转动(转过的角度小于600)

D以bc为轴转动(转过的角度小于600)

4、如图,距形线圈abcd绕oo/轴在匀强磁场中匀速转动,下列说法中正确的是

A线圈从图示位置转过90?的过程中,穿过线圈的磁通量不断减小

B线圈从图示位置转过90?的过程中,穿过线圈的磁通量不断增大

C线圈从图示位置转过180?的过程中,穿过线圈的磁通量没有发生变化

D线圈从图示位置转过360?的过程中,穿过线圈的磁通量没有发生变化

6、在无限长直线电流的磁场中,有一闭合的金属线框abcd,线框平面与直导线ef在同一平面内(如图),当线框做下列哪种运动时,线框中能产生感应电流

A、水平向左运动

B、竖直向下平动

C、垂直纸面向外平动

D、绕bc边转动

4.3 法拉第电磁感应定律

教学目标

(一)知识与技能

1.知道什么叫感应电动势。

2.知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、E=△Φ/△t。3.理解法拉第电磁感应定律内容、数学表达式。

4.知道E=BLv sinθ如何推得。

5.会用E=n△Φ/△t和E=BLv sinθ解决问题。

(二)过程与方法

通过推导到线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。(三)情感、态度与价值观

1.从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想。

2.了解法拉第探索科学的方法,学习他的执著的科学探究精神。

教学重点、难点

教学重点:法拉第电磁感应定律。

教学难点:平均电动势与瞬时电动势区别。

教学方法

演示法、归纳法、类比法

教学手段

多媒体电脑、投影仪、投影片。

教学过程

一、基本知识

1、感应电动势

电磁感应现象:利用磁场产生电流的现象叫电磁感应现象

产生感应电流的条件:线路闭合,闭合回路中磁通量发生变化。

感应电动势:在电磁感应现象中产生的电动势叫感应电动势

产生条件:回路中的磁通量发生变化但回路不一定闭合

与什么因素有关:穿过线圈的磁通量的变化快慢(?φ/?t)有关(由前提节的实验分析可得)注意:磁通量的大小φ;磁通量的变化?φ;磁通量的变化快慢(?φ/?t)的区分

2、法拉第电磁感应定律

内容:电路中感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比。

公式:单匝线圈:E=?φ/?t

多匝线圈:E=n?φ/?t

适用范围:普遍适用

3、导线切割磁感线时产生的感应电动势

计算公式:E=BL vsinθ。θ—导线的运动方向与磁感线的夹角。

推导方法:

条件:导线的运动方向与导线本身垂直

适用范围:匀强磁场,导线切割磁感线

单位:1V=1T?1m?1m/s=1Wb/s

4、反电动势

电动机转动时,线圈中也会产生感应电动势,感应电动势总要削弱电源电动势的作用,我们就把感应电动势称为反电动势;其作用是阻碍线圈的转动。教材P12。

电动机在使用时的注意点:

二、例题分析

例1、如图,导体平行磁感线运动,试求产生的感应电动势的大小(速度与磁场的夹角θ,导线长度为L)

例2、如右图,电容器的电容为C,两板的间距为d,两板间静止一个质量为m,电量为+q的微粒,电容器C与一个半径为R的圆形金属环相连, 金属环内部充满垂

直纸面向里的匀强磁场.试求: ?B/?t等于多少?

例3、如右图, 无限长金属三角形导轨COD上放一根无限长金属导体棒MN,拉动MN使它以速度v向右匀速运动,如果导轨和金属棒都是粗细相同的均匀导体,

电阻率都相同,那么MN运动过程中,闭合回路的

A感应电动势保持不变B感应电动流保持不变

C感应电动势逐渐增大D感应电动流逐渐增大

三、练习与作业

1、如右图,平行放置的金属导轨M、N之间的距离为L;一金属杆长为2L,一端以转轴o/固定在导轨N上,并与M无摩擦接触,杆从垂直于导轨的位置,在导轨平面内以角速度ω顺时针匀速转动至另一端o/脱离导轨M。若两导挥间是一磁感应强度为B ,方向垂直于纸面向里的匀强磁场,不计一切电阻,则在上述整个转动过程中

A、金属杆两端的电压不断增大

B、o/端的电势总是高于o端的电势

C、两导轨间的最大电压是2BL2ω

D、两导轨间的平均电压是271/2BL2ω/2π

2、如右图,在磁感应强度为B的匀强磁场中,一直角边长度为a,电阻为R的等腰直角三

角形导线框以速度v垂直于斜边方向在纸面内运动,磁场与纸面垂直,则导

线框的斜边产生的感应电动势为,导线框中的感应电流强度

为。

3、如左图,一边长为a,电阻为R的正方形导线框,以恒定的速度v向右进入以MN为边

界的匀强磁场,磁场方向垂直于线框平面,磁感应强度为B,MN与线

框的边成45?角,则在线框进入磁场过程中产生的感应电流的最大值等

4、如图,长为L的金属杆在垂直纸面向里的磁感应强度为B的匀强磁

场中,沿逆时针方向绕o点在纸面内匀速转动,若角速度为ω,则杆两

端a、b和o间的电势差U a o=以及U bo=

5、半径为10cm、电阻为0.2 的闭合金属圆环放在匀强磁场中,磁场方向垂直于圆环所在平面,当磁感应强度为B从零开始随时间t成正比增加时,环中感应电流

为0.1A。试写出B与t的关系式(B、t的单位分别取T、s)

6、如图,导线全部为裸导线,半径为r的圆内有垂直于圆平面的匀强磁场,感应强度为B。一根长度大于2r的导线MN以速度v在圆环上无摩擦地自左端匀速滑动到右端,电路的固定电阻为R,其余电阻不计,试求MN从圆环的左端滑到右端的过程中电阻R上的电流强度的平均值及通过的电量。

4.4 楞次定律

教学目标

(一)知识与技能

1.掌握楞次定律的内容,能运用楞次定律判断感应电流方向。

2.培养观察实验的能力以及对实验现象分析、归纳、总结的能力。

3.能够熟练应用楞次定律判断感应电流的方向

4.掌握右手定则,并理解右手定则实际上为楞次定律的一种具体表现形式。

(二)过程与方法

1.通过实践活动,观察得到的实验现象,再通过分析论证,归纳总结得出结论。

2.通过应用楞次定律判断感应电流的方向,培养学生应用物理规律解决实际问题的能力。

(三)情感、态度与价值观

在本节课的学习中,同学们直接参与物理规律的发现过程,体验了一次自然规律发现过程中的乐趣和美的享受,并在头脑中进一步强化“实践是检验真理的唯一标准”这一辩证唯物主义观点。

教学重点、难点

教学重点:1.楞次定律的获得及理解。

2.应用楞次定律判断感应电流的方向。

3.利用右手定则判断导体切割磁感线时感应电流的方向。

教学难点:楞次定律的理解及实际应用。

教学方法

发现法,讲练结合法

教学手段

干电池、灵敏电流表、外标有明确绕向的大线圈、条形磁铁、导线。

教学过程

一、基本知识

1.实验.

(1)选旧干电池用试触的方法查明电流方向与

电流表指针偏转方向的关系.

明确:对电流表而言,电流从哪个接线柱流入,

指针向哪边偏转.

(2)闭合电路的一部分导体做切割磁感线的情况.

a.磁场方向不变,两次改变导体运动方向,如导体向右和向左运动.

b.导体切割磁感线的运动方向不变,改变磁场方向.

根据电流表指针偏转情况,分别确定出闭合电路的一部分导体在磁场中做切割磁感线运动时,产生的感应电流方向.

感应电流的方向跟导体运动方向和磁场方向都有关系.感应电流的方向可以用右手定则加以判定.

右手定则:伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动方向,其余四指指的就是感应电流的方向.

(3)闭合电路的磁通量发生变化的情况:

实线箭头表示原磁场方向,虚线箭头表示感应电流磁场方向.

分析:

(甲)图:当把条形磁铁N极插入线圈中时,穿过线圈的磁通量增加,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相反.

(乙)图:当把条形磁铁N极拔出线圈中时,穿过线圈的磁通量减少,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相同.

(丙)图:当把条形磁铁S极插入线圈中时,穿过线圈的磁通量增加,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相反.

(丁)图:当条形磁铁S极拔出线圈中时,穿过线圈的磁通量减少,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相同.

通过上述实验,引导学生认识到:凡是由磁通量的增加引起的感应电流,它所激发的磁场一定阻碍原来磁通量的增加;凡是由磁通量的减少引起的感应电流,它所激发的磁场一定阻碍原来磁通量的减少.在两种情况中,感应电流的磁场都阻碍了原磁通量的变化.

2、实验结论:楞次定律--感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化.

说明:对“阻碍”二字应正确理解.“阻碍”不是“阻止”,而只是延缓了原磁通的变化,电路中的磁通量还是在变化的.例如:当原磁通量增加时,虽有感应电流的磁场的阻碍,磁通量还是在增加,只是增加的慢一点而已.实质上,楞次定律中的“阻碍”二字,指的是“反抗着产生感应电流的那个原因.”

3、应用楞次定律判定感应电流的步骤(四步走).

(1)明确原磁场的方向;

(2)明确穿过闭合回路的磁通量是增加还是减少;

(3)根据楞次定律,判定感应电流的磁场方向;

(4)利用安培定则判定感应电流的方向.

4、推论:当导线切割磁感线时可用右手定则来判定,即大拇指与四指垂直,让磁感线垂直穿过手心,大拇指指向导线的运动方向,则四指的指向为感应电流的方向

二、例题分析

例1、在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M相接,如图,导轨上

放一根导线ab,磁感线垂直于导轨所在平面。欲使M所包围的

小闭合线圈N产生顺时针方向的感应电流,则导线的运动情况可

能是

A、匀速向右运动

B、加速向右运动

C、减速向右运动

D、加速向左运动

例2、如图,水平地面上方有正交的匀强磁场和匀强电场,电场竖直

向下,磁场垂直纸面向里,半圆形铝框从直径出于水平位置时开

始下落,不计阻力,a、b两端落到地面的次序是

A、a先于b

B、b先于a

C、a、b同时落地

D、无法判定

例3、如图,电容器PQ的电容为10μF,垂直于回路的磁场的磁感应强

度以5?10-3T/s的变化率均匀增加,回路面积为10-2m2。则PQ两极

电势差的绝对值为V。P极所带电荷的种类为,带

电量为C。

三、练习与作业

1、一根沿东西方向的水平导线,在赤道上空自由落下的过程中,导线上各点的电势

A、东端最高

B、西端最高

C、中点最高

D、各点一样高

2、如右图,匀强磁场垂直于圆形线圈指向纸里,a、b、c、d为圆形线圈上等距离的四点,

现用外力作用在上述四点,将线圈拉成正方形,设线圈导线不可伸长,且

线圈仍处于原先所在的平面内,则在线圈发生形变的过程中

A、线圈中将产生abcd方向的感应电流

B、线圈中将产生adcb方向的感应电流

C、线圈中将产生感应电流的方向先是abcd,后是adcb

D、线圈中无感应电流

3、如右图,一均匀的扁平条形磁铁的轴线与一圆形线圈在同一平面内,磁铁中心与圆心重

合。为了在磁铁开始运动时在线圈中得到逆时针方向的感应电流,磁铁

的运动方式应是

A、N极向纸内,S极向纸外,使磁铁绕O点转动

B、S极向纸内,N极向纸外,使磁铁绕O点转动

C、使磁铁在线圈平面内绕O点顺时针转动

D、使磁铁在线圈平面内绕O逆时针转动

4、如右图,ab是一个可绕垂直于纸面的轴O转动的闭合距形导线框,E是电源,当滑线变阻器R的滑片P自左向右滑行时,线框ab将

A、保持静止不动

B、沿逆时针方向转动

C、沿顺时针方向转动

D、发生转动,但电源极性不明,无法确定转动方向。

4.5 感生电动势和动生电动势

教学目标

(一)知识与技能

1.知道感生电场。

2.知道感生电动势和动生电动势及其区别与联系。

(二)过程与方法

通过同学们之间的讨论、研究增强对两种电动势的认知深度,同时提高学习物理的兴趣。(三)情感、态度与价值观

通过对相应物理学史的了解,培养热爱科学、尊重知识的良好品德。

教学重点、难点

教学重点:感生电动势与动生电动势的概念。

教学难点:对感生电动势与动生电动势实质的理解。

教学方法

讨论法,讲练结合法

教学手段

多媒体课件

教学活动

(一)引入新课

什么是电源?什么是电动势?

电源是通过非静电力做功把其他形式能转化为电能的装置。

如果电源移送电荷q时非静电力所做的功为W,那么W与q的比值W/q,叫做电源的电动势。用E表示电动势,则:E=w/q

在电磁感应现象中,要产生电流,必须有感应电动势。这种情况下,哪一种作用扮演了非静电力的角色呢?下面我们就来学习相关的知识。

(二)进行新课

1、感应电场与感生电动势

投影教材图4.5-1,穿过闭会回路的磁场增强,在回路中产

生感应电流。是什么力充当非静电力使得自由电荷发生定向运

动呢?英国物理学家麦克斯韦认为,磁场变化时在空间激发出

一种电场,这种电场对自由电荷产生了力的作用,使自由电荷

运动起来,形成了电流,或者说产生了电动势。这种由于磁场

的变化而激发的电场叫感生电场。感生电场对自由电荷的作用

力充当了非静电力。由感生电场产生的感应电动势,叫做感生电动势。

例题:教材P22,例题分析

2、洛伦兹力与动生电动势

(投影)教材P23的〈思考与讨论〉

1.导体中自由电荷(正电荷)具有水平方向的速度,由左手定则可判断受到沿棒向上的洛伦兹力作用,其合运动是斜向上的。

2.自由电荷不会一直运动下去。因为C、D两端聚集电荷越来越多,在CD棒间产生的电场越来越强,当电场力等于洛伦兹力时,自由电荷不再定向运动。

3.C端电势高。

4.导体棒中电流是由D指向C的。

一段导体切割磁感线运动时相当于一个电源,这时非静电力与洛伦兹力有关。由于导体运动而产生的电动势叫动生电动势。

如图所示,导体棒运动过程中产生感应电流,试分析电路中的能量

转化情况。

导体棒中的电流受到安培力作用,安培力的方向与运动方向相反,

阻碍导体棒的运动,导体棒要克服安培力做功,将机械能转化为电能。

(四)实例探究 【例1】如图所示,一个闭合电路静止于磁场中,由于磁场强弱的变

化,而使电路中产生了感应电动势,下列说法中正确的是(AC )

A .磁场变化时,会在在空间中激发一种电场

B .使电荷定向移动形成电流的力是磁场力

C .使电荷定向移动形成电流的力是电场力

D .以上说法都不对

【例2】如图所示,导体AB 在做切割磁感线运动时,将产生一

个电动势,因而在电路中有电流通过,下列说法中正确的是(AB )

A .因导体运动而产生的感应电动势称为动生电动势

B .动生电动势的产生与洛仑兹力有关

C .动生电动势的产生与电场力有关

D .动生电动势和感生电动势产生的原因是一样的

【例3】如图所示,两根相距为L 的竖直平行金属导轨位于磁感应强

度为B 、方向垂直纸面向里的匀强磁场中,导轨电阻不计,另外两根与上

述光滑导轨保持良好接触的金属杆ab 、cd 质量均为m ,电阻均为R ,若

要使cd 静止不动,则ab 杆应向 上运动,速度大小为_2mgR/B 2L 2_,作用

于ab 杆上的外力大小为_2mg _

巩固练习

1.如图所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆

周运动,当磁感应强度均匀增大时,此粒子的动能将(B )

A .不变

B .增加

C .减少

D .以上情况都可能

2.穿过一个电阻为l Ω的单匝闭合线圈的磁通量始终是每秒钟均

匀地减少2Wb ,则(BD )

A .线圈中的感应电动势一定是每秒减少2V

B .线圈中的感应电动势一定是2V

C .线圈中的感应电流一定是每秒减少2A

D .线圈中的感应电流一定是

2A

磁场变强

3.在匀强磁场中,ab、cd两根导体棒沿两根导轨分别以速度v1、v2滑动,如图所示,下列情况中,能使电容器获得最多电荷量且左边极板带正电的是

(C)

A.v1=v2,方向都向右B.v1=v2,方向都向左

C.v1>v2,v1向右,v2向左D.v1>v2,v1向左,v2向右

4.如图所示,面积为0.2m2的100匝线圈处在匀强磁场

中,磁场方问垂直于线圈平面,已知磁感应强度随时间变化的规律为B=

(2+0.2t)T,定值电阻R1=6Ω,线圈电阻R2=4Ω,求:

(1)磁通量变化率,回路的感应电动势;(4V)

(2)a、b两点间电压U ab(2.4A)

5.如图所示,在物理实验中,常用“冲击式电流计”来测定通过某闭合电路的电荷量.探测器线圈和冲击电流计串联后,又能测定磁场的磁感应强度.已知线圈匝数为n,面积为S,线圈与冲击电流计组成的回路电阻为R,把线圈放在被测匀强磁场中,开始时线圈与磁场方向垂直,现将线圈翻转180°,冲击式电流计测出通过线圈的电荷量为q,由此可知,被测磁场的磁磁感应强度B=__qR/2nS__

6.如图所示,A、B为大小、形状均相同且内壁光滑,但用不同材料制成的圆管,竖直固定在相同高度.两个相同的磁性小球,同时从A、B管上端的管口无初速释放,穿过A 管的小球比穿过B管的小球先落到地面.下面对于两管的描述中可能正确的是(AD)A.A管是用塑料制成的,B管是用铜制成的

B.A管是用铝制成的,B管是用胶木制成的

C.A管是用胶木制成的,B管是用塑料制成的

D.A管是用胶木制成的,B管是用铝制成的

4.6 互感和自感

一、教学目标:

(一)知识与技能

①了解互感和自感现象

②了解自感现象产生的原因

③知道自感现象中的一个重要概念——自感系数,了解它的单位及影响其大小的因素(二)过程与方法:

引导学生从事物的共性中发掘新的个性,从发生电磁感应现象的条件和有关电磁感应得规律,提出自感现象,并推出关于自感的规律。会用自感知识分析,解决一些简单的问题,并了解自感现象的利弊以及对它们的防止和利用

(三)情感、态度、价值观

培养学生的自主学习的能力,通过对已学知识的理解实现知识的自我更新,以适应社会对人才的要求

二、重点、难点及解决办法

1.重点:自感现象及自感系数

2.难点:①自感现象的产生原因分析②通、断电自感的演示实验中现象解释

3.解决办法:

通过分析实验电路和直观的演示实验,引导学生运用已学的电磁感应知识进行分析、归纳,再利用电路中的并联规律,从而帮助学生突破本节重点、排除难点。

三.学生活动设计:

启发引导学生利用前面学过的电路知识及电磁感应知识,分析通电自感和断电自感的电路图,预测将会产生的实验现象,然后再通过观察实验现象验证自身的思维,并归纳总结自感现象这一规律产生的原因。

四.教具准备

通、断电自感演示装置,电池四节(带电池盒)导线若干

五.重点、难点的学习与目标完成过程

引入新课

问题情景:①发生电磁感应的条件是什么?②怎样得到这种条件,也就是让闭合回路中磁通量发生变化?③下面这两种电路中当电键断开和闭合瞬间会发生电磁感应现象吗?如果会发生,它们有什么不同呢?

(一)互感现象

1、基本概念:①互感:②互感现象:③互感电动势:

2、互感的理解:

(1)、如右图断开、闭合开关瞬间会发生电磁感应吗?(2)这是互感吗?

小结:互感现象不仅发生与绕在同一铁芯上的两个何相互靠近的电路之间。线圈之间,而且可以发生于任何两个相互靠近的电路之间。

问题情景:(互感中的能量)另一电路中能量从哪儿来的?

小结:互感现象可以把能量从一个电路传到另一个电路。

3、互感的应用和防止:

(二)自感现象

1、问题情景:由电流的磁效应可知,线圈通电后周围就有磁场产生,电流变化,则磁场也变化,那么对于这个线圈自身来说穿过它的磁通量在此过程中也发生了变化。是否此时也发生了电磁感应现象呢?我们通过实验来解决这个问题。

2、演示实验:

实验1 (演示P25实验)出示自感演示器,通电自感。

提出问题:闭合S瞬间,会有什么现象呢?引导学生做预

测,然后进行实验。(实验前事先闭合开关S,调节变阻器

R和R1使两灯正常发光,然后断开开关,准备好实验)。

开始做实验,闭合开关S,提示学生注意观察现象

观察到的现象:在闭合开关S瞬间,灯A2立刻正常发光,A1比A2迟一段时间才正常发光。学思考现象原因。请学生分析现象原因。

总结:由于线圈L自身的磁通量增加,而产生了感应电动势,这个感应电动势总是阻碍磁通量的变化,既阻碍线圈中电流的变化,故通过A1的电流不

能立即增大,灯A1的亮度只能慢慢增加,最终与A2相同。

实验2(演示课本P26实验)断电自感

先给学生几分钟时间看课本实验,预测实验现象,是回

答课本思考与讨论问题。

3.结论:

小结:线圈中电流发生变化时,自身产生感应电动势,这个感应电动势阻碍原电流的变化。自感现象:由于导体本身的电流发生变化而产生的电磁感应现象叫自感现象。

自感电动势:自感现象中产生的感应电动势叫自感电动势。

4.磁场的能量

问题情景:在图4.6---4中,开关断开后,灯泡的发光还能持续一段时间,有时甚至比开关断开前更亮,这时灯泡的能量是从哪里来的呢?

教师引导学生分析,电源断开以后,线圈中电流不会立即消失,这时的电流仍然可以做功,说明线圈储存能量。当开关闭合时,线圈中的电流从无到有,其中的磁场也是从天到有,这可以看作电源把能量输送到磁场,储存在磁场中。这里我们知识一个合理的假设,有关电磁场能量的直接式样验证,要在我们认识了电磁波之后才有可能。

5.自感现象的理解:

线圈中电流的变化不能在瞬间完成,即不能“突变”。也可以说线圈能体现电的惯性6.自感的应用与防止:

应用:日光灯防止:变压器、电动机

(三)自感系数

问题情景:我们都知道感应电动势的大小与回路中磁通量变化的快慢有关,而自感现象中的自感电动势是感应电动势的一种,那么就是说,自感电动势也应正比于穿过线圈的磁通量的变化率,即:E∝△Φ/△t,而磁场的强弱又正比于电流的强弱,即磁通量的变化正比于电流的变化。所以也可以说,自感电动势正比于电流的变化率。即E∝△I/△t写成等式即:E=L△I/△t

2.自感系数,简称自感或电感,用字母L表示。影响因素:形状、长短、匝数、有无铁芯。3.单位:亨利符号:H 常用单位:毫亨(mH)微亨(μH)

(四)实例探究

【例1】如图所示,电路甲、乙中,电阻R和自感线圈L的电阻值都很小,接通S,使电路达到稳定,灯泡D发光。则(AD)

A.在电路甲中,断开S,D将逐渐变暗

B.在电路甲中,断开S,D将先变得更亮,然

后渐渐变暗

C.在电路乙中,断开S,D将渐渐变暗

D.在电路乙中,断开S,D将变得更亮,然后渐渐变暗

【例2】如图所示,自感线圈的自感系数很大,电阻为零。电

键K原来是合上的,在K断开后,分析:

(1)若R1>R2,灯泡的亮度怎样变化?

(2)若R1<R2,灯泡的亮度怎样变化?

巩固练习

1.下列关于自感现象的说法中,正确的是(ACD)

A.自感现象是由于导体本身的电流发生变化而产生的电磁感应现象

B.线圈中自感电动势的方向总与引起自感的原电流的方向相反

C.线圈中自感电动势的大小与穿过线圈的磁通量变化的快慢有关

D.加铁芯后线圈的自感系数比没有铁芯时要大

2.关于线圈的自感系数,下面说法正确的是(D)

A.线圈的自感系数越大,自感电动势一定越大

B.线圈中电流等于零时,自感系数也等于零

C.线圈中电流变化越快,自感系数越大

D.线圈的自感系数由线圈本身的因素及有无铁芯决定

4.如图所示,L为一个自感系数大的自感线圈,开关闭合后,

小灯能正常发光,那么闭合开关和断开开关的瞬间,能观察到的现

象分别是(A)

A.小灯逐渐变亮,小灯立即熄灭

B.小灯立即亮,小灯立即熄灭

C.小灯逐渐变亮,小灯比原来更亮一下再慢慢熄灭

D.小灯立即亮,小灯比原来更亮一下再慢慢熄灭

六、课堂小结

1、自感现象是电磁感应现象中特殊情形,它的产生原因是由于通过导体自身的电流发生变化.

2、自感电动势的大小与电流变化快慢和自感系数有关,它总是阻碍导体中电流的变化。

七、布置作业:课后习题

4.7 涡流

教学目标

(一)知识与技能

1.知道涡流是如何产生的。

2.知道涡流对我们有不利和有利的两方面,以及如何利用和防止。

3.知道电磁阻尼和电磁驱动。

(二)过程与方法

培养学生客观、全面地认识事物的科学态度。

(三)情感、态度与价值观

培养学生用辩证唯物主义的观点认识问题。

教学重点、难点

教学重点

1.涡流的概念及其应用。

2.电磁阻尼和电磁驱动的实例分析。

★教学难点

电磁阻尼和电磁驱动的实例分析。

教学方法

通过演示实验,引导学生观察现象、分析实验

教学手段

电机、变压器铁芯、演示涡流生热装置(可拆变压器)、电磁阻尼演示装置(示教电流表、微安表、弹簧、条形磁铁),电磁驱动演示装置(U形磁铁、能绕轴转动的铝框)。

教学活动

(一)引入新课

出示电动机、变压器铁芯,引导学生仔细观察其铁芯有什么特点?

它们的铁芯都不是整块金属,而是由许多薄片叠合而成的。

为什么要这样做呢?用一个整块的金属做铁心不是更省事儿?学习了涡流的知识,同学们就会知道其中的奥秘。

(二)进行新课

1、涡流

[演示1]涡流生热实验。

在可拆变压器的一字铁下面加一块厚约2mm的铁板,铁板

垂直于铁芯里磁感线的方向。在原线圈接交流电。几分钟后,

让学生摸摸铁芯和铁板,比较它们的温度,报告给全班同学。

为什么铁芯和铁板会发热呢?原来在铁芯和铁板中有涡流

产生。安排学生阅读教材,了解什么叫涡流?

当线圈中的电流发生变化时,这个线圈附近的导体中就会

产生感应电流。这种电流看起来很像水的旋涡,所以叫做涡流。

课件演示,涡流的产生过程,增强学生的感性认识。

因为铁板中的涡流很强,会产生大量的热。而铁芯中的涡流被限制在狭窄的薄片之内,回路的电阻很大,涡流大为减弱,涡流产生的热量也减少。

2、电磁阻尼

阅读教材30页上的“思考与讨论”,分组讨论,然后发表自己的见解。

导体在磁场中运动时,感应电流使导体受到安培力的作用,安培力的方

向总是阻碍导体的运动,这种现象称为电磁阻尼。

[演示2]电磁阻尼。

按照教材“做一做”中叙述的内容,演示电表指针在偏转过程中受到的

电磁阻尼现象。

[演示3]如图所示,弹簧下端悬挂一根磁铁,将磁铁托起到某高度后

释放,磁铁能振动较长时间才停下来。如果在磁铁下端放一固定线圈,磁铁

会很快停下来。上述现象说明了什么?

当磁铁穿过固定的闭合线圈时,在闭合线圈中会产生感应电流,感应电流的磁场会阻碍磁铁和线圈靠近或离开,也就是磁铁振动时除了空气阻力外,还有线圈的磁场力作为阻力,安培阻力较相对较大,因而磁铁会很快停下来。

3、电磁驱动

[演示4]电磁驱动。

演示教材31页的演示实验。引导学生观察并解释实验现象。

磁场相对于导体运动时,感应电流使导体受到安培力的作用,安培力使导体运动起来,这种现象称为电磁驱动。

交流感应电动机就是应用电磁驱动的原理工作的。简要介绍交流感应电动机的工作过程。

(四)实例探究

【例1】如图所示是高频焊接原理示意图.线圈中通以高频变化的电流时,待焊接的金属工件中就产生感应电流,感应电流通过焊缝产生大量热量,将金属融化,把工件焊接在一起,而工件其他部分发热很少,以下说法正确的是(AD)

A.电流变化的频率越高,焊缝处的温度升高的越快

B.电流变化的频率越低,焊缝处的温度升高的越快

C.工件上只有焊缝处温度升的很高是因为焊缝处的

电阻小

D.工件上只有焊缝处温度升的很高是因为焊缝处的

电阻大

巩固练习

1.如图所示,一块长方形光滑铝板水平放在桌面上,铝板右端拼接一根与铝板等厚的条形磁铁,一质量分布均匀的闭合铝环以初速度v从板的左端沿中线向右端滚动,则(B)A.铝环的滚动速度将越来越小

B.铝环将保持匀速滚动

C.铝环的运动将逐渐偏向条形磁铁的N极或S极

D.铝环的运动速率会改变,但运动方向将不会发生改变

2.如图所示,闭合金属环从曲面上h高处滚下,又沿曲面的另一侧上升,设环的初速为零,摩擦不计,曲面处在图示磁场中,则(BD)

A.若是匀强磁场,环滚上的高度小于h

B.若是匀强磁场,环滚上的高度等于h

C.若是非匀强磁场,环滚上的高度等于h

D.若是非匀强磁场,环滚上的高度小于h

3.如图所示,在光滑水平面上固定一条形磁铁,有一小球以一定的初速度向磁铁方向

运动,如果发现小球做减速运动,则小球的材料可能是(CD)

A.铁B.木C.铜D.铝

4.如图所示,圆形金属环竖直固定穿套在光滑水平导轨上,

条形磁铁沿导轨以初速度v0向圆环运动,其轴线在圆环圆心,与

环面垂直,则磁铁在穿过环过程中,做___减速___运动.(选填“加

速”、“匀速”或“减速”)

5.如图所示,在O点正下方有一个具有理想边界的磁场,铜环在A点由静止释放向右摆至最高点B.不考虑空气阻力,则下列说法正确的是(B)

A.A、B两点在同一水平线B.A点高于B点

C.A点低于B点D.铜环将做等幅摆动

作业

1、认真阅读教材。

2、思考并完成“问题与练习”中的习题。

3、收集“涡流的利用和防止”方面的资料,课后交流。

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

教科版高中物理选修3-1全册学案

第一章静电场 第1节电荷及其守恒定律 三种起电方式的区别和联系 摩擦起电感应起电接触起电 产生及条件两不同绝缘体摩擦时导体靠近带电体时带电导体和导体接触时现象 两物体带上等量异种电 荷 导体两端出现等量异种 电荷,且电性与原带电体 “近异远同” 导体上带上与带电体相 同电性的电荷原因 不同物质的原子核对核 外电子的束缚力不同而 发生电子转移 导体中的自由电子受到 带正(负)电物体吸引(排 斥)而靠近(远离) 电荷之间的相互排斥实质 电荷在物体之间和物体 内部的转移 接触起电的电荷分配原则 两个完全相同的金属球接触后电荷会重新进行分配,如图1-1-2所示. 电荷分配的原则是:两个完全相同的金属球带同种电荷接触后平分原来所带电荷量的总和;带异种电荷接触后先中和再平分. 图1-1-2 1.“中性”与“中和”之间有联系吗? “中性”和“中和”是两个完全不同的概念,“中性”是指原子或者物体所带的正电荷和负电荷在数量上相等,对外不显电性,表现为不带电的状态.可见,任何不带电的物体,实际上其中都带有等量的异种电荷;“中和”是指两个带等量异种电荷的物体,相互接触时,由于正负电荷间的吸引作用,电荷发生转移,最后都达到中性状态的一个过程. 2.电荷守恒定律的两种表述方式的区别是什么? (1)两种表述:①电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移的过程中,电荷的总量保持不变.②一个与外界没有电荷交换的系统,电荷的代数和总是保持不变的. (2)区别:第一种表述是对物体带电现象规律的总结,一个原来不带电的物体通过某种方法可以带电,原来带电的物体也可以使它失去电性(电的中和),但其实质是电荷的转移,电荷的数量并没有减少.第二种表述则更具有广泛性,涵盖了包括近代物理实验发现的微观粒子在变化中

高中物理选修32知识点详细汇总

电磁感应现象愣次定律 一、电磁感应 1.电磁感应现象 只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。 产生的电流叫做感应电流. 2.产生感应电流的条件:闭合回路中磁通量发生变化 3. 磁通量变化的常见情况(Φ改变的方式): ①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S 增大或减小 ②线圈在磁场中转动导致Φ变化。线圈面积与磁感应强度二者之间夹角发生变化。如匀强磁场中转动的矩形线圈就是典型。 ③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化 (Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件: 无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源. 电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,如果回路不闭合,则只能出现感应电动势, 而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化 二、感应电流方向的判定 1.右手定则:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手 掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即 为感应电流方向(电源). 用右手定则时应注意: ①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定, ②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直. ③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向. ④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势. ⑤“因电而动”用左手定则.“因动而电”用右手定则. ⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。 导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便. 2.楞次定律 (1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化. (感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。 (定语) 主语 (状语) 谓语 (补语) 宾语 (2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。阻碍磁通量变化指: 磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用); 磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”. (3)楞次定律另一种表达:感应电流的效果总是要阻碍 ...).产生感应电流的原因. (F安方向就起到阻 ..(.或反抗

全套下载(共15份145页)人教版高中物理选修3-3教学案全集(含全套练习)

(共15套145页)人教版高中物理选修3-3教学案全集(含全册练习)

第1节 气体的等温变化 1.一定质量的气体,在温度不变的条件下,其压强与体积变化时的关系,叫做气体的等温变化. 2.玻意耳定律:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比,即pV =C . 3.等温线:在p -V 图像中,用来表示温度不变时,压强和体积关系的图像,它们是一些双曲线. 在p -1V 图像中,等温线是倾斜直线.

一、探究气体等温变化的规律 1.状态参量 研究气体性质时,常用气体的温度、体积、压强来描述气体的状态. 2.实验探究

二、玻意耳定律 1.内容 一定质量的某种气体,在温度不变的情况下,压强与体积成反比. 2.公式 pV=C或p1V1=p2V2. 3.条件 气体的质量一定,温度不变. 4.气体等温变化的p -V图像 气体的压强p随体积V的变化关系如图8-1-1所示,图线的形状为双曲线,它描述的是温度不变时的p -V关系,称为等温线. 一定质量的气体,不同温度下的等温线是不同的. 图8-1-1 1.自主思考——判一判

(1)一定质量的气体压强跟体积成反比. (×) (2)一定质量的气体压强跟体积成正比. (×) (3)一定质量的气体在温度不变时,压强跟体积成反比. (√) (4)在探究气体压强、体积、温度三个状态参量之间关系时采用控制变量法. (√) (5)玻意耳定律适用于质量不变、温度变化的气体. (×) (6)在公式pV =C 中,C 是一个与气体无关的参量. (×) 2.合作探究——议一议 (1)用注射器对封闭气体进行等温变化的实验时,在改变封闭气体的体积时为什么要缓慢进行? 提示:该实验的条件是气体的质量一定,温度不变,体积变化时封闭气体自身的温度会发生变化,为保证温度不变,应给封闭气体以足够的时间进行热交换,以保证气体的温度不变. (2)玻意耳定律成立的条件是气体的温度不太低、压强不太大,那么为什么在压强很大、温度很低的情况下玻意耳定律就不成立了呢? 提示:①在气体的温度不太低、压强不太大时,气体分子之间的距离很大,气体分子之间除碰撞外可以认为无作用力,并且气体分子本身的大小也可以忽略不计,这样由玻意耳定律计算得到的结果与实际的实验结果基本吻合,玻意耳定律成立. ②当压强很大、温度很低时,气体分子之间的距离很小,此时气体分子之间的分子力引起的效果就比较明显,同时气体分子本身占据的体积也不能忽略,并且压强越大,温度越低,由玻意耳定律计算得到的结果与实际的实验结果之间差别越大,因此在温度很低、压强很大的情况下玻意耳定律也就不成立了. (3)如图8-1-2所示,p -1 V 图像是一条过原点的直线,更能直观描述压强与体积的关系, 为什么直线在原点附近要画成虚线?

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高中物理选修3-4全册导学案

选修3-4全册教学学案 选修3-4_11.1简谐振动 【学习目标】 1.认识弹簧振子并能判断出振动的平衡位置。 2.理解简谐运动的位移-时间图像是一条正(余)弦曲线,知道简谐运动图 像的意义。 3.能够根据简谐运动图像弄清楚各时刻质点的位移、速度和加速度的方向 和大小规律。 【自主学习】 1.弹簧振子 (1).组成:由______和________组成的系统叫弹簧振子,它是一个理想化 的模型(为什么?)。 (2).平衡位置:振子__________时的位置。 (3).机械振动:振子在______位置附近的________运动,简称________。 2.简谐运动及其图像 (1).简谐运动:质点的位移与时间的关系遵从___________规律,即它的振 动图像(x-t 图像)是一条________曲线。简谐运动是最简单、最基本的振动, 弹簧振子的运动就是__________。 (2).简谐运动的图像 ①坐标系的建立:在简谐运动的图像中,以横坐标表示______,以纵坐标表 示振子离开平衡位置的_________。 ②物理意义:表示振动物体的_______随_______的变化规律。 重点知识或易混知识 问题1.根据对平衡位置的理解,判断正误并举例说明 ① 在弹簧振子中弹簧处于原长时的状态为平衡状态。 ② 在弹簧振子中物块速度为零时的状态为平衡状态。 ③在弹簧振子中合外力为零时的状态为平衡状态。 问题2.振动图像的理解,结合判断正误 ① 如右图所示正弦曲线为质点的运动轨迹。 ② 如右图,3s 内的位移为x 1大小为cm cm 10910322=+。 ③ 如右图,3s 内的位移为x 2 大小为10cm 。 ④ 如右图,1.5s 时的速度方向为曲线上该点的切线方向。 ⑤ 0.5s 和1.5s 时的位移相同,速度也相同。 ⑥ 0.5s 和3.5s 时的位移相反,速度相反。 X X 1

高中物理选修3-3知识点整理

选修3—3期末复习知识点汇总 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径-V=Sd V 是滴入浅水盘中纯油酸的体积,等于油酸溶液的体积乘以浓度。S 是单分子油膜在水面上形成的面积。 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成 立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N =【固体和液体-分子体积,气体--分子平均占有空间体积】 c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= ===【M-任意质量;v--任意体积】 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同 时还说明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体颗粒的无规则运动,不是分子热运动,但颗粒很小,是在显微镜下才能观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显; 温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞 击的不均匀性造成的。

③布朗运动间接地反映了液体分子的无规则运动,扩散现象的产生原因是物体分子 做无规则热运动。两者都有力地说明分子在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈。 布朗运动不是分子热运动,扩散现象是分子热运动。 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间 斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。 分子间同时存在引力和斥力,两种力的合力又叫做分子力,随距 离的增加,分子力先减小,后增加,再减小。。在图1图象中实 线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横 坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010-m , 相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志,不同分子温度相同,平均速率不一定相同。热力学温度与摄氏温度的关系: 273.15T t K =+。热力学温度是国际单位制中的基本单位。 5、分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分 子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小)固体分子和液体内部分子通常处于平衡位置, 势能最小。分子势能随距离增加,先减小,再增加。 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第四章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁 2.感应电流的产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则 (2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、表达式:t n E ??=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ?=?φ ②S 不变,B 变,BS ?=?φ ③B 和S 同时变,12φφφ-=? (3)计算感应电动势的公式 ①求平均值:t n E ??=φ ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω22 1BL E = 5.感应电流的计算: 瞬时电流:总 总R BLv R E I = = (瞬时切割) 6.安培力的计算: 瞬时值:r R v L B BIL F +==22 7.通过截面的电荷量:r R n t I q +?= ?=φ 注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。 (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁芯的线圈自感系数比没有铁芯时大得多。 (3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH)、微亨(H μ) (5)涡流及其应用 ①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿 接通电源的瞬间,灯泡A 1较慢地亮起来。 断开开关的瞬间,灯 泡A 逐渐变暗。

新人教版高中物理选修3-2全册导学案

新人教版高中物理选修全册导学案

目录 第四章第1节划时代的发现导 第四章第2节探究电磁感应的产生条件 第四章第3节楞次定律 第四章第4节《法拉第电磁感应定律》 第四章第5节《电磁感应规律的应用》 第四章第5节《电磁感应规律的应用》 第四章第6节《互感与自感》 第四章第6节《互感与自感》 第四章第7节《涡流电磁阻尼和电磁驱动》 第四章第《涡流电磁阻尼和电磁驱动》 第五章第1节交变电流 第五章第2节描述交变电流物理量 第五章第3节《电感和电容对交变电流的影响》第五章第4节变压器 第五章第5节《电能的输送》 第六章第1节传感器及其工作原理 第六章第2节传感器的应用(一) 第六章第3节传感器的应用(二) 第六章第4节传感器的应用实验

选修3-2第四章电磁感应 第1节《划时代的发现》 课前预习学案 一、预习目标 预习奥斯特梦圆“电生磁”;法拉第心系“磁生电”,初步了解物理学中奥斯特和法拉第的贡献。 二、预习内容 奥斯特梦圆“电生磁”标题和法拉第心系“磁生电”标题。 问题1:奥斯特在什么思想的启发下,发现了电流的磁效应的? 问题2:奥斯特发现了电流的磁效应,能说明他是一个“幸运儿”吗?是偶然还是必然? 问题3:1803年奥斯特总结了一句话内容是什么? 问题4:法拉第在了奥斯特的电流磁效应的基础上,思考对称性原理,从而得出了什么样的结论? 问题5:其他很多科学家例如安培,科拉顿等物理学家也做过磁生电的试验,可他们都没有成功,他们问题出现在那里? 问题6:法拉第经过无数次试验,经历10年的时间,终于领悟到了什么? 问题7:什么是电磁感应?什么是感应电流? 问题8:通过学习你从奥斯特、法拉第等科学家身上学到了什么? 问题9:通过查阅资料,了解法拉第的生平,详细写出法拉第一生中的伟大成就和伟大发现。 三、提出疑惑

(完整word)高中物理选修3-3资料

高中物理选修3-3复习 专题定位本专题用三讲时分别解决选修3-3、3-4、3-5中高频考查问题,高考对本部分内容考查的重点和热点有: 选修3-3:①分子大小的估算;②对分子动理论内容的理解;③物态变化中的能量问题; ④气体实验定律的理解和简单计算;⑤固、液、气三态的微观解释和理解;⑥热力学定律的理解和简单计算;⑦用油膜法估测分子大小等内容. 选修3-4:①波的图象;②波长、波速和频率及其相互关系;③光的折射及全反射;④光的干涉、衍射及双缝干涉实验;⑤简谐运动的规律及振动图象;⑥电磁波的有关性质. 选修3-5:①动量守恒定律及其应用;②原子的能级跃迁;③原子核的衰变规律;④核反应方程的书写;⑤质量亏损和核能的计算;⑥原子物理部分的物理学史和α、β、γ三种射线的特点及应用等. 应考策略选修3-3内容琐碎、考查点多,复习中应以四块知识(分子动理论、从微观角度分析固体、液体、气体的性质、气体实验定律、热力学定律)为主干,梳理出知识点,进行理解性记忆. 选修3-4内容复习时,应加强对基本概念和规律的理解,抓住波的传播和图象、光的折射定律这两条主线,强化训练、提高对典型问题的分析能力. 选修3-5涉及的知识点多,而且多是科技前沿的知识,题目新颖,但难度不大,因此应加强对基本概念和规律的理解,抓住动量守恒定律和核反应两条主线,强化典型题目的训练,提高分析综合题目的能力. 第1讲热学 高考题型1热学基本知识 解题方略 1.分子动理论 (1)分子大小 ①阿伏加德罗常数:N A=6.02×1023 mol-1. ②分子体积:V0=V mol N A(占有空间的体积).

③分子质量:m0=M mol N A. ④油膜法估测分子的直径:d=V S. (2)分子热运动的实验基础:扩散现象和布朗运动. ①扩散现象特点:温度越高,扩散越快. ②布朗运动特点:液体内固体小颗粒永不停息、无规则的运动,颗粒越小、温度越高,运动越剧烈. (3)分子间的相互作用力和分子势能 ①分子力:分子间引力与斥力的合力.分子间距离增大, 引力和斥力均减小;分子间距离减小,引力和斥力均增大,但斥力总比引力变化得快. ②分子势能:分子力做正功,分子势能减小;分子力做负功,分子势能增大;当分子间距为r0(分子间的距离为r0时,分子间作用的合力为0)时,分子势能最小. 2.固体和液体 (1)晶体和非晶体的分子结构不同,表现出的物理性质不同.晶体具有确定的熔点.单晶体表现出各向异性,多晶体和非晶体表现出各向同性.晶体和非晶体在适当的条件下可以相互转化. (2)液晶是一种特殊的物质状态,所处的状态介于固态和液态之间.液晶具有流动性,在光学、电学物理性质上表现出各向异性. (3)液体的表面张力使液体表面具有收缩到最小的趋势,表面张力的方向跟液面相切.

高中物理选修32知识点详细讲解版

第一章电磁感应知识点总结 一、电磁感应现象 1、电磁感应现象与感应电流 . (1)利用磁场产生电流的现象,叫做电磁感应现象。 (2)由电磁感应现象产生的电流,叫做感应电流。 二、产生感应电流的条件 1、产生感应电流的条件:闭合电路 .......。 ....中磁通量发生变化 2、产生感应电流的方法 . (1)磁铁运动。 (2)闭合电路一部分运动。 (3)磁场强度B变化或有效面积S变化。 注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为“感应电流”。 3、对“磁通量变化”需注意的两点 . (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。 4、分析是否产生感应电流的思路方法 . (1)判断是否产生感应电流,关键是抓住两个条件: ①回路是闭合导体回路。 ②穿过闭合回路的磁通量发生变化。 注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。 (2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况: ①穿过闭合回路的磁场的磁感应强度B发生变化。②闭合回路的面积S发生变化。 ③磁感应强度B和面积S的夹角发生变化。 三、感应电流的方向 1、楞次定律. (1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。 ①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。 ②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。 (2)楞次定律的因果关系: 闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。 (3)“阻碍”的含义 . ①“阻碍”可能是“反抗”,也可能是“补偿”. 当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。(“增反减同”) ②“阻碍”不等于“阻止”,而是“延缓”. 感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。当由于原磁通量的增加引

高中物理选修3-3知识总结

高中物理3-3知识点总结 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积V0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积V A、物体质量m、摩尔质量M、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023 mol -1 ) A V M V m ==ρ (1)分子质量:A A 0N V N M N m m A ρ=== (2)分子体积:A A 0N M N V N V V A ρ=== (对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-1 0m) 球体模型.30)2 (34d N M N V V A A A πρ=== 直径3 06πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S —单分子油膜的面积,V —滴到水中的纯油酸的体积 错误!立方体模型.3 0=V d (气体一般用此模型;对气体,d应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。 (4)分子的数量:A A N M V N M m nN N A ρ== = 或者 A A N M V N V V nN N A A ρ=== 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。

发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接 ..说明了液体分子在永不停息地做无规则运动. 错误!布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动. ②布朗运动反映液体分子的无规则运动但不是液体分子的运动. ③课本中所示的布朗运动路线,不是固体微粒运动的轨迹. ④微粒越小,布朗运动越明显;温度越高,布朗运动越明显. 3、分子间存在相互作用的引力和斥力 ①分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快,实际表现出的分子力是分子引力和分子斥力的合力 ②分子力的表现及变化,对于曲线注意两个距离,即平衡距离r0(约10-10m)与10r0。 (ⅰ)当分子间距离为r0时,引力等于斥力,分子力为零。 (ⅱ)当分子间距r>r0时,引力大于斥力,分子力表现为引力。当分子间距离由r0增大时,分子力先增大后减小 (ⅲ)当分子间距r<r0时,斥力大于引力,分子力表现为斥力。当分子间距离由r0减小时,分子力不断增大 二、温度和内能 1、统计规律:单个分子的运动都是不规则的、带有偶然性的;大量分子的集体行为受到统计规律的支配。多数分子速率都在某个值附近,满足“中间多,两头少”的分布规律。 2、分子平均动能:物体内所有分子动能的平均值。 ①温度是分子平均动能大小的标志。 ②温度相同时任何物体的分子平均动能相等,但平均速率一般不等(分子质量不同). 3、分子势能 (1)一般规定无穷远处分子势能为零, (2)分子力做正功分子势能减少,分子力做负功分子势能增加。 (3)分子势能与分子间距离r0关系(类比弹性势能) ①当r>r0时,r增大,分子力为引力,分子力做负功分子势能增大。 x 0 E P r0

高中物理选修3-2知识点汇总

第一章电磁感应 1.磁通量 穿过某一面积的磁感线条数;标量,但有正负;Φ=BS·sinθ;单位Wb,1Wb=1T·m2。 2.电磁感应现象 利用磁场产生电流的现象;产生的电流叫感应电流,产生的电动势叫感应电动势;产生的条件是穿过闭合回路的磁通量发生变化。 3.感生电场 变化的磁场在周围激发的电场。 4.感应电动势 分为感生电动势和动生电动势;由感生电场产生的感应电动势称为感生电动势,由于导体运动而产生的感应电动势称为动生电动势;产生感应电动势的导体相当于电源。 5.楞次定律 感应电流的磁场总要阻碍引起感应电流的磁通量的变化;判定感应电流和感应电动势方向的一般方法;适用于各种情况的电磁感应现象。 6.右手定则 让磁感线垂直穿过手心,大拇指指向导体做切割磁感线运动的方向,四指的指向就是导体内部产生的感应电流或感应电动势的方向;仅适用导体切割磁感线的情况。 7.法拉第电磁感应定律 电路中感应电动势的大小跟穿过这一电路的磁通量的变化率

成正比;E=n t? ?Φ。 8.动生电动势的计算 法拉第电磁感应定律特殊情况;E=Blv·sinθ。 9.互感 两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势;变压器的原理。10.自感 由于导体本身的电流发生变化而产生的电磁感应现象。11.自感电动势 由于自感而产生的感应电动势;自感电动势阻碍导体自身电流的变化;大小正比于电流的变化率;E=L t I ? ?;日光灯的应用。12.自感系数 上式中的比例系数L叫做自感系数;简称自感或电感;正比于线圈的长度、横截面积、匝数;有铁芯比没有时要大得多。13.涡流 线圈中的电流变化时,在附近导体中产生的感应电流,这种电流在导体内自成闭合回路,很像水的漩涡,因此称作涡电流,简称涡流。 第二章直流电路 1.电流 电荷的定向移动;单位是安,符号A;规定正电荷定向移动的 方向为正方向;宏观定义I= t q;微观解释I=neSv,n为单位体积

高中物理选修3-2全册学案

第四章电磁感应 4.1划时代的发现 教学目标 (一)知识与技能 1.知道与电流磁效应和电磁感应现象的发现相关的物理学史。 2.知道电磁感应、感应电流的定义。 (二)过程与方法 领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性。 (三)情感、态度与价值观 1.领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。 2.以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。 教学重点、难点 教学重点 知道与电流磁效应和电磁感应现象的发现相关的物理学史。领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。 教学难点 领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。 教学方法 教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。 教学手段 计算机、投影仪、录像片 教学过程 一、奥斯特梦圆“电生磁”------电流的磁效应 引导学生阅读教材有关奥斯特发现电流磁效应的内容。提出以下问题,引导学生思考并回答: (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景? (2)奥斯特的研究是一帆风顺的吗?奥斯特面对失败是怎样做的? (3)奥斯特发现电流磁效应的过程是怎样的?用学过的知识如何解释? (4)电流磁效应的发现有何意义?谈谈自己的感受。 学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。 二、法拉第心系“磁生电”------电磁感应现象 教师活动:引导学生阅读教材有关法拉第发现电磁感应的内容。提出以下问题,引导学生思考并回答: (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的 观点? (2)法拉第的研究是一帆风顺的吗?法拉第面对失败是怎样做的? (3)法拉第做了大量实验都是以失败告终,失败的原因是什么?

高中物理选修3-3知识点与题型复习

热学知识点复习→制作人:湄江高级中学:吕天鸿 一、固、液、气共有性质 1、组成物质的分子永不停息、无规则运动。温度T越高,运动越激烈,分子平均动能。 注意:对于理想气体,温度T还决定其内能的变化。 扩散现象:相互渗透的反应 2、分子运动的表现 布朗运动:看不见的固体小颗粒被分子不平衡碰撞,颗粒越大,运动越 3、分子间同时存在引力与斥力,且都随着分子间距r的增加而。 (1)分子力的合力F表现:是为F引还是F斥?看间距与分界点r0关系,看下图 当r=r0时,F引=F斥,分子力为0; 当r>r0时,F引>F斥,分子力表现为 当r

非晶体:无确定的熔点。 → 物理性质:各向同性。原子排列:无规则 2,、同一种物质可能以晶体与非晶体两种不同形态出现。如碳形成的金刚石与石墨 3、有些晶体与非晶体可以相互转化。 4、常考晶体有:金刚石与石墨、石英、云母、食盐。常考非晶体有:玻璃、蜂蜡、松香。 三、热力学定律→研究高考对象为→主要还是理想气体 1、热力学第一定律:ΔU =W+Q 表达式中正、负号法则:如下图 2、气体实验定律与热力学第一定律的结合量是气体的体积和温度,当温度变化时,气体的内能变化,当体积变化时,气体将伴随着做功,解题时要掌握气体变化过程的特点: (1)等温过程:内能不变,即ΔU=0。温度T ↑,则内能增加,ΔU >0 (2)等容过程:W=0。若体积V ↑,则气体对外界做功,W 取“—”负号计算。反之亦然 (3)绝热过程:Q=0。 3、再次强调:温度T 决定分子平均动能的变化。也决定理想气体的内能变化 四、气体实验定律→ 理想气体→P 、V 、T=t 0c+273 三个物理量关系 1、三条特殊线 (等温线:P 1V 1=p 2V 2 ) 2、液体柱模型 (1)明确点:P 液=egh 一般不用。当液体为汞时,大气压以 为单位时,高为h cm 时,P 液=h .计算气

教科版高中物理选修3-1全册学案.

第一章 静电场 第1节 电荷及其守恒定律 摩擦起电 感应起电 接触起电 产生及条件 两不同绝缘体摩擦时 导体靠近带电体时 带电导体和导体接触时 现象 两物体带上等量异种电 荷 导体两端出现等量异种电荷,且电性与原带电 体“近异远同” 导体上带上与带电体相 同电性的电荷 原因 不同物质的原子核对核外电子的束缚力不同而 发生电子转移 导体中的自由电子受到带正(负)电物体吸引(排 斥)而靠近(远离) 电荷之间的相互排斥 实质 电荷在物体之间和物体 内部的转移 接触起电的电荷分配原则 两个完全相同的金属球接触后电荷会重新进行分配,如图1-1-2所示. 电荷分配的原则是:两个完全相同的金属球带同种电荷接触后平分原来所带电荷量的总和;带异种电荷接触后先中和再平分. 图1-1-2 1.“中性”与“中和”之间有联系吗? “中性”和“中和”是两个完全不同的概念,“中性”是指原子或者物体所带的正电荷和负电荷在数量上相等,对外不显电性,表现为不带电的状态.可见,任何不带电的物体,实际上其中都带有等量的异种电荷;“中和”是指两个带等量异种电荷的物体,相互接触时,由于正负电荷间的吸引作用,电荷发生转移,最后都达到中性状态的一个过程. 2.电荷守恒定律的两种表述方式的区别是什么? (1)两种表述:①电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移的过程中,电荷的总量保持不变.②一个与外界没有电荷交换的系统,电荷的代数和总是保持不变的. (2)区别:第一种表述是对物体带电现象规律的总结,一个原来不带电的物体通过某种方法可以带电,原来带电的物体也可以使它失去电性(电的中和),但其实质是电荷的转移,电荷的数量并没有减少.第二种表述则更具有广泛性,涵盖了包括近代物理实验发现的微观粒子在变化中遵守的规律,近代物理实验发现,由一个高能光子可以产生一个正电子和一个负电子,一对正负电子可同时湮灭,转化为光子.在这种情况下,带电粒子总是成对产生或湮灭,电荷的 代数和不变,即正负电子的产生和湮灭与电荷守恒定律并不矛盾. 一、电荷基本性质的理解 【例1】 绝缘细线上端固定,

(完整word版)高中物理选修3-3知识点填空,推荐文档

高二物理选修3—3知识点检测 1、物质是由大量组成的 (1)分子大小数量级 (2)1mol任何物质含有的微粒数相同N A= (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) 球模型分子大小: 立方体模型分子大小: ②利用阿伏伽德罗常数联系宏观量与微观量 已知物体的体积V、摩尔体积V mol ,物体的质量M、摩尔质量M mol 、物体的密度ρ、阿伏伽 德罗常数N A a. 分子数量: b. 分子质量: c.分子体积:特别提醒: 固体和液体分子都可看成是紧密堆集在一起的。分子的体积V 0=V mol /N A ,仅适用 于,对气体不适用,对气体其表示。 2、分子永不停息的做无规则的热运动(布朗运动扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在,同时还说明分子间有,越高扩散越快 (2)布朗运动:它是悬浮在液体中的的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:;; 。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的性造成的。 ③布朗运动间接地反映了,布朗运动、扩散现象都有力地 说明物体内大量的分子都在。 (3)热运动:的无规则运动与有关,简称热运动,越高,运动越剧烈

3、分子间的相互作用力 (1)分子间 存在引力和斥力,两种力的合力又叫做分子力。 (2)画出分子间作用力与分子间距离关系图: (3)分子之间的引力和斥力都随分子间距离增大而 ,随分子间距离的减小而 。但总是斥力变化得 。 (4)r 0位置叫做 ,r 0的数量级为 m 。 (5)假定甲分子固定在坐标原点,乙分子从远处由静止释放,在乙分子向甲分子靠近的过程中:a.乙分子的运动状态 b.乙分子动能和分子势能如何变化 4、温度 宏观上的温度表示 ,微观上的温度是物体大量分子热运动 的标志。热力学温度与摄氏温度的关系: 5、内能 在右边方框中画出分子势能与分子间距离的关系图 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与 有关,分子势能的大小变化可通过宏观量 来反映。 当0r r >时,分子力为 ,当r 增大时,分子力做 ,分子势能 当0r r <时,分子力为 ,当r 减少时,分子力做 ,分子是能 当r =r 0时,分子势能最 ,但不为零,为负值,因为选两分子相距无穷远时分子势能为零 ②物体的内能 物体中所有分子热运动的 和 的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此 物体都是有内能的。(理想气体的内能只取决于 ) ③改变内能的方式: 与 (两种方式是 的) 特别提醒: (1)物体的体积越大,分子势能不一定就越大,如0 ℃的水结成0 ℃的冰后体积变大,但分子势能却减小了. (2)理想气体分子间相互作用力为 ,故分子势能忽略不计,一定质量的理想气

相关主题
文本预览
相关文档 最新文档