当前位置:文档之家› 遗传算法实验设计与仿真

遗传算法实验设计与仿真

遗传算法实验设计与仿真
遗传算法实验设计与仿真

学号:200704134069

姓名:吴宇鑫

学院:信息科学与工程学院

专业:自动化

班级:073班

设计时间:2011-3-16至2011-4-6

指导教师:吴怀宇

一.设计内容

(一)设计题目 求下面函数的最大值2020)202040(sin

)(101≤≤--+=∑=x x x i

i i i x f (二)设计的目的

掌握遗传算法的基本原理 ,了解在 MA TLAB 环境中实现遗传算法各算子的编程方法。并以此例说明所编程序在函数全局寻优中的应用。

二.设计方案

(一)理论基础

1.遗传算法简介

遗传算法是进化算法中产生最早、影响最大、应用也比较广泛的一个研究方向和领域,其基本思想是由美国密执安大学的John H. Holland 教授于1962年率先提出的。1975年,他出版了专著《自然与人工系统中的适应性行为》(Adaptation in Natural and Artificial Systems)[19],该书系统地阐述了遗传算法的基本理论和方法,确立了遗传算法的基本数学框架。此后,从事遗传算法研究的学者越来越多,使之成为一种通用于多领域中的优化算法。 遗传算法是一种基于生物的自然选择和群体遗传机理的搜索算法。它模拟了自然选择和自然遗传过程中发生的繁殖、交配和突变现象。它将每个可能的解看做是群体(所有可能解)中的一个个体,并将每个个体编码成字符串的形式,根据预定的目标函数对每个个体进行评价,给出一个适应度值。开始时总是随机地产生一些个体(即候选解),根据这些个体的适应度利用遗传算子对这些个体进行操作,得到一群新个体,这群新个体由于继承了上一代的一些优良性状,因而明显优于上一代,这样逐步朝着更优解的方向进化。遗传算法在每一代同时搜索参数空间的不同区域,然后把注意力集中到解空间中期望值最高的部分,从而使找到全局最优解的可能性大大增加。

作为进化算法的一个重要组成部分,遗传算法不仅包含了进化算法的基本形式和全部优点,同时还具备若干独特的性能:

1) 在求解问题时,遗传算法首先要选择编码方式,它直接处理的对象是参数的编码集而不是问题参数本身,搜索过程既不受优化函数连续性的约束,也没有函数导数必须存在的要求。通过优良染色体基因的重组,遗传算法可以有效地处理传统上非常复杂的优化函数求解问题。

2) 若遗传算法在每一代对群体规模为n 的个体进行操作,实际上处理了大约O (n 3)个模式,具有很高的并行性,因而具有明显的搜索效率。

3) 在所求解问题为非连续、多峰以及有噪声的情况下,能够以很大的概率收敛到最优解或满意解,因而具有较好的全局最优解求解能力。

4) 对函数的性态无要求,针对某一问题的遗传算法经简单修改即可适应于其他问题,或者加入特定问题的领域知识,或者与已有算法相结合,能够较好地解决一类复杂问题,因而具有较好的普适性和易扩充性。

5) 遗传算法的基本思想简单,运行方式和实现步骤规范,便于具体使用。

2.遗传算法对问题的描述

对于一个求函数最大值的优化问题(求函数最小值也雷同),一般可描述为下述数学规划模型:

??

????∈U R R X .t .s )X (f m ax (1)

式中,X=[x 1,x 2,…,x n ]T 为决策变量,f(X)为目标函数,R X ∈和U R ?为约束条件,U 是基本空间,R 是U 的一个子集。集合R 表示由所有满足约束条件的解所组成的一个集合,叫做可行解集合。它们的关系如图1所示。

图1 最优化问题的可行解及可行解集合

在遗传算法中,将n 维决策向量X=[x 1,x 2,…,x n ]T 用n 个记号X i (i=1,2,…,n )所组成的符号串X 来表示:

X = X 1X 2…X n ?X=[x 1 , x 2 ,…,x n ]T

把每个X i 看作一个遗传基因,它的所有可能取值称为等位基因,这样,X 就可看做是由n 个遗传基因所组成的一个染色体。一般情况下,染色体的长度n 是固定的,但对一些问题n 也可以是变化的。根据不同的情况,这里的等位基因可以是一组整数,也可以是某一范围内的实数值,或者是纯粹的一个符号。最简单的等位基因是由0和1这两个整数组成的,相应的染色体就可表示为一个二进制符号串。这种编码所形成的排列形式X 是个体的基因型,与它对应的X 值是个体的表现型。通常个体的表现型和基因型是一一对应的,但有时也允许基因型和表现型是多对一的关系。染色体X 也称为个体X ,对于每个个体X ,要按照一定的规则确定出其适应度。个体的适应度与其对应的个体表现型X 的目标函数值相关联,X 越接近于目标函数的最优点,其适应度越大;反之,其适应度越小。

在遗传算法中,决策变量X 组成了问题的解空间。对问题最优解的搜索是通过对染色体X 的搜索过程来进行的,从而由所有的染色体X 就组成了问题的搜索空间。

生物的进化是以集体为主体的。与此相对应,遗传算法的运算对象是由M 个个体所组成的集合,称为群体(或种群)。与生物一代一代的自然进化过程相类似,遗传算法的运算过程也是一个反复迭代的过程,第t代群体记做P(t),经过一代遗传和进化后,得到第t+1代群体,它们也是由多个个体组成的集合,记做P(t+1)。

这个群体不断地经过遗传和进化操作,并且每次都按照优胜劣汰的规则将适应度高的个体更多地遗传到下一代,这样最终在群体中将会得到一个优良的个体X ,它所对应的表现型X 将达到或接近于问题的最优解X *。

生物的进化过程主要是通过染色体之间的交叉和染色体的变异来完成的。与此相对应,

仿真实验报告

上海电力学院 本科课程设计 电路计算机辅助设计 院系:电力工程学院 专业年级(班级):电力工程与管理2011192 班 学生姓名:学号: 201129 指导教师:杨尔滨、杨欢红 成绩: 2013年07 月 06 日教师评语:

目录仿真实验一 仿真实验二仿真实验三仿真实验四仿真实验五仿真实验六仿真实验七仿真实验八仿真实验九节点电压法分析直流稳态电路..........................1 戴维宁定理的仿真设计................................5 叠加定理的验证.. (8) 正弦交流电路——谐振电路的仿真......................11 两表法测量三相电路的功率............................14 含受控源的RL 电路响应的研究........................18含有耦合互感的电路的仿真实验........................21 二阶电路零输入响应的三种状态轨迹....................27 二端口电路的设计与分析 (32)

实验一节点电压法分析电路 一、电路课程设计目的 ( 1)通过较简易的电路设计初步接触熟悉Multisim11.0 。 (2)学会用 Multisim11.0 获取某电路元件的某个参数。 (3)通过仿真实验加深对节点分析法的理解及应用。 二、实验原理及实例 节点分析法是在电路中任意选择一个节点为非独立节点,称此节点为参考点。其它独立节点与参考点之间的电压,称为该节点的节点电压。 节点分析法是以节点电压为求解电路的未知量,利用基尔霍夫电流定律和欧姆定律导出(n – 1)个独立节点电压为未知量的方程,联立求解,得出各节点电压。然后进一步求出 各待求量。 下图所示是具有三个节点的电路,下面以该图为例说明用节点分析法进行的电路分析方 法和求解步骤,导出节点电压方程式的一般形式。 图1— 1 首先选择节点③为参考节点,则u3 = 0 。设节点①的电压为u1、节点②的电压为u2,各支 路电流及参考方向见图中的标示。应用基尔霍夫电流定律,对节点①、节点②分别列出节点电 流方程: 节点①i S1i S2i1i 20 节点②i S2i S 3i 2i30 用节点电压表示支路电流: u1 i1G1u1 R 1 u1u2 i 2R G 2(u1u2 ) 2 u2 i3G 3u2 R 3

MATLAB实验遗传算法和优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率, ρ为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2)

虚拟仿真实验方案设计

实用文档 虚拟仿真实验解决方案 华一风景观艺术工程 2017年8月

目录 第一章需求分析 (2) 一、项目背景 (2) 二、实验教学现状 (3) 三、用户需求 (3) 第二章建设原则 (5) 一、建设目标 (5) 二、建设原则 (6) 第三章系统总体解决方案 (7) 一、总体架构 (7) 二、学科简介 (8) 第四章产品优势 (14) 第五章产品服务 (16) 一、服务方式 (16) 二、服务容 (16) 三、故障响应服务流程 (17) 四、故障定义 (18) 五、故障响应时间 (18) 六、故障处理流程 (19) 七、应急预案 (19)

第一章需求分析 一、项目背景 《国家中长期教育改革和发展规划纲要(2010-2020年)》明确指出:把教育信息化纳入国家信息化发展整体战略,超前部署教育信息网络。到2020年,基本建成覆盖城乡各级各类学校的教育信息化体系,促进教育容、教学手段和方法现代化。加强优质教育资源开发与应用,建立数字图书馆和虚拟实验室。鼓励企业和社会机构根据教育教学改革方向和师生教学需求,开发一批专业化教学应用工具软件,并通过教育资源平台提供资源服务,推广普及应用。 在“十三五规划”方针政策指引下,各地陆续出台政策,强调数理化实验教学的重要性。 2016年,公布了中高考的新方案,强调义务教育阶段所有科目都设为100分,表示它们在义务教育与学生成长中同等重要,不再人为去区分主次,使学校、老师、家长、社会对每一门学科都很重重视,其中物生化实验部分占分比例为30%,高考不再文理分科。 继重磅发布此消息后,教育厅发布《关于2016年普通高中招生工作的意见》,其中明确要求理化生实验操作考试满分为30分;省初中毕业升学理化实验操作考试分数为15分,考试成绩计入考生中考录取总分;省理化实验操作10分。

遗传算法——耐心看完-你就掌握了遗传算法【精品毕业设计】(完整版)

遗传算法入门到掌握 读完这个讲义,你将基本掌握遗传算法,要有耐心看完。 想了很久,应该用一个怎么样的例子带领大家走进遗传算法的神奇世界呢?遗传算法的有趣应用很多,诸如寻路问题,8数码问题,囚犯困境,动作控制,找圆心问题(这是一个国外网友的建议:在一个不规则的多边形中,寻找一个包含在该多边形内的最大圆圈的圆心。),TSP问题(在以后的章节里面将做详细介绍。),生产调度问题,人工生命模拟等。直到最后看到一个非常有趣的比喻,觉得由此引出的袋鼠跳问题(暂且这么叫它吧),既有趣直观又直达遗传算法的本质,确实非常适合作为初学者入门的例子。这一章将告诉读者,我们怎么让袋鼠跳到珠穆朗玛峰上去(如果它没有过早被冻坏的话)。 问题的提出与解决方案 让我们先来考虑考虑下面这个问题的解决办法。 已知一元函数: 图2-1 现在要求在既定的区间内找出函数的最大值。函数图像如图2-1所示。 极大值、最大值、局部最优解、全局最优解

在解决上面提出的问题之前我们有必要先澄清几个以后将常常会碰到的概念:极大值、最大值、局部最优解、全局最优解。学过高中数学的人都知道极大值在一个小邻域里面左边的函数值递增,右边的函数值递减,在图2.1里面的表现就是一个“山峰”。当然,在图上有很多个“山峰”,所以这个函数有很多个极大值。而对于一个函数来说,最大值就是在所有极大值当中,最大的那个。所以极大值具有局部性,而最大值则具有全局性。 因为遗传算法中每一条染色体,对应着遗传算法的一个解决方案,一般我们用适应性函数(fitness function)来衡量这个解决方案的优劣。所以从一个基因组到其解的适应度形成一个映射。所以也可以把遗传算法的过程看作是一个在多元函数里面求最优解的过程。在这个多维曲面里面也有数不清的“山峰”,而这些最优解所对应的就是局部最优解。而其中也会有一个“山峰”的海拔最高的,那么这个就是全局最优解。而遗传算法的任务就是尽量爬到最高峰,而不是陷落在一些小山峰。(另外,值得注意的是遗传算法不一定要找“最高的山峰”,如果问题的适应度评价越小越好的话,那么全局最优解就是函数的最小值,对应的,遗传算法所要找的就是“最深的谷底”)如果至今你还不太理解的话,那么你先往下看。本章的示例程序将会非常形象的表现出这个情景。 “袋鼠跳”问题 既然我们把函数曲线理解成一个一个山峰和山谷组成的山脉。那么我们可以设想所得到的每一个解就是一只袋鼠,我们希望它们不断的向着更高处跳去,直到跳到最高的山峰(尽管袋鼠本身不见得愿意那么做)。所以求最大值的过程就转化成一个“袋鼠跳”的过程。下面介绍介绍“袋鼠跳”的几种方式。 爬山法、模拟退火和遗传算法 解决寻找最大值问题的几种常见的算法: 1. 爬山法(最速上升爬山法): 从搜索空间中随机产生邻近的点,从中选择对应解最优的个体,替换原来的个体,不断重复上述过程。因为只对“邻近”的点作比较,所以目光比较“短浅”,常常只能收敛到离开初始位置比较近的局部最优解上面。对于存在很多局部最优点的问题,通过一个简单的迭代找出全局最优解的机会非常渺茫。(在爬山法中,袋鼠最有希望到达最靠近它出发点的山顶,但不能保证该山顶是珠穆朗玛峰,或者是一个非常高的山峰。因为一路上它只顾上坡,没有下坡。) 2. 模拟退火: 这个方法来自金属热加工过程的启发。在金属热加工过程中,当金属的温度超过它的熔点(Melting Point)时,原子就会激烈地随机运动。与所有的其它的物理系统相类似,原子的这种运动趋向于寻找其能量的极小状态。在这个能量的变

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告实验名称:微波仿真实验

姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。

三、实验过程及结果 第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线 宽度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数

(b)根据实验要求设置相应参数 实验二 1、实验内容 了解ADS Schematic的使用和设置2、相关截图:

打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。 3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。

实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

Multisim仿真实验报告

Multisim仿真实验报告 实验课程:数字电子技术 实验名称:Multisim仿真实验 姓名:戴梦婷 学号: 13291027 班级:电气1302班 2015年6月11日

实验一五人表决电路的设计 一、实验目的 1、掌握组合逻辑电路——五人表决电路的设计方法; 2、复习典型组合逻辑电路的工作原理和使用方法; 3、提高集成门电路的综合应用能力; 4、学会调试Multisim仿真软件,并实现五人表决电路功能。 二、实验器件 74LS151两片、74LS32一片、74LS04一片、单刀双掷开关5个、+5V直流电源1个、地线1根、信号灯1个、导线若干。 三、实验项目 设计一个五人表决电路。在三人及以上同意时输出信号灯亮,否则灯灭,用8选1数据选择器74LS151实现,通过Multisim仿真软件实现。 四、实验原理 1、输入变量:A B C D E,输出:F;

3、逻辑表达式 F= ABCDE+ABCDE+ABCDE+ABCDE+ ABCDE+ ABCDE+ABC DE+ABCDE+ ABCDE+ ABCDE+ABCDE+ABCDE+ ABCDE+ABCDE+ABCDE+ABCDE =ABCDE+ ABCDE+ABCDE+ ABCD+ABCDE+ABCDE+ABCD+ABCDE+ ABCD+ABCD+ABCD 4、对比16选1逻辑表达式,令A3=A,A2=B,A1=C,A0=D,D3=D5=D6=D9=D10=D12=E, D 7=D 11 =D 13 =D 14 =D 15 =1,D =D 1 =D 2 =D 4 =D 8 =0; 5、用74LS151拓展构成16选1数据选择器。 五、实验成果 用单刀双掷开关制成表决器,同意开关打到上线,否则打到下线。当无人同意时,信号指示灯不亮,如下图:

虚拟仿真(虚拟现实)实验室解决方案设计

数虎图像提供虚拟仿真实验室硬件设备搭建和内容制作整体解决 方案 虚拟现实实验室是虚拟现实技术应用研究就的重要载体。 随着虚拟实验技术的成熟,人们开始认识到虚拟实验室在教育领域的应用价值,它除了可以辅助高校的科研工作,在实验教学方面也具有如利用率高,易维护等诸多优点.近年来,国内的许多高校都根据自身科研和教学的需求建立了一些虚拟实验室。数虎图像拥有多名虚拟现实软硬件工程师,在虚拟现实实验室建设方面有着无与伦比的优越性! 下面请跟随数虎图像一起,让我们从头开始认识虚拟现实实验室。【虚拟现实实验室系统组成】: 建立一个完整的虚拟现实系统是成功进行虚拟现实应用的关键,而要建立一个完整的虚拟现实系统,首先要做的工作是选择确实可行的虚拟现实系统解决方案。 数虎图像根据虚拟现实技术的内在含义和技术特征,并结合多年的虚拟现实实验室建设经验,最新推出的虚拟现实实验室系统提供以下组成:

虚拟现实开发平台: 一个完整的虚拟现实系统都需要有一套功能完备的虚拟现实应用开发平台,一般包括两个部分,一是硬件开发平台,即高性能图像生成及处理系统,通常为高性能的图形计算机或虚拟现实工作站;另一部分为软件开发平台,即面向应用对象的虚拟现实应用软件开发平台。开发平台部分是整个虚拟现实系统的核心部分,负责整个VR场景的开发、运算、生成,是整个虚拟现实系统最基本的物理平台,同时连接和协调整个系统的其它各个子系统的工作和运转,与他们共同组成一个完整的虚拟现实系统。因此,虚拟现实系统开发平台部分在任何一个虚拟现实系统中都不可缺少,而且至关重要。 虚拟现实显示系统: ·高性能图像生成及处理系统 ·具有沉浸感的虚拟三维显示系统 在虚拟现实应用系统中,通常有多种显示系统或设备,比如:大屏幕监视器、头盔显示器、立体显示器和虚拟三维投影显示系统,

automod仿真实验设计

1. 实验设计 对于库存系统,管理者往往比较关心供应链的成本和产品满足率的问题。因此将年总成本和产品满足率作为该系统的响应。其中: 产品满足率= 出库总量/订单总量 供应链总成本= 总库存成本+总订货成本 = 年平均库存*单位库存持有成本+单次订货成本*年订货次数 上式中,产品满足率是指以库存来满足的那部分市场需求所占的比率。供应链总成本的计算中,认为供应链不存在缺货损失,因而不考虑缺货成本。 根据上述目标绩效,对模型的输入进行分析可知,参数K,H可能会对绩效指标产生影响。 Q 从上式可以看出,K,H会对最优订货量Q产生影响,则选取K/H来分析。 类型 因子K/H 响应供应链总成本,产品满足率 (正交实验设计) 2. 输出数据分析 该库存系统仿真为非终止型仿真,则选取批均值法进行分析。仿真运行2500天,删除前730天的数据,将剩下的数据分成4批,每批长度为365天。 统计数据 统计项批次粮食销售点企业储备库销区储备库产区储备库 库存均值1 137.5 321.1350.8393.4 2 131.8 312.0 345.7 389.1 3 136.7 320.6 355.8 398.0 4 133.9 308.6 345.4 394.1 订货次数1 58 51 43 35 2 61 5 3 46 39 3 60 52 4 4 36 4 62 5 5 48 40 区间估计

估计项 95%置信区间 均值下限上限 库存均值 销售点135.0 130.8 139.1 企业储备库315.6 305.6 325.5 销区储备库349.4 341.6 357.3 产区储备库393.7 387.8 399.5 订货次数 销售点60 58 63 企业储备库53 50 55 销区储备库45 42 49 产区储备库38 34 41 供应链总成本= 总库存成本+总订货成本=159265 估计项 95%置信区间 均值下限上限 出库量16295 15856 16734 需求16420 15914 16926 产品满足率=99.2%

matlab遗传算法学习和全局化算法【精品毕业设计】(完整版)

1 遗传算法步骤 1 根据具体问题选择编码方式,随机产生初始种群,个体数目一定,每个个体表现为染色 体的基因编码 2 选择合适的适应度函数,计算并评价群体中各个体的适应。 3 选择(selection)。根据各个个体的适应度,按照一定的规则或方法,从当前群体中选择出 一些优良的个体遗传到下一代群体 4 交叉(crossover)。将选择过后的群体内的各个个体随机搭配成对,对每一对个体,以一定 概率(交叉概率)交换它们中的部分基因。 5 变异(mutation)。对交叉过后的群体中的每一个个体,以某个概率(称为变异概率)改n 变某一个或某一些基因位上的基因值为其他的等位基因 6 终止条件判断。若满足终止条件,则以进化过程中得到的具有最大适应度的个体作为最 优解输出,终止运算。否则,迭代执行Step2 至Step5。 适应度是评价群体中染色体个体好坏的标准,是算法进化的驱动力,是自然选择的唯一依据,改变种群结构的操作皆通过适应度函数来控制。在遗传算法中,以个体适应度的大小 来确定该个体被遗传到下一代群体中的概率。个体的适应度越大,被遗传到下一代的概率 就越大,相反,被遗传到下一代的概率就越小。 1 [a,b,c]=gaopt(bound,fun)其中,bound=[xm,xM]为求解区间上届和下届构成的矩阵。Fun 为用户编写的函数。a为搜索的结果向量,由搜索的出的最优x向量与目标函数构成,b为最终搜索种群,c为中间搜索过程变参数,其第一列为代数,后边列分别为该代最好的的个 体与目标函数的值,可以认为寻优的中间结果。 2 ga函数。[X,F, FLAG,OUTPUT] = GA(fun, n,opts).n为自变量个数,opts为遗传算法控制选项,用gaoptimset()函数设置各种选项,InitialPopulation可以设置初始种群,用PopulationSize 可以设置种群规模,SelectionFcn可以定义选择函数, 3 gatool 函数用于打开,GATOOL is now included in OPTIMTOOL。 2.2 通过GUI 使用遗传算法 在Matlab 工作窗口键入下列命令>>gatool,或通过Start 打开其下子菜单Genetic Algorithm Tool,如图1。只要在相应的窗格选择相应的选项便可进行遗传算法的计算。其中fitnessfun 窗格为适应度函数,填写形式为@fitnessfun,Number of variable 窗格为变量个数。其它窗格参数根据情况填入。填好各窗格内容,单击Start 按钮,便可运行遗传算法 例子1 应用实例 已知某一生物的总量y(单位:万个)与时间t(月)之间的关系为y=k0(1-exp(-k1*t)), 统计十个月得到数据见表1,试求关系式中的k0,k1。先编写目标函数,并以文件名myfung.m

哈工大 计算机仿真技术实验报告 仿真实验四基于Simulink控制系统仿真与综合设计

基于Simulink 控制系统仿真与综合设计 一、实验目的 (1) 熟悉Simulink 的工作环境及其功能模块库; (2) 掌握Simulink 的系统建模和仿真方法; (3) 掌握Simulink 仿真数据的输出方法与数据处理; (4) 掌握利用Simulink 进行控制系统的时域仿真分析与综合设计方法; (5) 掌握利用 Simulink 对控制系统的时域与频域性能指标分析方法。 二、实验内容 图2.1为单位负反馈系统。分别求出当输入信号为阶跃函数信号)(1)(t t r =、斜坡函数信号t t r =)(和抛物线函数信号2/)(2t t r =时,系统输出响应)(t y 及误差信号)(t e 曲线。若要求系统动态性能指标满足如下条件:a) 动态过程响应时间s t s 5.2≤;b) 动态过程响应上升时间s t p 1≤;c) 系统最大超调量%10≤p σ。按图1.2所示系统设计PID 调节器参数。 图2.1 单位反馈控制系统框图

图2.2 综合设计控制系统框图 三、实验要求 (1) 采用Simulink系统建模与系统仿真方法,完成仿真实验; (2) 利用Simulink中的Scope模块观察仿真结果,并从中分析系统时域性能指标(系统阶跃响应过渡过程时间,系统响应上升时间,系统响应振荡次数,系统最大超调量和系统稳态误差); (3) 利用Simulink中Signal Constraint模块对图2.2系统的PID参数进行综合设计,以确定其参数; (4) 对系统综合设计前后的主要性能指标进行对比分析,并给出PID参数的改变对闭环系统性能指标的影响。 四、实验步骤与方法 4.1时域仿真分析实验步骤与方法 在Simulink仿真环境中,打开simulink库,找出相应的单元部件模型,并拖至打开的模型窗口中,构造自己需要的仿真模型。根据图2.1 所示的单位反馈控制系统框图建立其仿真模型,并对各个单元部件模型的参数进行设定。所做出的仿真电路图如图4.1.1所示。

遗传算法与优化问题

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm —GA),就是模拟达尔文的遗传选择与自然淘汰的生物进化过程的计算模型,它就是由美国Michigan大学的J、Holla nd教授于1975 年首先提出的?遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算? 1. 遗传算法的基本原理 遗传算法的基本思想正就是基于模仿生物界遗传学的遗传过程?它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体?这个群体在问题特定的环境里生存 竞争,适者有最好的机会生存与产生后代?后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解?值得注意的一点就是,现在的遗传算法就是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身就是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法就是由进化论与遗传学机理而产生的直接搜索优化方法;故而 在这个算法中要用到各种进化与遗传学的概念? 首先给出遗传学概念、遗传算法概念与相应的数学概念三者之间的对应关系这些概念

(2)遗传算法的步骤 遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation). 遗传算法基本步骤主要就是:先把问题的解表示成“染色体”,在算法中也就就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则从中选 择出较适应环境的“染色体”进行复制 ,再通过交叉、变异过程产生更适 应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就就是问题的最优解. 下面给出遗传算法的具体步骤,流程图参见图1: 第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间; 第二步:定义适应函数,便于计算适应值; 第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数; 第四步:随机产生初始化群体; 第五步:计算群体中的个体或染色体解码后的适应值; 第六步:按照遗传策略,运用选择、交叉与变异算子作用于群体,形成下一代群体; 第七步:判断群体性能就是否满足某一指标、或者就是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步. 图1 一个遗传算法的具体步骤

大学物理仿真实验报告概要

大学物理仿真实验报告 姓名: 学号: 班级:

实验-----利用单摆测量重力加速度 实验目的 利用单摆来测量重力加速度 实验原理 单摆的结构参考图1单摆仪,一级近似的周期公式为 由此通过测量周期摆长求重力加速度 实验仪器 单摆仪、摆幅测量标尺、钢球、游标卡尺 实验内容 一.用误差均分原理设计一单摆装置,测量重力加速度g. 设计要求: (1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2)写出详细的推导过程,试验步骤.

(3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s. 二.对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计 要求. 三.自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素 的关系,试分析各项误差的大小. 四.自拟试验步骤用单摆实验验证机械能守恒定律. 实验数据 摆线长+小球直径L=91.50cm

D(平均)=(1.750+1.752+1.744+1.740+1.749+1.748)÷6=1.7 47m R=D/2=0.850cm l=L-R=91.05cm t=95.91s,周期数n=50,周期T=1.92s 所以g=9.751 2ΔT/t=0.0022,ΔL/l=0.0005,所以Δg/g=0.27%,Δg=0.026 所以: g=(9.751±0.026) 实验结论与误差分析: 结论:g=(9.751±0.026),Δg/g=0.27%<1%,所以达到设计要求。 误差分析: 1.若θ>5°(即角度过大)因为T 与θ相关,当θ越大时T也越大,所以θ偏大,测量 值比值偏小。

基于遗传算法和神经网络算法的吊车结构优化设计与实现

·制造业信息化· 图1吊车结构系统有限元模型 Fig.1The finite element model of a fixed crane Based on Genetic Algorithms and Artificial Neural Network Algorithms to Optimize the Structure Design and Implementation of Crane XUE Jia-Hai ,YU Xiao-Mo ,QING Ai-Ling ,ZHOU Wen-Jing ,YE Jun-Ke (College of Mechanical Engineering,Guangxi University,Nanning Guangxi 530004,China ) Abstract:This paper by using the finite element method,orthogonal test method,BP neural network and genetic algorithm to optimization of crane structure system.At last ,the neural network model will be optimized through the generic algorithm and the optimal parameters of the structure dynamic behavior will be obtained . Key words :finite element ;orthogonal experimental method ;BP-neural network ;genetic algorithm 0引言 随着吊车向大型化方向发展,结构在动载荷作用下的振动问题变得日益突出。因此,进行基于动态特性的优化设计,使产品在设计阶段就可以预测其动态特性,可有效减小系统的振动,提高整机工作性能。结构动力学建模方法主要有有限元法、试验模态法、混合建模法及基于人工神经网络的建模方法。基于人工神经网络的动态优化设计建模方法,是利用多层人工神经网络极强的非线性映射功能,来描述和处理动态系统中设计变量及其动态参数之间的关系。人工神经网络模型一旦建立,可取代有限元模型进行结构动态特性重分析,其分 析过程简单而直接,且远比有限元模型计算速度快,尤其适用于工程技术人员使用。由于吊车结构系统的动态特性很难用设计变量显式表达,因此用遗传算法对建立的神经网络模型寻优,计算出可行区域内动态特性最优时的设计变量及目标值。 1吊车结构系统动态特性分析 图1所示为某厂生产的固定式吊车的有限元模型。主要参数为:塔身高48.5m ,起重臂长70m ,最大起重力矩4400kN ·m 。吊车结构的弦杆、腹杆、钢丝绳及集中质量分别以空间梁单元、杆单元、弹簧单元及质量单元模拟。表1所示 为按最大起重力矩工况计算的系统前8阶固有频率。修稿日期:2012-12-21 作者简介:薛加海(1986-),男,云南彝族人,在读硕士研究生。主要研究方向:制造业管理信息化研究;于晓默(1982-),男,蒙古族人,在读博士研究生。主要研究方向:制造业管理信息化研究。 摘要:论文综合利用BP 神经网络、遗传算法有限元法以及正交试验法对吊车结构系统进行优化研究。利 用遗传算法和BP 神经网络建立复杂结构系统动态优化的计算模型,该模型可代替系统原来的有限元模型。首先对吊车起重机结构系统进行模态分析及谐响应动力学分析,找出对结构动态特性影响最大的模态频率,再利用灵敏度分析,确定对动态特性较敏感的设计变量作为神经网络的输入变量,并利用正交试验法确定神经网络训练样本,用有限元模型计算出样本点数据,建立反映结构振动特性的人工神经网络模型,最后利用遗传算法对所建立的神经网络模型寻优,得到使结构动态性能最优的设计参数。 关键词:有限元法;正交试验法;BP 神经网络;遗传算法中图分类号:TP18 文献标识码:A doi:10.3969/j.issn.1002-6673.2013.01.037 文章编号:1002-6673(2013)01-093-03 基于遗传算法和神经网络算法的吊车结构优化设计与实现 薛加海,于晓默,秦爱玲,周文景,叶俊科 (广西大学机械工程学院,广西南宁530004) 机电产品开发与创新 Development &Innovation of M achinery &E lectrical P roducts Vol.26,No.1Jan .,2013第26卷第1期2013年1月 93

遗传算法实验设计与仿真

学号:200704134069 姓名:吴宇鑫 学院:信息科学与工程学院 专业:自动化 班级:073班 设计时间:2011-3-16至2011-4-6 指导教师:吴怀宇

一.设计内容 (一)设计题目 求下面函数的最大值2020)202040(sin )(101≤≤--+=∑=x x x i i i i x f (二)设计的目的 掌握遗传算法的基本原理 ,了解在 MA TLAB 环境中实现遗传算法各算子的编程方法。并以此例说明所编程序在函数全局寻优中的应用。 二.设计方案 (一)理论基础 1.遗传算法简介 遗传算法是进化算法中产生最早、影响最大、应用也比较广泛的一个研究方向和领域,其基本思想是由美国密执安大学的John H. Holland 教授于1962年率先提出的。1975年,他出版了专著《自然与人工系统中的适应性行为》(Adaptation in Natural and Artificial Systems)[19],该书系统地阐述了遗传算法的基本理论和方法,确立了遗传算法的基本数学框架。此后,从事遗传算法研究的学者越来越多,使之成为一种通用于多领域中的优化算法。 遗传算法是一种基于生物的自然选择和群体遗传机理的搜索算法。它模拟了自然选择和自然遗传过程中发生的繁殖、交配和突变现象。它将每个可能的解看做是群体(所有可能解)中的一个个体,并将每个个体编码成字符串的形式,根据预定的目标函数对每个个体进行评价,给出一个适应度值。开始时总是随机地产生一些个体(即候选解),根据这些个体的适应度利用遗传算子对这些个体进行操作,得到一群新个体,这群新个体由于继承了上一代的一些优良性状,因而明显优于上一代,这样逐步朝着更优解的方向进化。遗传算法在每一代同时搜索参数空间的不同区域,然后把注意力集中到解空间中期望值最高的部分,从而使找到全局最优解的可能性大大增加。 作为进化算法的一个重要组成部分,遗传算法不仅包含了进化算法的基本形式和全部优点,同时还具备若干独特的性能: 1) 在求解问题时,遗传算法首先要选择编码方式,它直接处理的对象是参数的编码集而不是问题参数本身,搜索过程既不受优化函数连续性的约束,也没有函数导数必须存在的要求。通过优良染色体基因的重组,遗传算法可以有效地处理传统上非常复杂的优化函数求解问题。 2) 若遗传算法在每一代对群体规模为n 的个体进行操作,实际上处理了大约O (n 3)个模式,具有很高的并行性,因而具有明显的搜索效率。 3) 在所求解问题为非连续、多峰以及有噪声的情况下,能够以很大的概率收敛到最优解或满意解,因而具有较好的全局最优解求解能力。 4) 对函数的性态无要求,针对某一问题的遗传算法经简单修改即可适应于其他问题,或者加入特定问题的领域知识,或者与已有算法相结合,能够较好地解决一类复杂问题,因而具有较好的普适性和易扩充性。 5) 遗传算法的基本思想简单,运行方式和实现步骤规范,便于具体使用。

设计性实验(MATLAB仿真实验)

设计性实验(MATLA仿真实验) 3.1 MATALAB语言概述 3.1.1 MATALAB 语言的发展 MATALAB 是一种科学计算软件,主要适用于矩阵运算及控制和信息处理领域的分析设计。它使用方便,输入简洁,运算高效,内容丰富,并且很容易由用户自行扩展,因此,当前已成为美国和其他发达国家大学教学和科学研究中最常用而必不可少的工具。 MATLAB 是由美国Mathworks 公司与 1 984年正式推出的,从那时到现在已升级到7.x 版本。随着版本的升级,内容不断扩充,功能更强大。特别是在系统仿真和实时运行等方面,有很多新进展,更扩大了它的应用前景。 MATLAB 是“矩阵实验室”( MATrix Laboratoy )的缩写,它是一种以矩阵运算为基础的交互式程序语言,专门针对科学、工程计算及绘图的需求。它用解释方式工作,键入程序立即得出结果,人机交互性能好,适应于多种平台。MATLAB 语言在国外的大学工学院中,特别是数值计算用的最频繁的电子信息类学科中,已成为每个学生都掌握的工具了。它大大提高了课程教学、解题作业、分析研究的效率。 MATLAB 语言比较好学,因为它只有一种数据类型,一种标准的输入输出语句,不用“指针”,不需编译,比其他语言少了很多内容听三、四个小时课,上机练几个小时,就可入门了。以后自学也十分方便,通过它的演示(dem0)和求助(help)命令,人们可以方便地在线学习各种函数的用法及其内涵MATLAB 语言的难点是函数较多,仅基本部分就有700多个,其中常用的有二三百个,要尽量多记少查,可以提高编程效率。 3.1.2MATLAB 语言的特点 1.矩阵运算:每个变量代表一个矩阵,它以矩阵运算见长;每个元素都看作复数,所有的运算都对矩阵和复数有效。(虚部符号可用i 或j) clear %清除内存变量format short % c1=1-2i,c2=3*(2-sqrt(-1)*3),c3=6+sin(.5)*1j c4=complex(1,2) %建立复数 c1 = 1.0000 - 2.0000i

仿真实验报告格式

模拟电子技术课程 电流负反馈偏置的共发射极放大电路仿真实验报告 学号:姓名: 一、本仿真实验的目的 1. 研究在电流负反馈偏置的共发射极放大电路中各个电路元件参数与电路中电 压增益aus=vo/vs、输入电阻ri、输出电阻ro以及低频截止频率fl的关系; 2. 进一 步理解三极管的特性以及电流负反馈偏置的共发射极放大电路的工作原 理; 3. 进一步熟悉multisim软件的使用方法。 二、仿真电路 注:在此电路中,三极管为bjt-npn-vrtual*,设置参数为bf=100,rb=100 ω(即设置晶体管参数为β=100,rbb’=100ω)。 三、仿真内容 1. 计算电路的电压增益aus=vo/vs,输入电阻ri及输出电阻ro; 2. 研究耦合电容、旁 路电容对低频截止频率fl的影响: 1) 令c2,ce足够大,计算由c1引起的低频截止频率fl1; 2) 令c1,ce足够大,计 算由c2引起的低频截止频率fl2; 3) 令c1,c2足够大,计算由ce引起的低频截止频率fl3; 4) 同时考虑c1,c2,ce时的低频截止频率fl; 3. 采用图1所示的电路结构,使用上述给定的晶体管参数,设rl=3kω,rs=100 ω,设计其它电路元件参数,满足下列要求:aus≥40,fl≤80hz。 四、仿真结果 1. 计算电路的电压增益aus=vo/vs,输入电阻ri及输出电阻ro; 仿真电路如图2所示: 图2 测量结果如下所示: 1) vs有效值为5mv,频率为60hz: 测得aus=-29.2,ri=5.60kω,ro=3.35 kω。 2) vs有效值为5mv,频率为100hz: 测得aus=-43.5,ri=3.89kω,ro=3.33kω。 3) vs有效值为5mv,频率为1khz: 测得aus=-76.1,ri=2.27kω,ro=3.31kω。 4) vs有效值为5mv,频率为1khz: 测得aus=-77.1,ri=2.25kω,ro=3.30kω。 测量数据归纳如表1所示: 2. 研究耦合电容、旁路电容对低频截止频率fl的影响: 1) 令c2,ce足够大,计算由c1引起的低频截止频率fl1; 仿真电路如图3所示: 图3 令c2=ce=5f,输入电压为1mv。 当f=1mhz时vo=0.071v,因此当f= fl时vo=0.0502v。经电路仿真,当f=19.5hz时, vo=0.0502v。因此fl =19.5hz。 2) 令c1,ce足够大,计算由c2引起的低频截止频率fl2; 仿真电路如图4所示: 图4 令c1=ce=5f ,输入电压为5mv。当f=1mhz时vo=0.358v,因此当f=fl时vo=0.253v。 经电路仿真,当f=5.7hz时,vo=0.253v。因此fl=5.7hz。 3) 令c1,c2足够大,计算由ce引起的低频截止频率fl3; 仿真电路如图5所示:

设计性实验(MATLAB仿真实验)

设计性实验(MATLAB仿真实验) 3.1M ATALAB语言概述 3.1.1 MATALAB语言的发展 MATALAB是一种科学计算软件,主要适用于矩阵运算及控制和信息处理领域的分析设计。它使用方便,输入简洁,运算高效,内容丰富,并且很容易由用户自行扩展,因此,当前已成为美国和其他发达国家大学教学和科学研究中最常用而必不可少的工具。 MATLAB是由美国Mathworks公司与1984年正式推出的,从那时到现在已升级到7.x版本。随着版本的升级,内容不断扩充,功能更强大。特别是在系统仿真和实时运行等方面,有很多新进展,更扩大了它的应用前景。 MATLAB是“矩阵实验室”(MATrix Laboratoy)的缩写,它是一种以矩阵运算为基础的交互式程序语言,专门针对科学、工程计算及绘图的需求。它用解释方式工作,键入程序立即得出结果,人机交互性能好,适应于多种平台。MATLAB语言在国外的大学工学院中,特别是数值计算用的最频繁的电子信息类学科中,已成为每个学生都掌握的工具了。它大大提高了课程教学、解题作业、分析研究的效率。 MATLAB语言比较好学,因为它只有一种数据类型,一种标准的输入输出语句,不用“指针”,不需编译,比其他语言少了很多内容;听三、四个小时课,上机练几个小时,就可入门了。以后自学也十分方便,通过它的演示(demo)和求助(help)命令,人们可以方便地在线学习各种函数的用法及其内涵 MATLAB语言的难点是函数较多,仅基本部分就有700多个,其中常用的有二三百个,要尽量多记少查,可以提高编程效率。 3.1.2MATLAB语言的特点 1.矩阵运算:每个变量代表一个矩阵,它以矩阵运算见长;每个元素都看作复数,所有的运算都对矩阵和复数有效。(虚部符号可用i或j) clear %清除内存变量 format short % c1=1-2i,c2=3*(2-sqrt(-1)*3),c3=6+sin(.5)*1j c4=complex(1,2) %建立复数 c1 = 1.0000 - 2.0000i

虚拟仿真实验技术设计方案

虚拟仿真实验解决方案 上海华一风景观艺术工程有限公司 年8 月

目录 第一章需求分析.............................. (2) 一、项目背景............................. (2) 二、实验教学现状........................... (3) 三、用户需求............................. (3) 第二章建设原则.............................. (5) 一、建设目标............................. (5) 二、建设原则............................. (6) 第三章系统总体解决方案.......................... (7) 一、总体架构............................. (7) 二、学科简介............................. (8) 第四章产品优势.............................. (14) 第五章产品服务.............................. (16) 一、服务方式............................. (16) 二、服务内容............................. (16) 三、故障响应服务流程........................ (17) 四、故障定义............................. (18) 五、故障响应时间.......................... (18) 六、故障处理流程.......................... (19) 七、应急预案............................. .................... 19

相关主题
文本预览
相关文档 最新文档