当前位置:文档之家› 无机非金属材料专业毕业论文

无机非金属材料专业毕业论文

无机非金属材料专业毕业论文
无机非金属材料专业毕业论文

新型无机非金属材料的发展与挑战

金属材料、高分子合成材料、无机非金属材料与人们的衣、食、住、行关系非常密切。材料是人类生活必不可少的物质基础。没有感光材料,我们就无法留下青春的回忆;没有特殊的荧光材料,就没有彩色电视;没有高纯的单晶硅,就没有今天的“奔腾IV”;没有特殊的新型材料,“神舟号”宇宙飞船就无法上天。随着科学和生产技术的发展以及人们生活的需要,一些具有特殊结构、特殊功能的新材料相继研制出来,如半导体材料:超硬材料、耐高温材料、发光材料等,我们称这些材料为新型无机非金属材料。水泥、玻璃、陶瓷等都属于传统的非金属材料,像玻璃刀上的人造金刚石、作为手表轴承的人造红宝石、煤气炉中用于电子打火的压电陶瓷、传输信息的光导纤维都属于新型无机非金属材料。

在材料中,有一类叫结构材料主要制利用其强度、硬度韧性等机械性能制成的各种材料。金属作为结构材料,一直被广泛使用。但是,由于金属易受腐蚀,在高温时不耐氧化,不适合在高温时使用。高温结构材料的出现,弥补了金属材料的弱点。这类材料具有能经受高温、不怕氧化、耐酸碱腐蚀、硬度大、耐磨损、密度小等优点,作为高温结构材料,非常适合。

氧化铝陶瓷(人造刚玉)是一种极有前途的高温结构材料。它的熔点很高,可作高级耐火材料,如坩埚、高温炉管等。利用氧化铝硬度大的优点,可以制造在实验室中使用的刚玉磨球机,用来研磨比它硬度小的材料。用高纯度的原料,使用先进工艺,还可以使氧化铝

陶瓷变得透明,可制作高压钠灯的灯管。

高温氧化物结构陶瓷指熔点高于1728℃的氧化物(如氧化硅晶体)或某些复合氧化物(如氧化铝、氧化锆、氧化镁、氧化钙和氧化钍等)。它们的重要特点是高温下的化学稳定性好,尤其是抗氧化性能好。但弱点是脆性较大,耐机械冲击性差。利用氧化锆相变作用增韧氧化物陶瓷在20世纪70年代末获较大进展,氧化锆增韧氧化铝,断裂韧性参数由2.9MPa/m2提高到15MPa/m2,抗折强度由350MPa 提高到1200MPa。加有氧化钇的半稳定氧化锆,断裂韧性参数也高达9~16MPa/m2。增韧氧化物陶瓷可用于制造锤子、水果刀、剪刀、轴和发动机部件等,可以承受一定冲击而不碎裂。高温氧化物陶瓷可用作高温炉衬,熔炼稀有金属和纯金属的坩埚,以及磁流体发电装置的高温电极材料和热机材料。

氧化铝结构陶瓷的生产,采用γ-氧化铝(见氧化铝)为原料与少量添加剂(如MgΟ等),经粉碎和混合后按产品的形状,尺寸及用途,采用不同的方法成型。干压成型时需先将混合后的坯料造粒,然后用油压机压制成坯样。采用注浆成型时,则将混合后的粉料制成悬浮料浆,注入石膏模中成型。采用热压注时,用适量石蜡与混合料制成料浆,用热压注机成型。烧成的坯体需按使用的要求,进行机械加工或研磨。

高温非氧化物结构陶瓷包括氮化物、碳化物、硅化物、硼化物等。其中有发展前途的是氮化硅、碳化硅和氮化硼等材料。与氧化物比较,难熔化合物的热导率较高,热膨胀系数较低,因此具有良好的抗热震性。氮化硅与碳化硅还具有较高强度,硬度仅次于金刚石,耐磨性好,是很好的热机材料。采用氮化硅或碳化硅作为燃气轮机和陶瓷发动机的高温部件,与金属部件比较,可承受较高的工作温度,省去水冷却系统,减轻自重,因而节能效果显著。由于氮化硼具有优良的热稳定性,而且对金属熔体有很好的耐蚀性,用它作为水平连续铸钢的分离环,可较氮化硅有更长的使用寿命。

氮化硅结构陶瓷的烧成,按氮化硅合成的方式可分为反应烧结法和烧结法。反应烧结法是将硅粉预先成型,然后在通氮的情况下烧结,使氮化硅(Si3N4)的形成和烧结同时完成。烧结法是将预先合成的氮化硅粉末在高温与压力同时作用下热压烧结,或是将氮化硅粉末压成坯体后,在高温下无压烧结。

近20年来,世界各工业发达国家对于发动机用高温结构陶瓷复合材料的研究与开发—直十分重视,相继制定了各自的国家发展计划,并投人了大量的人力、物力和财力,对这一新型材料寄予厚望。如美国NASA制定的先进高温热机材料计划(HITEMP)、DOE/NAsA 的先进涡轮技术应用计划、美国国家宇航计划(NASP)、美国国防

关键技术计划以及日本的月光计划等都把高温结构陶瓷基复合材料作为重点研究对象,其研制目标是将发动机热端部件的使用温度提高到1650℃或更高,从而提高发动机涡轮进口温度,达到节能、减重、提高推重比和延长寿命的目的,满足军事和民用热机的需要。

由于陶瓷材料具有高耐磨性、耐高温和抗侵蚀能力,国外目前已将其应用于发动机高速轴承、活塞、密封环阀门导轨等要求转速高和配合精度高的部件。在航空发动机高温构件的应用上,到目前为止已报道有的法国将CVI法SiC/Cr用于狂风战斗机M88发动机的喷嘴瓣以及将SiC/SiCr用于幻影2000战斗机涡轮风扇发动机的喷管内调节片。此外,有许多陶瓷基复合材料的发动机高温构件正在研制之中。如美国格鲁曼公司正研究跨大气层高超音速飞机发动机的陶瓷材料进口、喷管和喷口等部件;美国碳化硅公司用Si34N/SiCw制造导弹发动机燃气喷管;杜邦公司研制出能承受1200-1300℃、使用寿命2000h 的陶瓷基复合材料发动机部件等。目前导弹、无人驾驶飞机以及其它短寿命的陶瓷涡轮发动机正处在最后研制阶段,美国空军材料实验室的研究人员认为,12O4-1371℃发动机陶瓷基复合材料已经研制成功。由于提高了燃烧温度,取消或减少了冷却系统,预计发动机热效率可从目前的26%提高到46%。英国罗—罗公司认为,未来航空发动机高压压气机叶片和机匣、高压与低压涡轮盘及叶片、燃烧室、加大燃烧室、火焰稳定器及排气喷管等都将采用陶瓷基复合材料。预计在21世纪初,陶瓷基复合材料的使用温度可提高到1650℃或更高。

氮化硅陶瓷陶瓷也是一种重要的结构材料,它是一种超硬物质,

密度小、本身具有润滑性,并且耐磨损,除氢氟酸外,它不与其他无机酸反应,抗腐蚀能力强;高温时也能抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1000以上,急剧冷却再急剧加热,也不会碎裂。正是氮化硅具有如此良好的特性,人们常常用它来制造轴承、汽轮机叶片、机械密封环、永久性模具等机械构件。

外观与性状:润滑,易吸潮.氮化硼是白色、难溶、耐高温的物质。将B2O3与NH4Cl共熔,或将单质硼在NH3中燃烧均可制得BN。通常制得的氮化硼是石墨型结构,俗称为白色石墨。另一种是金刚石型,和石墨转变为金刚石的原理类似,石墨型氮化硼在高温(1800℃)、高压(800Mpa)下可转变为金刚型氮化硼。这种氮化硼中B-N键长(156pm)与金刚石在C-C键长(154pm)相似,密度也和金刚石相近,它的硬度和金刚石不相上下,而耐热性比金刚石好,是新型耐高温的超硬材料,用于制作钻头、磨具和切割工具。

高温结构陶瓷除了氮化硅外,还有碳化硅(SiC)、二氧化锆(ZrO2)、氧化铝等。

透明陶瓷一般陶瓷是不透明的,但光学陶瓷像玻璃一样透明,故称透明陶瓷。一般陶瓷不透明的原因是其内部存在有杂质和气孔,前者能吸收光,后者使光产生散射,所以就不透明了。因此如果选用高纯原料,并通过工艺手段排除气孔就可能获得透明陶瓷。早期就是采用这样的办法得到透明的氧化铝陶瓷,后来陆续研究出如烧结白刚玉、氧化镁、氧化铍、氧化钇、氧化钇-

二氧化锆等多种氧化物系列透明陶瓷。近期又研制出非氧化物透明陶瓷,如砷化镓(GaAs)、硫化锌(ZnS)、硒化锌(ZnSe)、氟化镁(MgF2)、氟化钙(CaF2)等。这些透明陶瓷不仅有优异的光学性能,而且耐高温,一般它们的熔点都在2 000 ℃以上。如氧化钍-氧化钇透明陶瓷的熔点高达3 100 ℃,比普通硼酸盐玻璃高1 500 ℃。透明陶瓷的重要用途是制造高压钠灯,它的发光效率比高压汞灯提高一倍,使用寿命达2万小时,是使用寿命最长的高效电光源。高压钠灯的工作温度高达1 200 ℃,压力大、腐蚀性强,选用氧化铝透明陶瓷为材料成功地制造出高压钠灯。透明陶瓷的透明度、强度、硬度都高于普通玻璃,它们耐磨损、耐划伤,用透明陶瓷可以制造防弹汽车的窗、坦克的观察窗、轰炸机的轰炸瞄准器和高级防护眼镜等。

光导纤维从高纯度的二氧化硅或称石英玻璃熔融体中,拉出直径约100 μm的细丝,称为石英玻璃纤维。玻璃可以透光,但在传输过程中光损耗很大,用石英玻璃纤维光损耗大为降低,故这种纤维称为光导纤维,是精细陶瓷中的一种。

利用光导纤维可进行光纤通信。激光的方向性强、频率高,是进行光纤通信的理想光源。光纤通信与电波通信相比,光纤通信能提供更多的通信通路,可满足大容量通信系统的需要。

光导纤维一般由两层组成,里面一层称为内芯,直径几十微米,但折射率较高;外面一层称包层,折射率较低。从光导纤维一端入射的光线,经内芯反复折射而传到末端,由于两层折射率

新型无机非金属材料有哪些

新型无机非金属材料有哪些 新材料全球交易网 新型无机非金属材料有哪些?“新材料全球交易网”收集整理最全新型无机非金属材料知识点。更多增值服务,请关注“新材料全球交易网”。 一、重要概念 1、新型无机非金属材料 (1)是除有机高分子材料和金属材料以外的所有材料的统称。 (2)包括以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。 2、陶瓷 (1)从制备上开看,陶瓷是由粉状原料成型后在高温作用下硬化而形成的制品。 (2)从组分上来看,陶瓷是多晶、多相(晶相、玻璃相和气相)的聚集体。 3、玻璃 (1)狭义:熔融物在冷却过程中不发生结晶的无机非金属物质。 (2)一般:若某种材料显示出典型的经典玻璃所具有的各种特征性质,则不管其组成如何都可称为玻璃(具有玻璃转变温度 Tg)。 玻璃转变温度:玻璃态物质在玻璃态和高弹态之间相互转化的温度。 具有Tg的非晶态新型无机非金属材料都是玻璃。 4、水泥 凡细磨成粉末状,加入适量水后,可成为塑性浆体,能在空气或水中硬化,并能将砂、石、钢筋等材料牢固地胶结在一起的水硬性胶凝材料,通称为水泥。 5、耐火材料 耐火度不低于1580℃的新型无机非金属材料 6、复合材料 由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。 通过复合效应获得原组分所不具备的性能。可以通过材料设计使各组分的性能互相补充并彼此关联,从而获得更优秀的性能。 二、陶瓷知识点 1、陶瓷制备的工艺步骤 原材料的制备→坯料的成型→坯料的干燥→制品的烧成或烧结 2、陶瓷的天然原料 (1)可塑性原料:黏土质陶瓷成瓷的基础(高岭石、伊利石、蒙脱石) (2)弱塑性原料:叶蜡石、滑石 (3)非塑性原料:减塑剂——石英;助熔剂——长石 3、坯料的成型的目的

无机非金属材料的主角——硅重点知识归纳及典型习题

重 点 突 破 锁定高考热点 探究规律方法 熔沸点高,硬度大,其中金刚石为硬度最大的物质。 2.一般情况,非金属元素单质为绝缘体,但硅为半导体,石墨为电的良导体。 3.一般情况,较强氧化剂+较强还原剂===较弱氧化剂+较弱 还原剂,而碳却能还原出比它更强的还原剂:SiO 2+2C===== 高温Si +2CO ↑,FeO +C===== 高温Fe +CO ↑。 4.硅为非金属,却可以和强碱溶液反应,放出氢气: Si +2NaOH +H 2O===Na 2SiO 3+2H 2↑。 5.一般情况,较活泼金属+酸===盐+氢气,然而Si 是非金属,却能与氢氟酸发生反应:Si +4HF===SiF 4↑+2H 2↑。 6.一般情况,碱性氧化物+酸===盐+水,SiO 2是酸性氧化物,却能与氢氟酸发生反应:SiO 2+4HF===SiF 4↑+2H 2O 。 7.一般情况,较强酸+弱酸盐===较弱酸+较强酸盐。虽然酸 性:H 2CO 3>H 2SiO 3,却能发生如下反应:Na 2CO 3+SiO 2===== 高温Na 2SiO 3+CO 2↑。 8.一般情况,非常活泼金属(Na 、K 等)才能够置换出水中的氢, 但C +H 2O(g)=====高温CO +H 2 。 9.一般情况,非金属氧化物与水反应生成相应的酸,如SO 3+H 2O===H 2SO 4,但SiO 2不溶于水,不与水反应。 题组训练

1.某短周期非金属元素的原子核外最外层电子数是次外层电子数的一半,该元素() A.在自然界中只以化合态的形式存在 B.单质常用作半导体材料和光导纤维 C.最高价氧化物不与酸反应 D.气态氢化物比甲烷稳定 解析该短周期非金属元素为Si,硅在自然界中只以化合态形式存在,A项正确;单质硅可用作半导体材料,而光导纤维的主要成分是SiO2,B项错误;Si的最高价氧化物为SiO2,其可以与氢氟酸反应,C项错误;由于非金属性Si

无机非金属材料的应用现状与发展趋势

非金属材料的应用现状与发展趋势 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。无机非金属材料工程是材料学中的一个专业。无机非金属材料工程是为了培养具备无机非金属材料及其复合材料科学与工程方面的知识,能在无机非金属材料结构研究与分析、材料的制备、材料成型与加工等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。 本专业学生主要学习无机非金属材料及复合材料的生产过程、工艺及设备的基础理论、组成、结构、性能及生产条件间的关系,具有材料测试、生产过程设计、材料改性及研究开发新产品、新技术和设备及技术管理的能力。我国无机非金属材料工业的发展中存在很多问题,特别是传统的无机非金属材料与国外先进水平有非常大的差距,主要有: (1) 产品等级低 在传统无机非金属材料中,无论是水泥、玻璃还是陶瓷的产品等级普遍偏低。例如:发达国家的水泥熟料强度一般都在70MPa以上,而我国平均强度仅为50 MPa。我国高等级水泥(ISO≥)仅占18%,大量生产的是中、低等级水泥(ISO≤),而很多发达国家的高等级水泥占90%以上。 (2) 资源消耗高 在资源的消耗方面,水泥和陶瓷工业更为突出。由于大量的无序开采,未能充分利用有限资源,造成了极大浪费。例如:生产水泥熟料的主要原料是相对优质的石灰石,其化学成份须满足CaO含量不低于45%、MgO不高于3%等要求。我国符合水泥生产要求,可以使用的量仅约250亿吨。目前每年生产水泥消耗的优质石灰石约亿吨,因此该储量仅可生产水泥熟料约200亿吨,仅能提供约40年的水泥生产

无机非金属材料物理化学知识点整理完整版

无机非金属材料物理化学知识点整理无机非金属材料为北航材料学院2009年考研新加科目,考试内容包括大三金属方向限选课《无机非金属材料物理化学》(60%左右)和大四金属方向限选课《特种陶瓷材料》(40%左右)。参考书:陆佩文主编《无机材料科学基础》,武汉理工大学出版社,1996年。本资料由陆晨整理录入。祝愿大家考出好成绩。 第一章无机非金属材料的晶体结构 第一节:概述 一、晶体定义:晶体是内部质点在三维空间呈周期性重复排列的固体。 二、晶体结构=空间点阵+结构单元 三、晶体的基本性质: 1、均一性 2、各向异性 3、自限性 4、对称性 5、稳定性 四、对称性、对称元素、七大晶系、十四种布拉菲格子 结晶符号1、晶面符号——米勒指数(hkl) 2、晶棱符号[ uvw] PS:其实只要看了金属学,这些就都会了,懒得写了… 第二节:晶体化学 一、离子键、共价键、金属键、分子间力、氢键定义、特点(大家都知道的东西…) 二、离子极化: 三、鲍林规则(重点): 鲍林第一规则──配位多面体规则,其内容是:“在中,在正离子周围形成一个负离子多面体,正负离子之间的距离取决于离子半径之和,正离子的配位数取决于离子半径比”。 鲍林第二规则──电价规则指出:“在一个稳定的离子晶体结构中,每一个负离子电荷数等于或近似等于相邻正离子分配给这个负离子的静电键强度的总和,其偏差≤1/4价”。静电键强度S=正离子数Z+/正离子配位数n ,则负离子数Z

=∑Si=∑(Zi+/ni)。 鲍林第三规则──多面体共顶、共棱、共面规则,其内容是:“在一个配位结构中,共用棱,特别是共用面的存在会降低这个结构的稳定性。其中高电价,低配位的正离子的这种效应更为明显”。 鲍林第四规则──不同配位多面体连接规则,其内容是:“若晶体结构中含有一种以上的正离子,则高电价、低配位的多面体之间有尽可能彼此互不连接的趋势”。例如,在镁橄榄石结构中,有[SiO4]四面体和[MgO6]八面体两种配位多面体,但Si4+电价高、配位数低,所以[SiO4]四面体之间彼此无连接,它们之间由[MgO 6]八面体所隔开。 鲍林第五规则──节约规则,其内容是:“在同一晶体中,组成不同的结构基元的数目趋向于最少”。例如,在硅酸盐晶体中,不会同时出现[SiO4]四面体和[[Si2 O7]双四面体结构基元,尽管它们之间符合鲍林其它规则。这个规则的结晶学基础是晶体结构的周期性和对称性,如果组成不同的结构基元较多,每一种基元要形成各自的周期性、规则性,则它们之间会相互干扰,不利于形成晶体结构。 第三节:典型的晶体结构(参考课件或复印的资料) 型 型 型 和A2X5型 型 型 型 8.硅酸盐晶体结构 第二章无机非金属材料的晶体缺陷 第一节:晶体缺陷:点缺陷、线缺陷、面缺陷(参考金属学吧…) 第二节:缺陷化学反应表示法(重点) 一、点缺陷符号: 克罗格-明克(Kroger-Vink)符号 ①主符号,表明缺陷种类; ②下标,表示缺陷位置;“i”表示填隙位置 ③上标,表示缺陷有效电荷,“?”表示有效正电荷,用“'”表示有效负电荷,用“?”表示有效零电荷,零电荷可以省略 ①空位:V VM ——M 原子空位 VX ——X 原子空位 在金属材料中,只有原子空位 对于离子晶体,如果只是M2+ 离子离开了格点形成空位,而将 2 个电子留在

无机非金属材料总结(完整版)

第一章 1. 粘土的定义:是一种颜色多样,细分散的多种含水铝硅酸盐矿物的混合体。 粘土是自然界中硅酸盐岩石(主要是长石)经过长期风化作用而形成的一种疏松的或呈胶状致密的土状或致密块状矿物,是多种微细矿物和杂质的混合体。 2. 粘土的成因:各种富含硅酸盐矿物的岩石经风化,水解,热液蚀变等作用可变为粘土。一次粘土(原生粘土)风化残积型:母岩风化后残留在原地所形成的粘土。(深层的岩浆岩(花岗岩、伟晶岩、长石岩)在原产地风化后即残留在原地,多成为优质高岭土的矿床,一般称为一次粘土)。 二次粘土(次生粘土)沉积型:风化了的粘土矿物借雨水或风力的迁移作用搬离母岩后,在低洼地方沉积而成的矿床,成为二次粘土。 一次粘土与二次粘土的区别: 分类化学组成耐火度成型性 一次粘土较纯较高塑性低 二次粘土杂质含量高较低塑性高 3. 高岭土、蒙脱土的结构特点: 高岭土晶体结构式:Al4[Si4O10](OH)8,1:1型层状结构硅酸盐,Si-O四面体层和Al-(O,OH)八面体层通过共用氧原子联系成双层结构,构成结构单元层。层间以氢键相连,结合力较小,所以晶体解理完全并缺乏膨胀性。 蒙脱土(叶蜡石)是2:1型层状结构,两端[SiO4]四面体,中间夹一个[AlO6]八面体,构成单元层。单元层间靠氧相连,结合力较小,水分子及其它极性分子易进入晶层中间形成层间水,层间水的数量是可变的。 4. 粘土的工艺特性:可塑性、结合性、离子交换性、触变性、收缩、烧结性。 1)可塑性:粘土—水系统形成泥团,在外力作用下泥团发生变形,形变过程中坯泥不开裂, 外力解除后,能维持形变,不因自重和振动再发生形变,这种现象称为可塑性。 表示方法:可塑性指数、可塑性指标 可塑性指数(w):W=W2-W1W降低——泥浆触变厚化度大,渗水性强,便于压滤榨泥。 W1塑限:粘土或(坯料)由粉末状态进入塑性状态时的含水量。 W2液限:粘土或(坯料)由粉末状态进入流动状态时的含水量。 塑限反映粘土被水润湿后,形成水化膜,使粘土颗粒能相对滑动而出现可塑性的含水量。 塑限高,表明粘土颗粒的水化膜厚,工作水分高,但干燥收缩也大。 液限反映粘土颗粒与水分子亲和力的大小。W2上升表明颗粒很细,在水中分散度大,不易干燥,湿坯强度低。 可塑性指标:在工作水分下,粘土(或坯料)受外力作用最初出现裂纹时应力与应变的乘积,也可以以这时的相应含水率表示。 反应粘土的成型性能:应力大,应变小——挤坯成型;应力小,应变大——旋坯成型根据粘土可塑指数或可塑指标分类: i.强塑性粘土:指数>15或指标>3.6 ii.中塑性粘土:指数7~15,指标2.5~3.6 iii.弱塑性粘土:指数l~7,指标<2.5 iv.非塑性粘土:指数<1。 2)结合性:粘土的结合性是指粘土能够结合非塑性原料而形成良好的可塑泥团,并且有一

无机非金属材料工程专业介绍及就业前景

无机非金属材料工程专业介绍及就业前景 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。 成分结构 在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。 硅酸盐材料是无机非金属材料的主要分支之一,硅酸盐材料是陶瓷的主要组成物质。 应用领域 无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。传统的无机非金属材料是工业和基本建设所必需的基础材料。如水泥是一种重要的建筑材料;耐火材料与高温技术,尤其与钢铁工业的发展关系密切;各种规格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与人们的生产、生活休戚相关。它们产量大,用途广。其他产品,如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩等)、碳素材料、非金属矿(石棉、云母、大理石等)也都属于传统的无机非金属材料。新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。主要有先进陶瓷(advanced ceramics)、非晶态材料(noncrystal material〉、人工晶体〈artificial crys-tal〉、无机涂层(inorganic coating)、无机纤维(inorganic fibre〉等。 传统无机非金属材料和新型无机非金属材料的比较传统无机非金属材料新型无机非金属材料具有性质稳定,抗腐蚀耐高温等优点,但质脆,经不起热冲击。除具有传统无机非金属材料的优点外,还有某些特征如:强度高、具有电学、光学特性和生物功能等。 业务培养目标: 本专业培养具备无机非金属材料及其复合材料科学与工程方面的知识,能在

无机非金属材料知识点

无机非金属材料知识点 一、重要概念 1、无机非金属材料 ①以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。 ②是除有机高分子材料和金属材料以外的所有材料的统称。 2、陶瓷 ①从制备上开看,陶瓷是由粉状原料成型后在高温作用下硬化而形成的制品。 ②从组分上来看,陶瓷是多晶、多相(晶相、玻璃相和气相)的聚集体。 3、玻璃 ①狭义:熔融物在冷却过程中不发生结晶的无机物质 ②一般:若某种材料显示出典型的经典玻璃所具有的各种特征性质,则不管其组成如何都可称为玻璃(具有玻璃转变温度 Tg)。 玻璃转变温度:热膨胀系数和比热等物理性质的突变温度。 具有Tg的非晶态材料都是玻璃。 4、水泥 凡细磨成粉末状,加入适量水后,可成为塑性浆体,既能在空气中硬化,又能在水中硬化,并能将砂、石、钢筋等材料牢固地胶结在一起的水硬性胶凝材料,通称为水泥。 5、耐火材料 耐火度不低于1580℃的无机非金属材料 6、复合材料 复合材料是两种或两种以上物理、化学性质不同的物质组合而成的一种新的多相固体材料。 通过复合效应获得原组分所不具备的性能。可以通过材料设计使各组分的性能互相补充并彼此关联,从而获得更优秀的性能。 二、陶瓷知识点 1、陶瓷制备的工艺步骤 原材料的制备→坯料的成型→坯料的干燥→制品的烧成或烧结 2、陶瓷的天然原料 ①可塑性原料:黏土质陶瓷成瓷的基础(高岭石、伊利石、蒙脱石) ②弱塑性原料:叶蜡石、滑石 ③非塑性原料:减塑剂:石英助熔剂:长石

3、坯料的成型的目的 将坯料加工成一定形状和尺寸的半成品,使坯料具有必要的机械强度和一定的致密度 4、陶瓷的成型方法 ①可塑成型:在坯料中加入水或塑化剂,制成塑性泥料,然后通过手工、挤压或机加工成型;(传统陶瓷) ②注浆成型:将浆料浇注到石膏模中成型 ③压制成型:在金属模具中加较高压力成型;(特种陶瓷) 5、烧结 将初步定型密集的粉块(生坯)高温烧成具有一定机械强度的致密体。 固相烧结:烧结发生在单纯的固体之间 液相烧结:有液相参与,加助溶剂产生液相 好处:降低烧结温度,促进烧结 6、陶瓷的组织结构:晶相、玻璃相、气相 ①晶相:陶瓷的主要组成;分为主晶相和次晶相 ②玻璃相:玻璃相对陶瓷的机械强度、介电性能、耐热性等不利,不能成为陶瓷的主导组成部分。 玻璃相在陶瓷中的作用:粘结:粘结晶粒,填充空隙,提高致密度 降低烧成温度,促进烧结 ③气相:气孔;降低强度,造成裂纹。 7、陶瓷力学性能的特点 ①硬度:高②强度:抗拉强度很低、抗压强度非常高 ③塑性:塑性极差④韧性:韧性差、脆性大 8、陶瓷热学性能的特点 ①导热性:差,良好的绝热材料 ②热稳定性(抗热震性):概念:材料承受温度的急剧变化而不至于被破坏的能力。陶瓷抗热震性一般较差 9、结构陶瓷 ①概念:能作为工程结构材料使用的陶瓷,一般具有高强度、高硬度、高弹性模量、耐磨损、耐高温、耐腐蚀、抗氧化等优异性能,可以承受金属材料和高分子材料难以胜任的严酷工作环境。 ②常见种类:Al2O3、ZrO2、SiC、Si3N4…陶瓷 ③应用:…… 10、陶瓷增韧技术:【机理:阻碍裂纹的扩展】 ①相变增韧:相变可吸收能量;体积膨胀可松弛裂纹尖端的拉应力,甚至产生

无机非金属材料

无机非金属材料 以某些元素的氧化物、碳化物、氮化物、硼化物、硫系化合物(包括硫化物、硒化物及碲化物)和硅酸盐、钛酸盐、铝酸盐、磷酸盐等含氧酸盐为主要组成的无机材料的泛称。包括陶瓷、玻璃、水泥、耐火材料、搪瓷、磨料以及新型无机材料等。其中陶瓷一词,随着与陶瓷工艺相近的无机材料的不断出现,其概念的外延也不断扩大。最广义的陶瓷概念几乎与无机非金属材料的含意相同。无机非金属材料也和金属材料以及有机高分子材料等一样,是当代完整的材料体系中的一个重要组成部分。 普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。特种无机非金属材料的特点是:①各具特色,例如:高温氧化物等的高温抗氧化特性;氧化铝、氧化铍陶瓷的高频绝缘特性;铁氧体的磁学性质;光导纤维的光传输性质;金刚石、立方氮化硼的超硬性质;导体材料的导电性质;快硬早强水泥的快凝、快硬性质等。②各种物理效应和微观现象,例如:光敏材料的光-电、热敏材料的热-电、压电材料的力-电、气敏材料的气体-电、湿敏材料的湿度-电等材料对物理和化学参数间的功能转换特性。③不同性质的材料经复合而构成复合材料,例如:金属陶瓷、高温无机涂层,以及用无机纤维、晶须等增强的材料。 沿革旧石器时代人们用来制作工具的天然石材是最早的无机非金属材料。在公元前6000~前5000年中国发明了原始陶器。中国商代(约公元前17世纪初~约前11世纪)有了原始瓷器,并出现了上釉陶器。以后为了满足宫廷观赏及民间日用、建筑的需要,陶瓷的生产技术不断发展。公元 200年(东汉时期)的青瓷是迄今发现的最早瓷器。陶器的出现促进了人类进入金属时代,中国夏代(约公元前22世纪末至约前21世纪初~约前17世纪初)炼铜用的陶质炼锅,是最早的耐火材料。铁的熔炼温度远高于铜,故铁器时代的耐火材料相应地也有很大发展。18世纪以后钢铁工业的兴起,促进耐火材料向多品种、耐高温、耐腐蚀方向发展。公元前3700年,埃及就开始有简单的玻璃珠作装饰品。公元前1000年前,中国也有了白色穿孔的玻璃珠。公元初期罗马已能生产多种形状的玻璃制品。1000~1200年间玻璃制造技术趋于成熟,意大利的威尼斯成为玻璃工业中心。1600年后玻璃工业已遍及世界各地区。公元前3000~前2000年已使用石灰和石膏等气硬性胶凝材料。随着建筑业的发展,胶凝材料也获得相应的发展。公元初期有了水硬性石灰,火山灰胶凝材料,1700年以后制成水硬性石灰和罗马水泥。1824年英国J.阿斯普丁发明波特兰水泥(见水泥)。上述陶瓷、耐火材料、玻璃、水泥等的主要成分均为硅酸盐,属于典型的硅酸盐材料。 18 世纪工业革命以后,随着建筑、机械、钢铁、运输等工业的兴起,无机非金属材料有了较快的发展,出现了电瓷、化工陶瓷、金属陶瓷、平板玻璃、化学仪器玻璃、光学玻璃、平炉和转炉用的耐火材料以及快硬早强等性能优异的水泥。同时,发展了研磨材料、碳素及石墨制品、铸石等。 20世纪以来,随着电子技术、航天、能源、计算机、通信、激光、红外、光电子学、生物医学和环境保护等新技术的兴起,对材料提出了更高的要求,促进了特种无机非金属材料的迅速发展。30~40年代出现了高频绝缘陶瓷、铁电陶瓷和压电陶瓷、铁氧体(又称磁性瓷)和热敏电阻陶瓷(见半导体陶瓷)等。50~60年代开发了碳化硅和氮化硅等高温结

无机非金属材料的分类

无机非金属材料的分类 (1)传统陶瓷(其中,瓷是在陶的基础上上一层釉) 陶瓷在我国有悠久的历史,是中华民族古老文明的象征。从西安地区出土的秦始皇陵中大批陶兵马俑,气势宏伟,形象逼真,被认为是世界文化奇迹,人类的文明宝库。唐代的唐三彩、明清景德镇的瓷器均久负盛名。 传统陶瓷材料的主要成分是硅酸盐,自然界存在大量天然的硅酸盐,如岩石、土壤等,还有许多矿物如云母、滑石、石棉、高岭石等,它们都属于天然的硅酸盐。此外,人们为了满足生产和生活的需要,生产了大量人造硅酸盐,主要有玻璃、水泥、各种陶瓷、砖瓦、耐火砖、水玻璃以及某些分子筛等。硅酸盐制品性质稳定,熔点较高,难溶于水,有很广泛的用途。 硅酸盐制品一般都是以黏土(高岭土)、石英和长石为原料经高温烧结而成。黏土的化学组成为Al?O3·2SiO?·2H?O,石英为SiO?,长石为K?O·Al?O3·6SiO?(钾长石)或Na2O·Al2O3·6SiO2(钠长石)。这些原料中都含有SiO2,因此在硅酸盐晶体结构中,硅与氧的结合是最重要也是最基本的。 硅酸盐材料是一种多相结构物质,其中含有晶态部分和非晶态部分,但以晶态为主。硅酸盐晶体中硅氧四面体[SiO4]是硅酸盐结构的基本单元。在硅氧四面体中,硅原子以sp杂化轨道与氧原子成键,Si—O键键长为162 pm,比起Si和O的离子半径之和有所缩短,故Si—O键的结合是比较强的。 (2)精细陶瓷 精细陶瓷的化学组成已远远超出了传统硅酸盐的范围。例如,透明的氧化铝陶瓷、耐高温的二氧化锆(ZrO2)陶瓷、高熔点的氮化硅(Si3N4)和碳化硅(SiC)陶瓷等,它们都是无机非金属材料,是传统陶瓷材料的发展。精细陶瓷是适应社会经济和科学技术发展而发展起来的,信息科学、能源技术、宇航技术、生物工程、超导技术、海洋技术等现代科学技术需要大量特殊性能的新材料,促使人们研制精细陶瓷,并在超硬陶瓷、高温结构陶瓷、电子陶瓷、磁性陶瓷、光学陶瓷、超导陶瓷和生物陶瓷等方面取得了很好的进展,下面选择一些实例做简要的介绍。 高温结构陶瓷汽车发动机一般用铸铁铸造,耐热性能有一定限度。由于需要用冷却水冷却,热能散失严重,热效率只有30%左右。如果用高温结构陶瓷制造陶瓷发动机,发动机的工作温度能稳定在1 300 ℃左右,由于燃料充分燃烧而又不需要水冷系统,使热效率大幅度提高。用陶瓷材料做发动机,还可减轻汽车的质量,这对航天航空事业更具吸引力,用高温陶瓷取代高温合金来制造飞机上的涡轮发动机效果会更好。 目前已有多个国家的大的汽车公司试制无冷却式陶瓷发动机汽车。我国也在1990年装配了一辆并完成了试车。陶瓷发动机的材料选用氮化硅,

最新无机非金属材料工学知识点总结

1.为什么北方常采用烧氧化焰而南方烧还原焰? 答:我国北方制瓷原料大多采用二次高岭土与耐火粘土,含铁较少而含氧化钛、有机物较多,坯体粘性和吸附性较强,适宜用氧化气氛烧成。 南方制瓷原料大多采用原生高岭土和瓷石,含铁量较多而含氧化钛、有机物较少,粘性和吸附性较小,适宜用还原气氛烧成。 2.与金属材料相比,无机非金属材料在性能上有那些特点?原因是什么? 答:无机非金属材料的化学组分主要由元素的氧化物、碳化物、氮化物、卤素化合物、硼化物、以及硅酸盐、铝酸盐、磷酸盐、硼酸盐和非氧化物等物质,其化学键主要为离子键或离子—共价混合键。因此,无机非金属材料的基本属性主要体现为高熔点、高硬度、耐腐蚀、耐磨损、高抗压良好的抗氧化性、隔热性,优良的介电、压电、光学、电磁性能及其功能转换特性等。但大多数无机非金属材料具有抗拉强度低、韧性差等缺点。 3.玻璃浮法成型的原理? 答:玻璃液从池窑连续流入并浮在有还原气氛保护的锡液上,由于各物相界面张力和重力的综合作用,摊成厚度均匀,上下两平面平行,平整和火抛光的玻璃带,经冷却硬化后脱离锡液,再经退火、切割而得到浮法玻璃。 4.采用陶瓷注浆成型时坯料应满足哪些要求?为什么? 答:1)流动性好。保证泥浆浇注成形时要能充满模型的各个部位。 2)悬浮性好。浆料中各种固体颗粒能在较长的一段时间悬浮而不沉淀的性质称为泥浆的悬浮性。它是保证坯体组分均匀和泥浆正常输送、贮放的重要性能之一。 3)触变性适当。受到振动和搅拌时,泥浆粘度会降低而流动性增加,静置后又恢复原状,此外,泥浆放置一段时间后,在维持原有水分的情况下也会变稠,这种性质称为触变性。泥浆触变性过大,容易堵塞泥浆管道,且坯体脱模后易塌落变形;触变性过小,生坯强度较低,影响脱模和修坯。 4)滤过性好。滤过性也称渗 模性,是指泥浆能够在石膏模中滤水成坯的性能。滤过性好,则成坯速率较快。当细颗粒过多时,易堵塞石膏模表面的微孔脱水通道,不利于成坯。熟料和瘠性原料较多时有利于泥浆的脱水成坯。 5.陶瓷制品开裂的主要原因? 答:生坯在搬运过程中因被碰而产生的细微裂纹;坯体入窑水分过高、升温过急;高温阶段生温太快,收缩过大;坯体在晶体型转化阶段冷却过快;器形设计不合理。 6.实际生产中应该如何选择陶瓷的成型方法? 答:1)产品的形状、大小、厚薄等。一般形状复杂或较大,壁较薄的产品,可采用注浆法成形;而具有简单回转体形状的器皿可采用最常用的旋压、滚压法可塑成形。

高一化学人教版必修第二册 第五章 第三节 无机非金属材料

无机非金属材料 核心知识点一: 一、硅酸盐材料 硅酸盐是由盐、氧和金属组成的化合物的总称,在自然界分布极广。硅酸盐是一大类结构复杂的固态物质,大多不溶于水,化学性质很稳定。 1. 硅酸 (1)物理性质 不溶于水、无色透明、胶状(硅胶)。 硅胶多孔,吸附水分能力强,常用作实验室和袋装食品、瓶装药品等的干燥剂,也可以用催化剂的载体。 (2)化学性质 ①弱酸性:所以在与碱反应时只能与强碱反应

H2SiO3 + 2NaOH=Na2SiO3 + H2O H2SiO3 + 2OH-=SiO32-+ 2H2O 比碳酸酸性弱:Na2SiO3+CO2+H2O=Na2CO3+ H2SiO3 ②硅酸的热稳定性较弱,受热易分解为SiO2和水:H2SiO3H2O+SiO2 (3)制备方法 由于SiO2不溶于水,所以硅酸只能用间接的方法制取,一般用可溶性硅酸盐+酸制得。 Na2SiO3 + 2HCl=2NaCl + H2SiO3 ↓ SiO32-+ 2H+=H2SiO3 ↓ 【注意】①硅酸不溶于水,不能用SiO2与水反应制取硅酸 ②硅酸的酸性比碳酸的酸性还弱,所以往可溶性硅酸盐溶液中通入CO2也可以制取硅酸: Na2SiO3+CO2+H2O=Na2CO3+H2SiO3 ↓ SiO32-+CO2+H2O=CO32-+H2SiO3 ↓ ③如前所述, SiO2+Na2CO3Na2SiO3+CO2↑,该反应在高温条件下进行,有利于CO2从体系中挥发出来,而SiO2为高熔点固体,不能挥发,所以反应可以进行,符合难挥发性酸酐制取易挥发性酸酐的原理;而上述反应“Na2SiO3+CO2+H2O=Na2CO3+ H2SiO3↓”可以进行,是因为该反应是在溶液中进行的,符合复分解反应的原理,两者反应原理不矛盾【想一想】碳酸和硅酸的酸性比较 2. 硅酸钠 (1)物理性质:最简单的硅酸盐是硅酸钠(Na2SiO3),可溶于水,其水溶液俗称水玻璃,是制备硅胶和木材防火剂等的原料。 【注意】①硅酸钠溶液可用玻璃瓶盛装,但是不能用玻璃塞,应用橡胶塞或木塞。 ②玻璃中含有二氧化硅,盛放氢氟酸不用玻璃瓶而用塑料瓶。 (2)化学性质

《无机非金属材料》教案(1)(1)

硅无机非金属材料 三维目标 知识与技能: 1、了解硅在自然界的存在、含量 2、了解单质硅的主要性质、工业制法和主要用途。 3、初步培养学生自主查阅资料的能力和阅读能力 过程与方法: 1、自主学习 2、通过碳与硅的新旧知识的比较,设疑引导、变疑为导、变教为导的思路教学法。 情感、态度与价值观 1、使学生掌握学习元素化合物知识的一般规律和正确方法 2、使学生体会组成材料的物质的性质与材料的性能的密切关系,认识新材料的开发对人类生 产、生活的重要影响,学会关注与化学有关的社会热点问题,激发他们学习化学的热情。教学重点:硅的物理、化学性质 教学难点:硅的化学性质和提纯 教学用具:多媒体 教学过程 新课导入:材料是人类生活必不可少的物质基础。材料的发展史就是一部人类文明史。没有感光材料,我们就无法留下青春的回忆;没有高纯的单晶硅,就没有今天的奔腾电脑;没有特殊的新型材料,火箭就无法上天,卫星就无法工作,人类的登月计划就会受到影响,材料的发展对我们的生活起着决定性的作用。从化学角度来看任何物质都是由元素组成,那元素与这些材料之间又有什么样的关系呢?从本章开始我们就来学习一下元素与材料之间的关系。 板书:第四章元素与材料世界 多媒体:展示一组与硅元素有关的图片,引出本节新课 第一节硅无机非金属材料 学生活动:阅读教材第一段思考下列问题 1、无机非金属材料包括哪些? 2、这类材料的特点有哪些? 3、无机非金属材料分哪两类? 多媒体:展示一组与硅元素有关的图片。 设疑:这些表观看“风牛马不相及”的物质,从微观组成上却有很大的相似性,他们都是有黄沙通过不同的途径制得的,它们都含有共同的元素是什么呢? 多媒体:一、半导体材料与单质硅

无机非金属材料的现状与前景

无机非金属材料的现状与前景 【摘要】无机非金属材料是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。在材料学飞速发展的今天,无机非金属材料有这广阔的应用前景和良好的就业形势。 【关键字】无机非金属材料方向前景智能 1. 无机非金属材料的特点及应用 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。 在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。 无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。 普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。

无机非金属材料结构知识点整理

一概述 1.材料是人类社会所能接受的、可经济地制造有用物品的物质。材料性能关系到材料的应用材料含义在于应用,材料的什么决定应用的概念和设计,决定了应用的基础——综合的性能决定最终产品的形态和应用…… 2.材料研究的核心问题:以材料的结构和性能为研究对象,并重点研究结构与材料性能之间的关系,为材料性能的改进和新材料的开发提供指导。 3材料结构层次:原子结构,晶体结构——功能材料密切相关;显微结构,微观组织——结构材料密切相关;宏观结构——复合材料相关;、 4材料的电子结构——指材料中的电子分布和状态,它不同于单个的分子和原子的电子结构,因为这两者不是长程的完整的材料。它是决定材料晶体结构的主要和本质原因。 5. 电子波动反映到原子中,为驻波。 6.现代材料结构和性能测量的重要原理和基础:X光衍射和电子显微技术——微观结构,磁性分布和能隙空间分布等等,其中大都以微观过程或性能直接体现了量子效应和作用…… 7.量子理论是解决电子结构的惟一工具。是以能量的量子化和波函数概念为核心的,可依照薛定额方程确定的第一性原理分析方法。 二、晶体结构 1晶体的特征:均匀性;各向异性;自发地形成多面体外形;晶体具有明显确定的熔点;晶体的对称性;晶体对X射线的衍射; 2晶体的宏观特性是由晶体内部结构的周期性决定的,即晶体的宏观特性是微观特性的反映。 3晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况 4晶体与非晶体的最本质差别在于组成晶体的原子、离子、分子等质点是规则排列的(长程序),而非晶体中这些质点除与其最近邻外,基本上无规则地堆积在一起(短程序)。晶体与非晶体之间的主要差别在于它们是否有三维长程点阵结构。 5晶体――原子或原子团、离子或分子在空间按一定规律呈周期性地排列构成的固体 6固体分类(按结构)――晶体:长程有序;非晶体:不具有长程序的特点,短程有序;准晶体:有长程取向性,而没有长程的平移对称性。 7在晶体中适当选取某些原子作为一个基本结构单元,这个基本结构单元称为基元,基元是晶体结构中最小的重复单元,基元在空间周期性重复排列就形成晶体结构。晶格+基元=晶体结构 8晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限分布,通过这些点做三组不共面的平行直线族,形成一些网格,称为晶格(或者说这些点在空间周期性排列形成的骨架称为晶格)。9取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学(简称原胞)。 10结晶学原胞(简称单胞)构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。 11维格纳--塞茨原胞构造:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即为W--S原胞。特点:它是晶体体积的最小重复单元,每个原胞只包含1个格点。其体积与固体物理学原胞体积相同。 12原胞与分类—7大晶系 晶系晶轴轴间夹角实例 立方 a = b = c α=β=γ= 900Cu, NaCl 四方 a = b ≠ c α=β=γ= 900Sn, SiO2 正交 a = ≠ b ≠ c α=β=γ= 900I2, BaCO3 三方 a = b = c α=β=γ≠ 900As, Al2O3 a = b ≠ c α=β= 900,γ = 1200 单斜 a ≠ b ≠ c α= γ= 900,β≠ 900KClO3 三斜 a ≠ b ≠ c α≠ β≠ γ≠ 900 K2CrO7 六方 a = b ≠ c α=β= 900,γ =1200 Mg,CuS

高分子材料无机非金属材料作业知识点整理

无机非金属 高分子材料 结构对性能的影响: 碳链聚合物: 具有良好可塑性、容易成型加工等优点。但因C―C键能较低,耐热性差,容易燃烧,易老化,不宜在苛刻条件下使用 杂链聚合物: 其耐热性和强度比碳链高分子高,但主链带有极性,易水解、醇解或酸解 元素有机聚合物:大分子主链中没有碳原子 兼有无机物的热稳定性和有机物的弹塑性,硅橡胶:它既具橡胶的高弹性,硅氧键又赋予其优异的高低温使用性能 无机高分子:主链和侧链均无碳原子 耐高温性能好,但力学强度较低,化学稳定性较差 举例: 塑料:有机合成树脂 合成树脂:是由低分子化合物通过缩聚或加聚反应合成的高分子化合物,如酚醛树脂、聚乙烯等,是塑料的主要组成,也起粘接剂作用。 添加剂:(1)填料或增强材料:填料在塑料中主要起增强作用。 (2)固化剂:可使成为较坚硬和稳定的塑料制品。 (3)着色剂:用于塑料制品着色。 (4)稳定剂:用以防止受热、光等的作用使塑料过早老化 热塑性塑料:指在特定温度范围内能反复加热软化和冷却硬化,具有多次重复加工性的塑料。 如聚乙烯、聚丙烯、聚氯乙烯塑料等。 优点:加工成型简便,机械性能较好,是塑料中性能较好的工程塑料。 缺点:耐热性和刚性较差 热固性塑料:因受热发生固化反应,不具有多次重复加工性的塑料。 如酚醛塑料、环氧塑料等。 优点:耐热性好,受压不易变形。 缺点:机械性能不好 以上两种塑料不同的原因:结构

1 长链分子间是以分子间作用力结合在一起的。当受热时,这些长链会加快振动,使链与链之间作用力减弱,长链间发生相对滑动,因此塑料会熔化成液体。当冷却时,长链所含的能量降低,彼此之间的距离拉近,相互吸引力增强,所以会重新硬化。 2 热固性塑料在形成初期也是长链的,受热会软化,可以被塑制成一定的形状。但在进一步受热时,链与链之间会形成共价键,产生一些交联,形成体型网状结构,硬化定型。再受热时,链状分子的滑动受到限制,因此不会熔化 橡胶:结构 相对分子量大 分子间的相互作用力小 分子的对称性小,不易形成结晶结构 具有交联结构 性能:回弹性好,回弹速度快。橡胶还有一定的耐磨性,很好的绝缘性和不透气、不透水性。加工:橡胶硫化后,其柔韧性和弹性都会增大 1. 硫化剂 硫化处理:变塑性生胶为弹性胶的处理。能起硫化作用的物质称硫化剂,有硫磺、含硫化合物、硒、过氧化物等。 2. 硫化促进剂 胺类、硫脲类物质,降低硫化温度、加速硫化过程。 3. 补强填充剂 提高橡胶的机械性能,改善其加工工艺性能,降低成本。如碳黑、陶土、碳酸钙、硫酸钡等

无机非金属材料导论复习

第三章陶瓷 1 陶瓷是由粉状原料成型后在高温下作用硬化而成的制品,是多晶、多相的聚集体。 2 分为传统陶瓷和新型陶瓷。新型陶瓷根据功能分类包括:1力学功能陶瓷(叶片、转子)2热功能陶瓷(高温用坩埚、导弹)3电子功能陶瓷(大容量电容器、红外检测元件)4磁功能陶瓷(记忆运算元件、磁蕊)5光功能陶瓷(窗口材料、胃照相机)6化学功能陶瓷(传感器、催化剂)7放射性功能陶瓷(核燃料、减速剂)8吸声功能陶瓷(吸声板)9生物功能陶瓷(人造骨、生物陶瓷)。 3 陶瓷的制备工艺:1原料的制备(天然原料,合成原料);2胚料的成形和干燥(可塑成形,注浆成形,压制成形);3烧结或烧成。 烧结方法:粉末在室温下加压成形后再进行烧结的传统方法、热等静压、水热烧结、热挤压烧结、电火花烧结、爆炸烧结、等离子体烧结等。 自蔓延高温合成法:利用金属与硅、硼、碳、氮等相互作用的强烈放热效应,不采取外部加热源,而利用元素内部潜在的化学能将原始粉末在几秒到几十秒的极短时间内转化成化合物或致密烧结体。优点:不需要高温炉,过程简单,几乎不消耗电能,制得的产品纯净,能获得复杂相和亚稳相。缺点:不易获得高密度材料,不易严格控制制品的性能,易燃,有毒。 4 陶瓷的典型组织结构:晶相,玻璃相,气相。 晶相是陶瓷的主要组成成分,数量较大,对性能影响较大。它的结构、数量、形态和分布,决定了陶瓷的主要特点和应用。 玻璃相作用(1)将晶相颗粒粘结起来,填充晶相之间的空隙,提高材料的致密度;(2)降低烧成温度,加速烧成过程;(3)阻止晶体转变,抑制晶体长大;(4)获得一定程度的玻璃特性,如透光性及光泽等。玻璃相对陶瓷的机械强度、介电性能、耐火性等是不利的,因此不能成为陶瓷的主导组成成分,一般含量为20%-40%. 气相是指陶瓷组织内部残留下来未排除的气体,通常以气孔形式出现。根据气孔含量可将陶瓷分为致密陶瓷、无开孔陶瓷和多孔陶瓷。除多孔陶瓷外,气孔都是不利的,它降低了陶瓷的强度和导热性能,也常常是造成裂纹的根源。一般普通陶瓷气孔率5%-10% ,特种陶瓷5%以下,金属陶瓷0.5%以下。 经历低温(室温至300℃)中温(300-950℃)高温(950℃至烧成温度)冷却(烧成温度至室温)四个阶段 5 陶瓷的性能 力学性能【刚度硬度】决定于化学键的强度 【强度】实际强度比理论值低—1组织中存在晶界2陶瓷的实际强度受致密度、杂质和各种缺陷的影响很大。 【塑性】塑性变形是在剪切应力作用下由位错运动引起的密排原子面间的滑移变形。塑性开始的温度约为0.5Tm(Tm为熔点温度)。由于开始塑性变形的温度很高,所以陶瓷具有较高的高温强度。 【韧性或脆性】常温下陶瓷受载时都不发生塑性变形,就在较低的应力作用下断裂,因此,韧性极低或脆性很高。断裂包括裂纹的形成和扩展2个过程。脆性是陶瓷的最大缺点,是其作为结构材料被广泛应用的主要障碍。 热学性能【热膨胀】温度升高时物质原子振动振幅增加及原子间距增大所导致的体积增大现象。 【导热性】热传导主要依靠原子的热振动。几乎没有自由电子参与传热,导热性差,用作绝热材料。 【热稳定】即抗热震性,热稳定性低是陶瓷的另一个主要缺点 其他性能导电性耐火性化学稳定性(陶瓷的结构非常稳定)

2018版第4章无机非金属材料的主角——硅知识点

第一节无机非金属材料的主角——硅 1.了解SiO2的结构、性质和用途。(重点) 2.了解硅酸的制备和化学性质。 3.了解硅酸盐的性质及组成的表示方法。 4.了解硅的性质和用途。(重点) 5.了解几种重要无机非金属材料的生产及用途。

教材整理1 二氧化硅 1.硅元素的存在 2.二氧化硅(SiO2) (1)存在 SiO2的存在形式有结晶形和无定形两大类,水晶、玛瑙的主要成分是结晶的二氧化硅。

(2)结构 SiO2晶体是由Si和O按原子数之比为1∶2的比例组成的立体网状结构的晶体。每个硅原子周围结合4个O原子,每个O周围结合2个Si原 子。 (3)物理性质 熔点高;硬度大;溶解性:不溶于水。 (4)化学性质(写出有关化学方程式) (5)用途 ①沙子是基本的建筑材料。 ②纯净的SiO2是现代光学及光纤制品的基本原料,可以制作光导纤维。 ③石英和玛瑙制作饰物和工艺品。 ④实验室中使用石英坩埚。 教材整理2 硅酸(H 2SiO 3 ) 1.物理性质 硅酸是一种难溶于水的白色胶状物。 2.化学性质 (1)弱酸性 向Na2SiO3溶液中通入CO2,生成白色沉淀,反应的化学方程式为Na2SiO3+CO2+H2O===Na2CO3+H2SiO3↓。 结论:H2SiO3酸性比H2CO3酸性弱。

(2)不稳定性 H 2SiO 3不稳定,受热易分解,反应的化学方程式为H 2SiO 3=====△ H 2O +SiO 2。 3.制备 Na 2SiO 3溶液中加入盐酸,反应的化学方程式为Na 2SiO 3+2HCl===2NaCl +H 2SiO 3(胶体)。 4.存在及用途 (1)浓度小且边加边振荡时,形成硅酸溶胶(胶体);浓度大时,形成硅酸凝胶。 (2)硅胶 硅酸凝胶经干燥脱水得到的硅酸干凝胶,称为“硅胶”,具有很强的吸水性,常用作干燥剂或催化剂的载体。 [探究·升华] [思考探究] 探究1 SiO 2的主要性质及应用 (1)为什么实验室盛放NaOH 溶液的试剂瓶要用橡胶塞而不能用玻璃塞?(玻璃的成分中含有SiO 2) 【提示】 当玻璃瓶配玻璃塞时,瓶口内壁和瓶塞外壁都进行了磨砂处理。玻璃中含SiO 2,磨砂玻璃遇到强碱如NaOH 溶液时,SiO 2与NaOH 反应生成Na 2SiO 3,使试剂瓶受腐蚀。Na 2SiO 3溶液有良好的黏结性,它易使瓶口与瓶塞黏在一起而难以开启。故使用橡胶塞而不能使用玻璃塞。 (2)实验室能否用玻璃瓶保存氢氟酸?为什么?写出反应方程式。 【提示】 不能。因为氢氟酸腐蚀玻璃,和玻璃中的成分SiO 2反应。 SiO 2+4HF===SiF 4↑+2H 2O 。 (3)写出SiO 2、CO 2与CaO 反应的化学方程式。 【提示】 SiO 2+CaO=====△ CaSiO 3、 CO 2+CaO===CaCO 3。 探究2 硅酸的制备实验探究

相关主题
文本预览
相关文档 最新文档