当前位置:文档之家› 土木工程材料习题集答案

土木工程材料习题集答案

土木工程材料习题集习题解答

目录

0 绪论 (2)

1土木工程材料的基本性质 (3)

2气硬性胶凝材料 (10)

3水泥 (15)

4混凝土 (23)

5建筑砂浆 (43)

6墙体材料 (46)

7天然石材 (50)

8金属材料 (52)

9合成高分子材料……………………………………………………………

10木材…………………………………………………………………………11沥青与防水材料……………………………………………………………12绝热材料与吸声材料………………………………………………………13建筑装饰材料………………………………………………………………

0 绪论习题解答

一、名词解释

1、产品标准:是为保证产品的适用性,对产品必须达到的某些或全部要求所指定的标准。其范围包括:品种、规格、技术性能、试验方法、检验规则、包装、储藏、运输等。建筑材料产品,如各种水泥、陶瓷、钢材等均有各自的产品标准。

2、工程建设标准:是对基本建设中各类的勘察、规划设计、施工、安装、验收等需要协调统一的事项所指定的标准。与选择和使用建筑材料有关的标准,有各种结构设计规范、施工及验收规范等。

二、填空题

1有机材料无机材料复合材料;2、国家标准行业标准地方标准与企业标准

三、简答题

1、土木工程材料可从不同角度加以分类,如按化学成分,可分为无机材料、有机材料和复合材料;如按材料的功能,可分为结构材料与功能材料两类;如按材料在建筑物中的部位,可分为承重构件(梁、板、柱)、屋面、墙体、地面等材料。

2、土木工程材料有下列发展趋势:

(1)高性能化。例如研制轻质、高强、高耐久、优异装饰性和多功能的材料,以及充分利用和发挥各种材料的特性,采用复合技术,制造出具有特殊功能的复合材料。

(2)多功能化。具有多种功能或智能的土木工程材料。

(3)工业规模化。土木工程材料的生产要实现现代化、工业化,而且为了降低成本、控制质量、便于机械化施工,生产要标准化、大型化、商品化等。

(4)生态化。为了降低环境污染、节约资源、维护生态平衡,生产节能型、利废型、环保型和保健型的生态建材,产品可再生循环和回收利用。

3、实行标准化对经济、技术、科学及管理等社会实践有着重要意义,这样就能对重复性事物和概念达到统一认识。以建筑材料性能的试验方法为例,如果不实行标准化,不同部门或单位采用不同的试验方法。则所得的试验结果就无可比性,其获得的数据将毫无意义。所以,没有标准化,则工程的设计、产品的生产及质量的检验就失去了共同依据和准则。由此可见,标准化为生产技术和科学发展建立了最佳秩序,并带来了社会效益。

4、工程实际中对材料进行质量控制的方法主要有:○1通过对材料有关质量文件的书面检验初步确定其来源及基本质量状况;○2对工程拟采用的材料进行抽样验证试验。根据检验所得的技术指标来判断其实际质量状况,只有相关指标达到相应技术标准规定的要求时,才允许其在工程中使用;○3在使用过程中,通过检测材料的使用功能、成品或半成品的技术性能,从而评定材料在工程中的实际技术性能表现;○4在使用过程中,材料技术性能出现异常时,应根据材料的有关知识判定其原因,并采取措施避免其对于工程质量的不良影响。

5、土木工程材料课程具有内容繁杂、涉及面广、理论体系不够完善等特点,因此学习时应在首先掌握材料基本性质和相关理论的基础上,再熟悉常用材料的主要性能、技术标准及应用方法;同时还应了解典型材料的生产工艺原理和技术性能特点,较清楚地认识材料的组成、结构、构造及性能;必须熟悉掌握常用土木工程材料的主要品种和规格、选择及应用、储运与管理等方面的知识,掌握这些材料在工程使用中的基本规律。

材料试验是检验土木工程材料性能、鉴别其质量水平的主要手段,也是土木工程建设中质量控制的重要措施之一。通过实验课的学习,可以加深对理论知识的理解,掌握材料基本性能的试验和质量评定方法,培养实践技能。

1土木工程材料的基本性质习题解答

一、名词解释

1.密度、表观密度、体积密度、堆积密度

密度:材料在绝对密实状态下单位体积的质量。

表观密度:材料在包含内部闭口孔隙体积在内的单位体积的质量。

体积密度:材料在自然状态下单位体积的质量。

堆积密度:散粒状或粉状材料在堆积状态下单位体积的质量。

2.亲水性材料、憎水性材料

亲水性材料:当润湿角θ≤90°时,水分子之间的内聚力小于水分子与材料分子之间的相互吸引力,此种材料称为亲水性材料。

憎水性材料:当润湿边θ<90°时,水分子之间的内聚力大于水分子与材料分子之间的相互吸引力,此种材料称为憎水性材料。

3.吸水率、含水率

吸水率:当材料吸水饱和时,材料中所含水的质量与干燥状态下的质量比称为吸水率。

含水率:材料中所含水的质量与干燥状态下的质量之比,称为材料的含水率。

4.耐水性、软化系数

耐水性:材料抵抗水破坏作用的性质称为耐水性,用软化系数表示。

软化系数:材料在吸水饱和状态下的抗压强度与材料在干燥状态下的抗压强度之比。

5.抗渗性:材料抵抗压力水渗透的性质称为抗渗透性,用用渗透系数或抗渗等级表示。

6.抗冻性:材料在水饱和状态下,经过多次冻融循环作用,能保持强度和外观完整性的能力。

7.强度等级、比强度

强度等级:指按材料强度值的大小划分的若干等级。

比强度:按材料单位质量计算的强度,其值等于材料的强度值与其体积密度之比。

8.弹性、塑性

弹性:材料在外力作用下产生变形,当外力取消后,变形能完全消失的性质

塑性:材料在外力作用下产生变形,当取消外力后,仍保持变形后的形状,并不产生裂缝的性质。

9.脆性、韧性

脆性:材料在外力作用下,当外力达到一定限度后,材料突然破坏,而破坏时无明显的塑性变形的性质。

韧性:材料在冲击、振动荷载作用下,能过吸收较大的能量,同时也能产生一定的变形而不被破坏的性质。

10.热容量、导热性

热容量:指材料受热时蓄存热量或冷却时放出热量的性能,其大小等于比热容与质量的乘积。

导热性:反映材料传递热量的能力。其大小用导热系数表示。

11. 耐燃性、耐火性

耐燃性:指材料能够经受火焰和高温作用而不破坏,强度也不显著降低的性能。根据耐燃性不同,可分为易燃材料、难燃材料和不燃材料三类。

耐火性:指材料长期在高温作用下,保持其结构和工作性能基本稳定而不破坏的性质,用耐火度表示。根据耐火度不同,可分为易熔材料、难熔材料和耐火材料三类。

12..耐久性:是材料在使用过程中抵抗其自身及环境因素的长期破坏作用,保持其原有性能而不变质、不破坏的能力,即材料保持工作性能直到极限状态的性质。

二、填空:

1.吸水率,软化系数,抗渗等级或渗透系数,抗冻等级,导热系数;2.高,好,愈好;3.小,大;4.质量,强度,保温性能,抗冻性能,体积;5.较小,较低,较大,较差,较差,较大,较好;

6. 好,0.85;

7.比强度,材料的强度与体积密度之比,越轻质高强;

8.静压力;

9.抵抗变形;10.

孔隙率,孔隙特征,孔隙率,细小开口,连通;11不燃材料,难燃材料,易燃材料,热变质,热变形;12.物理作用,化学作用,生物作用;13.形状,尺寸,表面状态,含水率,加荷速度,温度;

14.微观,亚微观(细观),宏观

三、选择题:

1.C 提示:由含水率公式可求得干砂的质量为96.15克。

2.C 提示:材料的导热系数越小,保温隔热性越好,热容量大对保持室内温度的稳定有良好的作用。

3.(1)BDF;(2)BD;(3)BDF;(4)ADF;(5)ACF 提示:一般来说,材料的孔隙率小、开口连通孔少且为微细孔时,其强度较高(材料承受荷载的截面增大,内部产生缺陷的几率减小),抗渗性与抗冻性较好(材料孔隙内的充水程度较低,对结冰产生的体积膨胀的缓冲能力较大);含有大量封闭微孔的材料导热性较低,保温隔热性较好(静态空气的导热系数很小);含有大量连通开口微孔的材料吸声性能较好(声波可深入材料内部,与孔壁摩擦转化成热能而消耗掉)。

4.B 提示:根据计算,材料的软化系数为0.90,大于0.85,为耐水。

5.B 提示:材料的密度是一定值,不随环境的变化而改变。

6.B 提示:无机非金属材料的抗冻性反映了其抗风化性的好坏,与耐久性关系密切。一般而言,无机非金属材料的抗冻性越高,则材料的其它的耐久性也越高。

7.A 提示:除了密度外,其它性质均与孔隙率有关。

8.C提示:软化系数为材料在吸水饱和状态下的抗压强度与材料在干燥状态下的抗压强度之比,该值越小,说明材料吸水饱和后强度降低越多,耐水性越差,通常软化系数大于0.85的材料可以认为是耐水的。

9.D 提示:石英矿物的硬度应用刻划法测定。

10.B提示:韧性材料在冲击、振动荷载作用下,能够吸收较大的能量,同时也能产生一定的变形而不破坏,因为韧性材料的变形值越大,而抗拉强度越接近或高于抗压强度,所以承受冲击和振动荷载的能力强。如钢材、木材、沥青混凝土等。

11、A 提示:脆性材料在外力作用下,直至断裂前只发生很小的弹性变形,不出现塑性变形而突然破坏。这是脆性材料的一个特征。而这类材料的抗压强度比抗拉强度大得多,可达几倍到几十倍。因此,其抗冲击和振动荷载的能力较差。大部分无机非金属材料如石材、砖、水泥、混凝土、砂浆、陶瓷及玻璃等属于这类材料。

12、D 提示:材料吸水后,将使材料的体积密度和导热系数提高,因为材料的体积密度是指材料在自然状态下单位体积的质量。材料吸水后,其质量加入了含水的质量,这样总质量提高了,虽然体积也增加,但增幅小,故体积密度提高。而材料导热是通过材料实体与孔隙内的空气,而吸水后传热介质变成了材料实体及水和空气(水占有了部分或全部空气的体积),而水的导热系数(λ

=0.58W/m2K)是空气的导热系数(λ=0.023W/m2K)的25倍左右,故材料的导热系数提高了。

13、C 提示:材料吸水后,将使材料的强度和保温性降低。由于水会以不同方式使材料软化,破坏材料内部结构的结合力,因此材料吸水后会使其强度降低;另外,材料吸水后导热系数将明显提高,使材料的保温性降低。

14、C 提示:材料的抗渗性和抗冻性的好坏与材料的孔隙率及孔隙特征有关。一般来说,孔隙率大且为开口连通孔时材料的抗渗性与抗冻性较差;密实的以及具有闭口孔(不论孔隙率大小)的材料抗渗性与抗冻性较好。如在混凝土工程中常掺入引气剂改善混凝土的孔结构,以提高其抗渗性和抗冻性。

15、D 提示:通常,固体物质比液态物质导热系数大,液态比气态导热系数大。当材料的孔隙率约大即体积密度约小时,由于孔隙中空气传热较差,因此导热系数越小。当孔隙率相同时,若孔隙间连通也会使孔中空气流通而传热,使材料的导热系数增大。

16、D 提示:建筑材料中,各种胶凝材料、混凝土、天然石材、砖瓦、钢材、木材等均为亲水性材料。而沥青、油漆、塑料等为憎水性材料,它们常用作防潮、防水和防腐材料,也可以对亲水性材料进行表面处理,用以降低吸水性。

四、判断题:

132√3343536373839310√11312√13√14√15√16√17√18√19√20√

五、简答题:

1.答:质量吸水率和体积吸水率都是反映材料吸水性能的指标,但含义不同。质量吸水率是指

材料在吸水饱和状态下所吸入水的质量占材料干燥质量的百分率;而体积吸水率是指材料在吸水饱和状态下所吸入水的体积占干燥材料在自然状态下体积的百分率。前者适宜于表示具有封闭孔隙或极大开口孔隙的材料的吸水性;后者适宜于表示具有很多微小开口孔隙的轻质材料(如加气混凝土、软木等)的吸水性。

2. 答:材料在外力作用下抵抗破坏的能力,称为材料的强度;按其强度值的大小划分为若干个

等级,则是材料的强度等级。材料的强度与材料的含水率状态及温度有关,含有水分的材料其强度较干燥时低;一般温度高时材料的强度降低。材料的强度还与其测试的所用的试件形状、尺寸有关,与实验时的加荷速度、试件的表面性状有关,相同材料采用小试件测得的强度较大,试件高,加荷速度快者强度偏高,试件表面不平或表面涂润滑剂时所测得的强度偏低。

3.答:材料的耐久性是材料的一种综合性质,诸如:抗渗性、抗冻性、抗风化性、抗老化性、

抗化学侵蚀性、耐热性、耐火性及耐磨性等均属于耐久性的范围。对不同的材料有不同的耐久性要求。

影响材料耐久性的破坏因素主要有物理因素、化学因素、物理化学因素、机械因素及生物因素

等几方面。

不同的材料或相同的材料使用在不同的环境中,所受到的破坏作用有可能不同。为提高材料的

耐久性,以利于延长土木工程结构物的使用寿命和减少维修费用,可根据工程环境和材料特点从以下方面采取相应的措施;

(1)提高材料自身对环境破坏因素的抵抗性(如提高材料的物理力学及化学性能等);

(2)设法减轻环境介质对材料的破坏作用(如排除或降低破坏因素对材料的作用等);

(3)用其它材料保护主体材料免受破坏(如覆面、抹灰、刷涂料等)。

4.答:

(1)证明:设材料在干燥状态下的自然体积为0V ;材料在干燥和吸水饱和时的质量分别为m 1

和m 2,则有:

210

1100%v w m m W V ρ-=?? ① 21

1100%m m m W m -=? 则121100%m W m m m ?-= ② 将②代入①得:110011m v m w w W m m W W V V ρρ?=?=?? 而1

00m V ρ=,ρw =1,故有:W v =W m 2ρ0

(2)公式0v m W W ρ=?中的0ρ的单位为g/cm 3。

(3)若材料的孔隙率为P ,体积吸水率为W v ,则材料的闭口孔隙率B k v P P P P W =-=-。

5.答:评价材料热工性能的常用参数有材料的导热系数、热容量与比热,材料的导热系数和热

容量是设计建筑物围护结构进行热工计算时的重要参数,要保持建筑物室内温度的稳定性并减少热损失,应选用导热系数小而热容量较大的建筑材料。

6.答:干燥墙体由于其孔隙被空气所填充,而空气的导热系数很小,只有0.023W/(m 2K )。因

而干墙具有良好的保暖性能。而新建房屋的墙体由于未完全干燥,其内部孔隙中含有较多的水分,

而水的导热系数为0.85W/(m 2K ),是空气导热系数的近25倍,因而传热速度较快,保暖性较差。尤其在冬季。一旦湿墙中孔隙水结冰后,传导热量的能力更加提高,冰的导热系数为2.3W/(m 2K).是空气导热系数的100倍,保暖性就更差。

7.答:材料的孔隙率和孔隙构造对材料的体积密度、强度、吸水性、吸湿性、抗渗性、抗冻性、

导热性及吸音性等性质均会产生影响,其影响如下:(1)孔隙率越大,其体积密度越小;(2)孔隙率越大其强度越低;(3)密实材料及具有闭口孔的材料是不吸水和不吸湿的;具有粗大孔的材料因其水分不易存留,其吸水率常小于孔隙率;而那些孔隙率较大 且具有开口连通孔的亲水性材料具有较大的吸水与吸湿能力;(4)密实的或具有闭口孔的材料是不会发生透水现象的。具有较大孔隙率且为开口连通大孔的亲水性材料往往抗渗性较差;(5)密实材料及具有闭口孔的材料具有较好的抗冻性;(6)孔隙率越大,导热系数越小,导热性越小,绝热性越好;孔隙率相同时,具有较大孔径或连通孔的材料,导热系数偏大,导热性较大,绝热性较差;(7)孔隙率较大且为细小连通孔时,材料的吸音性较好。

六.计算题

1、解:该岩石的软化系数为:K R = 168/178 = 0.94>0.85

答:此岩石可用于水下工程。

2、 解:已知:3'03/1560%,5.1,/75.2m kg P cm g ===ρρ

则:()330/71.2/75.2015.01cm g cm g =?-=ρ

()%4.42%10071.2/560.11'=?-=P

答:此岩石的体积密度为2.71g/3cm 和碎石的空隙率为42.4%。

3、

解:砂包含内部闭口孔在内的体积为瓶装满水后排出水的体积,即

'33(377200500)771/w s w w m g V V cm g cm

ρ+-==== 表观密度:'3

'3200 2.60/77s s m g g cm V cm

ρ=== 空隙率: ''0' 1.40(1)100%(1)100%46%2.60P ρρ=-

?=-?=

4、 解:河沙的含水率:W=494494

-500 ?100%=1.2%

5、解:柱子所受应力σ=1800kN 3 103/(4003500)= 9 MPa

应变()443103100.3500400/101800-?=????=ε

该柱子受力后被压缩mm mm 6.3120001034=??-

此荷载作用下该柱子未达到破坏状态。若要使其破坏,须施加的压力荷载为

F=21MPa 3400mm 3500mm=4200KN

答:要使该柱子达到受压破坏,须施加4200KN 的压力荷载。

6、

解:密度:ρ=50/18.58=2.69g/cm 3

体积密度:ρ0

=2580g ?103/(0.24m ?0.115m ?0.053m )=1764kg/m 3 孔隙率: P=(1-1764?103/2.69) ?100% = 34.4%

质量吸水率:W m =(2940g-2580g )/ 2580g ?100% = 14.0%

开口孔隙率:P 开=14.0%

闭口孔隙率: P 闭 = 34.4% - 14.0% = 20.4%

7、

解:质量吸水率:由0v m W W ρ=?,010% 6.67%1.5v m W W ρ=

== 开口孔隙率: P 开=6.67% 闭口空隙率:0 1.5P 1100%P 1100% 6.67%43.3%3.0P P ρρ????=-=-

-=-?-= ? ???

?? 开开闭 该材料的孔隙率为50%,而开口孔只有6.67%,闭口孔占了43.3%,因此该材料的抗冻性较好。

8、解:

卵石质量为 (21.30 6.20)15.1m kg kg =-=

(25.9021.30)v 101010 5.41/w

w m kg L Vw L L L kg L ρ-=-=-=-

=, 表观密度: '3'15.1 2.8/5.4m kg g cm V L ρ=

== 堆积密度: '30'015.11510/10m kg kg m V L ρ=

== 空隙率: '

'0' 1.51

(1)100%(1)100%46%2.8P ρρ=-?=-?=

2 气硬性胶凝材料习题解答

一、名词解释

1、凡是经过一系列的物理、化学作用,能将散粒状或块状材料粘接成整体的材料。

2、只能在空气中硬化,且只能在空气中保持或发展期强度的胶凝材料。

3、不仅在空气中,而且能更好的在水中硬化。并保持、发展期强度的胶凝材料

4、将二水石膏在非密闭的窑炉中加热脱水,得到的β型半水石膏,称为建筑石膏。

5、若将二水石膏在0.13MPa ,124°C 的过饱和蒸汽条件下蒸炼脱水,得到的α型半水石膏,晶

粒较粗,加水硬化后,具有较高的密实度和强度,将之称为高强石膏。

6、生石灰中,一些石灰在烧制过程中由于矿石品质的不均匀及温度的不均匀,生成的生石灰中

有可能含有欠火石灰和过水石灰。对于欠火石灰,降低了石灰的利用率,而对于过火石灰,由于其表面常被粘土类杂质融化形成的玻璃釉状物包裹,熟化很慢,就有可能在实际工程应用中,石灰已经硬化,而过火石灰才开始熟化,熟石灰体积比生石灰体积大1~2.5倍,引起隆起和开裂。

7、为了消除过火石灰的危害,将石灰浆在储灰坑中存放2周以上的过程即为“陈伏”。

8、生石灰加水与之反应生成氢氧化钠的过程称为石灰的熟化或消解。

9、水玻璃,又称泡花碱,是由碱金属氧化物和二氧化硅结合而成的能溶解于水的硅酸盐材料。

二、填空题

1.耐水;

2.β,半水,CaSO

42H

2

O ;3.微膨胀;4.大,小,保温隔热,吸声;5.体积收缩,体积微膨胀;

6.放热大,体积膨胀;

7.砌筑砂浆,抹面砂浆,石灰土,三合土;

8.干燥,碳化,碳化,表,里,缓慢;

9.

硬化后的收缩,收缩裂缝;10.保水性,和易性;11.防火性;12.Na

2OnSiO

2

, SiO

2

和Na

2

O的分子比,大,

难,高;13.很强的, SiO

2

,耐热性;14、热量膨胀游离水收缩;15、快略微膨胀大小好好好;16、氧化硅碱金属氧化物;17、好缓慢收缩差;18、强度细度凝结时间;19、CaO+MgO含量CO?含量未消化残渣含量产浆量

三.选择题

1、(C);

2、(C);

3、(A)

4、(C)提示:石膏在遇火时,二水石膏的结晶水蒸发,吸收热量,表面生成的无水石膏是良好的绝热体,因而在一定的时间内可防止火势蔓延,起到防火作用。

5 (C)提示:因为冷库是冷冻食物的,内部湿度大,而石膏的吸湿性大,又是气硬性胶凝材料,耐水性差,软化系数仅为0.2-0.3,吸水后再经冷冻,会使结构破坏。同时石膏吸入大量水后,其保温隔热性能急剧降低,故不能用于冷库内墙贴面。

6(A)提示:建筑石膏加水凝固时体积不收缩,且略有膨胀(约0.5%-1%)。因此制品表面不开裂。建筑石膏实际加水量(60%~80%)比理论吸水量(18.6%)多,因此制品孔隙率大(可达50%~60%),表观密度小,导热系数小,吸声性强,吸湿性强。吸收水分后易使石膏晶体溶解,制品强度下降,抗冻性较差。可加入适量水硬性或活性混合材料(如水泥、磨细矿渣、粉煤灰等)或有机高分子聚合物改善石膏制品的耐水性,并可提高其强度。

建筑石膏加水硬化后主要成分为CaSO4.2H2O,遇火灾时制品中的二水石膏中的结晶水蒸发,吸收热量,并在表面形成水蒸气帘幕和脱水物隔热层,因此制品抗火性好。但制品长期靠近高温部位,二水石膏会脱水分解而使制品失去强度。

7(B);8(D)

9 (D)提示:用水玻璃浸渍或涂刷粘土砖或硅酸盐制品时,水玻璃与二氧化碳作用生成硅胶,与材料中的氢氧化钙作用生成硅酸胶体,填充空隙中,使材料致密,但若涂刷在石膏制品上时,因为硅酸钠与硫酸钙反应生成硫酸钠,在制品中结晶,体积显著膨胀,会导致制品破坏。

10 (D)提示:水玻璃模数即二氧化硅与碱金属氧化物的摩尔比一般在1.5~3.5。随模数的增加,水玻璃中的晶体组分减少,胶体组分相对增多,粘结能力增大,同时SiO2含量增加,水玻璃溶解性减小,耐酸性增强。

四、判断题

1 3;

2 √;

3 3;

4 3;

5 √;

6 √;

7 3;

8 3;

9 √;10 √

五、问答题

1、气硬性胶凝材料只能在空气中硬化,也只能在空气中保持或继续发展其强度。水硬性胶凝材料不仅能在空气中硬化,而且能更好的在水中硬化,并保持和继续发展其强度。

所以气硬性胶凝材料只适用于地上或干燥环境,不宜用于潮湿环境,更不能用于水中,而水硬性胶凝材料既适用于地上,也可以用于地下或水中。

2、建筑石膏的特性有:(1)凝结硬化快,凝结硬化时体积微膨胀;(2)孔隙率大、体积密度小强度低;(3)保温隔热性和吸声性好;(4)防火性能好;(5)具有一定的调温、调湿性;(6)耐水性和抗冻性差;(7)装饰性好。根据建筑石膏的以上技术特性可知,建筑石膏及其制品是一种性能优良的室内建筑装饰材料。而在室外使用建筑石膏制品时,必然要受到雨水冰冻的作用,而建筑石膏制品的耐水性、吸水率高、抗渗性差、抗冻性差,所以不适用于室外。

3、石灰的特性为:(1)可塑性好,保水性好;(2)凝结硬化慢、强度低;(3)硬化过程中体积

收缩大;(4)耐水性差。其主要用途有:(1)制作石灰乳涂料;(2)配制石灰砂浆和混合砂浆;(3)配制灰土和三合土;(4)生产硅酸盐制品;(5)制作碳化石灰板。

4、墙面一些部位出现起鼓凸出并伴有放射状的及网状的裂纹,是由于配制水泥石灰混合砂浆采用的石灰膏中有过火石灰,这部分过火石灰在消解、陈伏阶段未完全熟化,以至于在砂浆硬化后,过火石灰吸收空气中的水分继续熟化,产生体积膨胀而导致的。

5、灰土或三合土是由消石灰粉和粘土等按比例配制而成的,经碾压或夯实后,密实度提高,并且在潮湿环境中石灰与粘土表面的活性氧化硅和氧化铝反应,生成水硬性的水化硅酸钙或水化铝酸钙,所以灰土或三合土的强度和耐水性会随时间的延长而逐渐提高,可以在潮湿环境中使用。

6、水玻璃的特性为:(1)胶结能力强,硬化时析出的硅酸凝胶有堵塞毛细孔而防止水渗透的作用。水玻璃混凝土的抗压强度可达15-40MPa;(2)耐酸性好。水玻璃具有很强的耐酸能力,能抵抗大多数无机酸和有机酸的作用;(3)耐热性好。水玻璃不燃烧,在高温下硅酸凝胶干燥的很快,强度并不降低,甚至有所增加。

水玻璃在建筑工程中的用途如下:(1)涂刷建筑材料表面,提高密实性和抗风化性能;(2)用于加固地基;(3)配制耐酸混凝土和耐酸砂浆;(4)配制耐热混凝土和耐热砂浆;(5)配制快凝防水剂。

3 水泥习题解答

一、名词解释

1、以硅酸盐水泥熟料和适量的石膏及规定的混合材料制成的水硬性胶凝材料。

2、在水泥生产过程中,为改善水泥性能、调节水泥强度等级而加入的矿物质材料。

3、具有火山灰性或潜在水硬性的混合材料。火山灰性是指一种材料磨成细粉,单独不具有水硬性,但在常温下与石灰混合后能形成具有水硬性化合物的性能。

4、水泥的凝结时间分为初凝和终凝,初凝是指水泥加水拌和至标准稠度净浆开始失去可塑性所需的时间;终凝是指水泥加水拌和至标准稠度净浆完全失去可塑性并开始产生强度所需时间。

5、水泥在凝结硬化过程中产生了不均匀的体积变化,会导致水泥石膨胀开裂,降低建筑物质量,甚至引起严重事故,此即体积安定性不良。

6、将水泥与水拌成标准稠度状态下的加水量为水泥标准稠度用水量。

7、水泥中的氧化钠和氧化钾等碱性氧化物的含量。

8、水泥与水发生水化反应放出的热量。

9、又叫二次反应。活性混合材料中均含有活性SiO2和活性Al2O3成分,他们能和水泥水化产生的Ca(OH)2作用,生成水化硅酸钙和水化铝酸钙。这一反应即“火山灰反应”。

二、判断题

1√;23;3 √;4 √;5 3;6 √;7 √;8 √;9 √;10 √;113;123;13√;143;15√

三、填空题

1、P2Ⅰ,P2Ⅱ,P2O,P2S,P2P,P2F,P2C ;

2、硅酸三钙,硅酸二钙,铝酸三钙,铁铝酸四钙,C3S,C2S,C3A,C4AF;

3、调节水泥凝结时间,体积安定性不良,凝结速度过快(瞬凝);

4、CaO ,MgO,SO42-;

5、Ca(OH)2;水化铝酸钙;

6、低;高;低;好;差;

7、好;Ca(OH)2;水化铝酸钙;

8、活性二氧化硅;活性氧化铝;Ca(OH)2;水化硅酸钙;水化铝酸钙;

9、45min ;6h30min;

10、细度;凝结时间;安定性;强度;不溶物;烧失量;三氧化硫;氧化镁;氯离子;碱含量

11、水化硅酸钙,水化铁酸钙,氢氧化钙,水化铝酸钙,水化硫铝酸钙, 水化硅酸钙, 氢氧化钙

12、C3S,C3S,C3A,C3S,C3A,C2S,C4AF,C3A,C4AF

13、缓凝, 缓凝,激发活性

14、粒化高炉矿渣,火山灰质材料,粉煤灰,SiO2,Al2O3,Ca(OH)2,水化硅酸钙;水化铝酸钙

15、1~3,3,28,继续缓慢增长

16、凝胶体,晶体,未水化水泥颗粒,毛细孔

17、毛细孔, Ca(OH)2,水化铝酸三钙,软水腐蚀,盐类腐蚀,酸类腐蚀,碱类腐蚀,合理选用水泥品种,提高密实度,加做保护层

18、比表面积,筛析法

19、水泥加水,开始失去可塑性,保证搅拌、运输、浇注、振捣等施工过程,水泥加水,完全失去可塑性,保证下一步施工及施工工期

20、游离氧化钙(f-CaO),游离氧化镁(f-MgO),石膏,雷氏夹法,饼法,雷氏夹法,f-CaO

21、403403160mm,20±1℃的水中,抗折强度,抗压强度,普通,早强

22、冬季砼,大体积砼

23、低,高,低,好,好,差,差,耐热性,干缩,抗渗性,干缩

24、高,高,好,高,承重,Ca(OH)2,闪凝,蒸汽,高温,商品

25、受潮,重新检验,1.1~1.15,强度等级富余系数

四、单项选择题

1(D)提示:水泥熟化中C3S、C3A含量多,则水泥的凝结快、早期强度高,水泥愈细,水花愈快。环境温度、湿度对水泥凝结凝结硬化有明星影响:温度高水泥反应加快,温度低于0°C,水化反应基本停止;水泥必须在有水分的条件下才能凝结、硬化。水泥中掺入适量石膏,目的是为了防止水泥的快速凝结,以免影响施工,但石膏掺量过多,会在后期引起水泥石的膨胀而开裂破坏。

2(A)提示:大体积混凝土构筑物体积大,水泥水化热积聚在内部,将产生较大的内外温差,由此产生的应力将导致混凝土产生裂缝,因此水化热对大体积混凝土是有害因素。硅酸盐水泥中,熟料多,水化热大,因此在大体积混凝土中工程中不宜采用。

3(C)提示:因为矿渣水泥的保水性差,泌水通道较多,干缩较大,这些性质都容易造成混凝土抗渗性差。

4(A)提示:在硅酸盐水泥熟料的矿物组成中,C3S和C2S含量最大,其中C3S反应速度最快,早期及后期强度高,而C2S早期强度较低,后期强度较高;C3A反应速度最快,但强度低,在水泥中含量不大;C4AF在水泥中含量最少,相对强度贡献也最小。

5(C)提示:在硅酸盐水泥熟料的矿物组成中,C3A的水化反应速度最快,其放热量也最大,其次是C3S和C4AF,放热速度和放热量最小的是C2S。

6(A)提示:掺混合材料的水泥硬化后,当处于干燥环境中时,形成的水化硅酸钙胶体会逐渐干燥,产生干缩裂缝。尤其是火山灰水泥更为明显,在水泥石的表面上,由于空气中的CO2能使水化硅酸钙凝胶分解成碳酸钙和氧化硅的粉状混合物,使已经硬化的水泥石表面产生“起粉”现象。

7(D)提示:前两种水泥的水化热大,且抵抗地下水侵蚀的能力也较差,因此不宜使用。矿渣水泥和火山灰水泥的水化热较小,适用于大体积混凝土工程,而且都具有良好的耐水性与耐侵蚀性,适于地下工程。但矿渣水泥泌水性大,抗渗性较差,而火山灰水泥有良好的抗渗性,适宜用于地下工程。

8(A)提示:道路混凝土工程对水泥有耐磨性的要求,普通硅酸盐水泥有较好的耐磨性,而掺混合材料的水泥耐磨性较差,尤其是火山灰水泥和粉煤灰水泥。

9(A)提示:硅酸盐水泥和普通水泥在常规养护条件下硬化快,若采用蒸汽养护,则硬化速度会更快,会过早地在水泥颗粒表面形成密实的水化产物膜层,阻止了进一步的水化。因此经蒸汽养护后,再经自然养护至28d的抗压强度往往低于未经蒸养的28d抗压强度。而掺加混合材料较多的矿渣水泥、火山灰水泥、粉煤灰水泥及复合水泥等4种水泥采用蒸汽养护,可加快水泥中的活性混

合材料的水化反应,使强度(特别是早期强度)增长较快。

10 ( C ) 提示:水泥存放期不宜过长。在正常条件下,通用水泥存储3个月后,强度下降10%~20%;存储6个月后水泥强度下降15%~30%。因此,通用水泥有效期从水泥出厂之日起为3个月,超过有效期的应视为过期水泥,使用时应重新检验,以实测强度为准。

11 (A) 提示:普通水泥含硅酸盐水泥熟料较多,抗软水侵蚀性较差。

12(D)提示:高铝水泥硬化速度极快,1d强度即可达到3d强度的80%以上,3天即可达到强度标准值,属于快硬型水泥。高铝水泥水化时不析出氢氧化钙,而且硬化后结构致密,因此具有较好的耐水、耐酸及盐类腐蚀的能力。高铝水泥的耐高温性好,可耐1300℃高温。另外,高铝水泥硬化时放热量很大,适合冬季施工。

13(A)提示:通用水泥(包括普通水泥)在水化硬化后都会发生体积收缩,产生裂纹,其中矿渣水泥更为显著。混凝土因养护不利,干缩变形产生开裂也是必然现象,因此必须加强对混凝土的养护。对于大体积混凝土工程,因水泥水化热导致内外温差过大也会使混凝土产生开裂现象。水泥安定性不良时,其混凝土在硬化过程中因体积变化不均匀,混凝土将会开裂而造成质量事故。

14(D)提示:铝酸盐水泥是一种快硬、高强、耐腐蚀(但抗碱性极差)、耐热的水泥,长期强度有较大的下降,最适宜硬化的温度为15℃左右,一般不超过25℃,否则会使强度降低。在湿热条件下尤甚。

15(C)提示:颜料应为耐碱矿物颜料,对水泥不起有害作用。

16(D)提示:膨胀水泥与自应力水泥不同于矿渣水泥等一般水泥,它们在硬化过程中不但不收缩,而且有一定的膨胀,可用来配制防水混凝土或制造混凝土压力管。

17(D)提示:喷射混凝土应采用凝结快、早期强度高的水泥。中热水泥的水化热较小,可以用于大体积混凝土工程。

五、多项选择题

1(ABCD)提示:见《通用硅酸盐水泥》(GB175-2007)的规定。

2(ABCDE)提示:见《通用硅酸盐水泥》(GB175-2007)的规定。

3(ABCDE)提示:生产通用硅酸盐水泥时掺加混合材料的目的是,改善水泥性能、调节强度等级、增加产量、降低成本、扩大水泥使用范围,并可利用废渣,保护环境。

4 (AE) 提示:活性混合材料的激发剂主要是指碱性激发剂与硫酸盐激发剂。

5(ADE)提示:硅酸盐水泥凝结硬化快,早期强度高,水化热大,抗冻性好,抗侵蚀性差。

6(ABE)提示:硅酸盐水泥、普通硅酸盐水泥及高铝水泥的水化热较大,均不适合用于大体积混凝土工程。

7(ABCE)硅酸盐水泥遭受化学侵蚀的外部原因是腐蚀介质的存在,其内因是水泥石结构不密实,存在毛细孔通道和容易引起腐蚀的成分如氢氧化钙、水化铝酸钙等水化产物。

8(BCE)提示:与硅酸盐水泥相比,矿渣水泥具有水化热小、耐热性好、抗化学侵蚀性好等优点。

六、问答题

1、(1)生产通用硅酸盐水泥时掺入适量的石膏是为了调节水泥的凝结时间。若不掺入石膏,由于水泥熟料矿物中的C3A急速水化生成水化铝酸四钙晶体,使水泥浆体产生瞬时凝结,以致无法施工。当掺入石膏时,生成的水化铝酸四钙会立即与石膏反应,生成高硫型水化硫铝酸钙(即钙矾石),它是难溶于水的针状晶体,包围在熟料颗粒的周围,形成“保护膜”,延缓了水泥的水化。但若石膏掺量过多,在水泥硬化后,它还会继续与固态的水化铝酸四钙反应生成钙矾石,体积约增大1.5倍,引起水泥石开裂,导致水泥安定性不良。所以生产通用硅酸盐水泥时必须掺入适量的石膏。

(2)水泥颗粒的粗细直接影响水泥的水化、凝结硬化、水化热、强度、干缩等性质,水泥颗粒越细总表面积越大,与水接触的面积也大,水化反应速度越快,水化热越大,早期强度较高。但水泥颗粒过细时,会增大磨细的能耗和成本,且不宜久存。此外,水泥过细时,其硬化过程中还会产生较大的体积收缩。所以水泥粉磨必须有一定的细度。

(3)水泥的体积的安定性是指水泥在硬化过程中体积变化的均匀性,若体积变化不均匀,会使水泥混凝土结构产生膨胀性裂缝,甚至引起严重的工程事故。所以水泥体积安定性必须合格,(4)水泥凝结时间、体积安定性以及强度等级都与用水量有很大的关系,为了消除差异,测定

凝结时间和体积安定性必须采用标准稠度用水量;测定水泥强度则采用相同的用水量。

2、强度增长速度:28d之前甲>乙,28d之后甲<乙;水化热:甲>乙。因为水泥强度的增长,

早期取决于C

3S的含量,28天以后取决于C

2

S的含量;水化热取决于C

3

S和C

3

A的含量。

3、某些体积安定性轻度不合格或略有些不合格的水泥,在空气中放置2~4周后,水泥中的部分游离氧化钙可吸收空气中的水蒸汽而熟化为氢氧化钙,使水泥中的游离氧化钙的膨胀作用被减小

或消除,因而水泥的安定性可能由轻度不合格变为合格。但必须指出,在重新检验并在体积安定性合格时方可使用,若在放置一段时间后仍不合格,则仍然不得使用。安定性合格的水泥也必须重新标定其强度等级,按标定的强度等级使用。

4、引起水泥体积安定性不良的原因是熟料中含有过多的游离氧化钙、游离氧化镁和石膏含量过多。游离氧化钙可用煮沸法检验;游离氧化镁要用蒸压法才能检验出来,石膏掺量过多造成的安定性不良,在常温下反应很慢,需长期在常温水中才能发现,两者均不便于快速检验,因此国家标准规定控制水泥中游离氧化镁及三氧化硫的含量。

在建筑工程使用安定性不良的水泥会由于不均匀的体积变化,使水泥混凝土结构产生膨胀性的裂缝,引起严重的工程事故。体积安定性不合格的水泥不得用于任何工程。

5、生产硅酸盐水泥时掺入适量石膏是为了调节水泥凝结时间,石膏是在水泥凝结硬化初期与水化铝酸四钙发生反应,此时水泥浆体具有可塑性,所以不会对水泥起到破坏作用。而当硬化的水泥石在有硫酸盐溶液的环境中生成石膏时,此生成的石膏再与水化铝酸四钙反应生成高硫型水化硫铝酸钙(钙矾石),发生体积膨胀,而此时水泥硬化后已无可塑性,呈现脆性,从而使水泥石破坏。

6、水化热的弊端:水化热大且集中放出时,对于大体积混凝土,由于热量的积蓄会引起混凝土内部温度升高较多,而表面温度受环境的影响较低,内外温差产生热应力导致混凝土开裂;在夏季施工的混凝土中,会产生热膨胀,冷却后产生裂纹。

水化热的利:水化热大时,对冬季施工的混凝土有利,在保温措施下,使混凝土保持一定的温度,不致冻胀破坏,并能加速水泥的水化硬化。另外,由于内部温度较高,也可促进掺矿物掺合料的混凝土的早期水化,提高早期强度。

对于上述一些情况,在配制混凝土选择水泥时要考虑水化热的影响。

7、欲提高水泥强度,可从以下几方面考虑:(1)水泥熟料的矿物组成与细度:提高熟料中C3S 的含量,可加快水泥的水化反应速度,提高早期强度;提高C

2

S的含量,可提高水泥的后期强度;

生产道路水泥时适当提高C

4

AF的含量,可提高抗折强度。适当提高水泥的细度,可提高水泥的早期强度。(2)养护条件:保持足够的湿度和适当的温度,有利于水泥的凝结硬化和强度发展。(3)养护时间:养护时间越长其强度越高。(4)混合材料的品种和掺量:混合材料的品种和掺量不同,其强度发展也不同。

8、国家标准对通用硅酸盐水泥的化学性质有不溶物、烧失量、M g O、SO3、氯离子、碱含量等6项技术要求。其意义如下:

(1)不溶物指水泥熟料煅烧过程中存留的残渣,其含量可作为水泥烧成反应是否完全的指标;(2)烧失量是指将水泥在950~1000℃下灼烧15~20min的质量减少率,这些失去的物质主要是水泥中所含有的水分和二氧化碳,可大致判断水泥的受潮及风化程度;(3)熟料中游离M g O的含量是影响水泥安定性的一个重要指标;(4)SO3也是影响水泥安定性的重要指标之一;(5)氯离子会加速混凝土中钢筋的锈蚀作用,因此对其含量也必须加以限制;(6)碱含量指水泥中碱性氧化物如氧化钠和氧化钾的含量。碱性氧化物过多,如遇混凝土中的骨料含有活性二氧化硅时,则有可能引起碱骨料反应,导致耐久性不良。

9、硅酸盐水泥腐蚀的类型有4种:溶出性腐蚀(软水腐蚀)、溶解性化学腐蚀(一般酸或盐类腐蚀)、膨胀性化学腐蚀(硫酸盐腐蚀)和强碱的腐蚀。

(1)溶出性腐蚀(软水腐蚀):当水泥石与软水长期接触时,水泥石中的氢氧化钙会溶于水中,若周围的水是流动的或有压力的,氢氧化钙将不断地溶解流失,使水泥石的碱度降低,同时由于水

泥的水化产物必须在一定的碱性环境中才能稳定,氢氧化钙的溶出又导致其他水化产物的分解,最终使水泥石破坏。

(2)溶解性化学腐蚀:其实质是离子交换反应,水中的酸类或盐类与水泥石中的氢氧化钙起置换反应,生成易溶性盐或无胶结力的物质,使水泥石破坏。这类腐蚀有碳酸、一般酸及镁盐的腐蚀。

(3)膨胀性化学腐蚀以硫酸盐腐蚀为代表,其机理是水泥石中的氢氧化钙与硫酸盐类物质反应生成高硫型水化硫铝酸钙(钙矾石),体积增大1.5~2倍,导致水泥石开裂破坏。

(4)强碱的腐蚀:强碱溶液与水泥水化产物反应生成的胶结力差且易为碱液溶析的物质,或因碱液渗入水泥石孔隙中后,又在空气中干燥呈结晶析出,由结晶产生压力使水泥石膨胀破坏。

防止水泥石腐蚀的措施有:(1)根据环境特点,合理选择水泥品种;(2)提高水泥石的密实度;(3)在水泥石的表面加做保护层。

10、因为水泥受潮后,颗粒表面会发生水化而结块,导致强度降低,甚至丧失胶凝能力。即使在储存条件良好的情况下,水泥也会吸收空气中的水分和二氧化碳,发生缓慢水化和碳化,导致强度降低,此即水泥的风化。因此,水泥的储存期一般不超过三个月。水泥要按不同品种、强度等级及出厂日期分别存放,并加以标识,先存先用。不同品种的水泥混合使用时,容易造成凝结异常或其它事故。

11、根据这三种材料的特性,用加水的方法来辨认,加水后在5~30min内凝结并具有一定强度的是建筑石膏,发热量最大且有大量水蒸气放出的是生石灰,在45min~12h内凝结硬化的则是白水泥。

12、常用的活性混合材料有粒化高炉矿渣、火山灰质混合材料、粉煤灰等。活性混合材料产生硬化的条件是要有激发剂的存在,激发剂有碱性激发剂或硫酸盐激发剂。

13、掺大量活性混合材料的水泥水化反应分两步进行:

(1)水泥熟料矿物的水化:其水化产物与硅酸盐水泥相同;(2)活性混合材料的水化:水泥熟与掺入的石膏分别作为碱性激发剂和硫酸盐激发剂,与混合材料的活性成分如料水化生成的Ca(OH)

2

活性氧化硅、活性氧化铝等发生二次水化反应,不断生成新的水化硅酸钙、水化铝酸钙、水化硫铝酸钙及水化硫铁酸钙等水化产物,使水泥石的后期强度得以迅速提高。

由于熟料矿物比硅酸盐水泥少得多,而且水化反应分两步进行,第二步水化反应从时间上滞后,致使这类水泥凝结硬化速度较慢,早期(3-7d)强度较低,但后期由于二次水化反应的产物大大增加,使强度增长较快,甚至超过硅酸盐水泥。另外,由于熟料矿物少,它们的水化热小;硬化水泥石中氢氧化钙、水化铝酸钙少,则抗软水、酸类或盐类侵蚀性高;硬化水泥石的碱度低,易碳化,这对防止钢筋锈蚀不利;混合材料易泌水形成毛细管通道,使水泥的密实度、匀质性下降,导致抗冻性较差。

14、掺大量活性混合材料的硅酸盐水泥的共性:(1)水化热小;(2)硬化慢,早期强度低,后期强度高;(3)抗化学腐蚀性高;(4)对温度较为敏感,低温下强度发展较慢,适合高温养护;(5)抗碳化能力较差;(6)抗冻性较差。

特性:矿渣硅酸盐水泥:(1)泌水性大,抗渗性差;(2)耐热性好;(3)干缩率大。

火山灰质硅酸盐水泥:(1)保水性好、抗渗性好;(2)干缩率大;(3)耐磨性差。

粉煤灰硅酸盐水泥:(1)干缩小、抗裂性高;(2)耐磨性差。

复合硅酸盐水泥:干缩较大。

15、因为矿渣硅酸盐水泥,火山灰质硅酸盐水泥和粉煤灰硅酸盐水泥中熟料矿物的含量相对减少了,故其早期硬化较慢,早期强度低,又因这几种水泥对温度的变化很敏感,低温下强度发展更慢,所以不宜用于早期强度要求较高或较低温度环境中施工的混凝土工程。

16、(1):现浇混凝土楼板、梁、柱:宜选用普通硅酸盐水泥,因为该混凝土对早期强度有一定的要求。

(2)采用蒸汽养护的混凝土构件:宜选用矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸

盐水泥及复合硅酸盐水泥,因为这几种水泥适宜蒸汽养护,不仅能提高其早期强度,而且使后期强度也得到提高。

(3)厚大体积的混凝土工程:宜选用矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥以及复合硅酸盐水泥,因为这几种水泥水化热低。

(4)水下混凝土工程:宜选用矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥以及复合硅酸盐水泥,因为这几种水泥具有较高的抗腐蚀能力,适用于水中混凝土。

(5)高强混凝土工程:宜选用硅酸盐水泥。因为该水泥强度等级最高,适用于配制高强混凝土。

(6)高温设备或窑炉的混凝土基础:宜选用矿渣水泥。因为该水泥耐热性好,与耐热粗细骨料配制成的耐热混凝土耐热度达到1300~1400℃,可用于高温设备或窑炉的混凝土基础。

(7)严寒地区受冻融的混凝土工程:宜选用普通硅酸盐水泥,因为该水泥抗冻性好。

(8)有抗渗性要求的混凝土工程:宜选用火山灰质硅酸盐水泥、普通硅酸盐水泥。因为这两种水泥抗渗性高。

(9)混凝土地面或道路工程:宜选用道路水泥、硅酸盐水泥及普通硅酸盐水泥,因为这几种水泥的早期强度高,干缩性小,耐磨性好,抗冲击能力强。

(10)有硫酸盐腐蚀的地下工程:优先选用矿渣硅酸盐水泥,因该水泥抗硫酸盐介质腐蚀的能力强。

(11)冬期施工的混凝土工程:宜选用快硬硅酸盐水泥、硅酸盐水泥,因为这两种水泥凝结硬化快,早期强度高,且抗冻性好。

(12)与流动水接触的混凝土工程:宜选用矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥以及复合硅酸盐水泥,因为这些水泥抵抗软水侵蚀的能力强。

(13)处于水位变化区的混凝土工程:宜选用普通硅酸盐水泥。因为该水泥抵抗干湿交替作用的能力强。

(14)处于干燥环境中的混凝土工程:宜选用普通硅酸盐水泥,因为该水泥硬化时干缩小,不易产生干缩裂纹,可用于干燥环境中的混凝土工程。

(15)海港码头工程:宜选用矿渣硅酸盐水泥,火山灰质硅酸盐水泥,粉煤灰硅酸盐水泥以及复合硅酸盐水泥,因为这几种水泥耐腐蚀性好。

(16)紧急抢修的工程或紧急军事工程:宜选用快硬硅酸盐水泥,快硬硫铝酸盐水泥,因为要求早期凝结硬化快。

17、(1)火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥。因为它们的干缩性大或施工时易产生失水裂纹,故在干燥环境中易干裂,并且在碳化后表面易起粉。

(2)快硬硅酸盐水泥、硅酸盐水泥、普通硅酸盐水泥、高铝水泥。因为它们均具有相当高的水化热,易使大体积混凝土产生温度裂纹而使混凝土结构受损。

(3)矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥。因它们的抗冻性均较差。

(4)矿渣硅酸盐水泥。因为其泌水性大、抗渗性差。

(5)快硬硅酸盐水泥、硅酸盐水泥,普通硅酸盐水泥也不太适宜。因为它们的耐软水侵蚀性差。

(6)高铝水泥、快硬硅酸盐水泥、硅酸盐水泥。高铝水泥在湿热处理后强度很低,快硬硅酸盐水泥和硅酸盐水泥在湿热处理后,后期强度有明显的损失。

(7)矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥。因为它们的早期强度低,在低温下强度发展更慢。

(8)快硬硅酸盐水泥、硅酸盐水泥、普通硅酸盐水泥。因为它们的抗硫酸盐腐蚀性差,主要是它们水化后含有较多的Ca(OH)2和C3AH6。。

(9)高铝水泥。因其在高温高湿条件下,水化产物均会转变为强度很低的,使混凝土强度急剧下降。

(10)火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥。因它们的耐磨性差。

七、计算题

1、解:该水泥试样的抗压,抗折的破坏荷载平均值为:

P 压28=(60.3+68.5+69.3+72.8+74.4+74.6)kN/6=70.0KN

因为(60.3-70.0)/703100% = -13.9%(< -10%) 所以舍去60.3KN

P 压28=(68.5+69.5+72.8+74.4+74.6)kN/5=71.9KN

f 压,28= P 28/A = 71.93103/40340 MPa= 44.9MPa

P 折28=(2.987+2.83+2.38)KN/3=2.73KN

因为 (2.83-2.73)/2.733100% = --12.8%(< -10%) 所以舍去2.38KN

P

折28

=(2.98+2.83)kN/2 = 2.91KN f 折28 = 3PL/2bh 2 =332.9131033100/23403402 MPa = 6.82MPa

根据标准,该水泥的强度等级为42.5R 。

2、解:

(1)求28d 抗折强度:

抗折荷载平均值1/3(3200+3250+4000)=3483(N ),3483±10%为3135~3831,因4000N 超出了

3483±10%,应剔除,其平均值为1/2(3200+3250)=3225(N ),

Rf=3PL/2bh 2=1.5PL/b 3=1.5332253100/403

=7.6>7.0(MPa)

(2)求28d 抗压强度: 抗压荷载平均值c F =90928783917085.56+++++=(KN ), 85.5±10%=76.95~94.05,则70KN 超出6个平均值的±10%,应剔除,故以剩下五个的平均值为

结果:

c F =909287839188.65

++++==(KN ),

28d 抗压强度Rc=c F /A =388.61055.44040?=?>52.5(MPa )

根据题目给定条件及计算结果,按水泥标准可评定:该水泥强度等级为52.5级。

4 混凝土习题解答

一、名词解释

1、普通混凝土:体积密度为2000~2500kg/ m 3,用普通的天然砂石为骨料配制而成的混凝土。

2、细骨料:粒径为0.15~4.75mm 的骨料。

3、粗骨料:粒径大于4.75mm 的骨料。

4、骨料的颗粒级配:指粒径大小不同的骨料颗粒相互组合或搭配情况。

5、砂的粗细程度:指不同的粒径的细骨料混合在一起后的总体的粗细程度,用细度模数表示。

6、骨料的坚固性:砂、石在自然风化和其他外界物理化学因素作用下抵抗破裂的能力。

7、粗骨料的最大粒径:粗骨料公称粒级的上限称为该粒级的最大粒径。

8、饱和面干状态::骨料颗粒表面干燥,而内部的空隙含水饱和的状态。

9、针状颗粒:凡颗粒的长度大于该颗粒所属粒级的平均粒径2.4倍者称为针状颗粒。

10、片状颗粒:凡颗粒的厚度小于该颗粒所属粒级的平均粒径0.4倍者称为片状颗粒。

11、压碎指标:表示石子抵抗压碎的能力,它等于按规定的方法在压力机上进行试验时,被压

碎的石子的质量与试样的质量的百分比。

12、外加剂:在拌制混凝土过程中掺入的用以改善混凝土性能的化学物质。其掺量一般不大于水泥质量的5%(特殊情况除外)。

13、减水剂:在混凝土坍落度基本相同的情况下,能减少拌合用水量的外加剂。

14、引气剂:在混凝土搅拌过程中能引入大量均匀分布、稳定而封闭的微小气泡的外加剂。

15、早强剂:能提高混凝土的早期强度并对后期强度无明显影响的外加剂。

16、缓凝剂:能延缓混凝土的凝结时间而不显著降低混凝土后期强度的外加剂。

17、膨胀剂:能使混凝土产生补偿收缩或微膨胀的外加剂。

18、防冻剂:能降低混凝土中水的冰点,并有促凝和早强作用的外加剂。

19、掺合料:为了节约水泥,改善混凝土性能,在拌制混凝土时掺入的矿物粉状材料。

20、和易性:也称工作性,是指混凝土拌合物是否易于施工操作(拌和、运输、浇灌、捣实)并能获得质量均匀,成型密实的混凝土的性能。

21、流动性:指混凝土拌合物在本身自重或施工机械振捣的作用能下产生流动,并均匀密实地填满模板的性能。

22、粘聚性:指混凝土拌合物各组成材料之间具有一定的粘聚力,在运输和浇筑过程中不致出现分层离析,使混凝土保持整体均匀的性能。

23、保水性:指混凝土拌合物在施工过程中具有一定的保水能力,不致产生严重泌水的性能。

24、砂率:指混凝土中砂的质量占砂石总质量的百分率

25、混凝土立方体抗压强度:以边长为150mm的立方体试件,在标准条件下养护到28d测得的混凝土抗压强度,用符号

f表示。。

cu

26、混凝土立方体抗压强度标准值:指具有95%强度保证率的立方体抗压强度值,也就是指在混凝土立方体抗压强度测定值的总体分布中,低于该值的百分率不超过5%,以

f表示。

,

cu k

27、混凝土强度等级:指按混凝土立方体抗压强度标准值划分的若干等级。

28、水胶比:混凝土拌合物中水与胶凝材料的质量比称为水胶比。

29、标准养护:混凝土处于养护温度为(20±2)℃,相对湿度≥95%的条件下进行养护。

30、自然养护:将混凝土放在自然条件下进行的养护。

31、蒸汽养护:将混凝土放在温度低于100℃的常压蒸汽中进行的养护。

32、蒸压养护:将混凝土放在压力不低于0.8MPa,相应温度为174.5℃以上的蒸压釜中进行的养护。

33、化学收缩:由于水泥水化生成物的体积小于反应物的总体积,从而使混凝土产生的收缩。

34、徐变:混凝土在长期荷载作用下,沿着作用力的方向的变形会随着时间不断增长,这种长期荷载作用下的变形称为徐变。

35、混凝土的碳化:又叫混凝土的中性化,空气中的二氧化碳与水泥石中的氢氧化钙在有水存在的条件下发生化学反应,生成碳酸钙和水。

36、碱-骨料反应:水泥中的碱与骨料中的活性二氧化硅发生反应,在骨料表面生成复杂的碱-硅酸凝胶,凝胶吸水膨胀从而导致混凝土产生膨胀开裂而破坏。

37、环箍效应:抗压试件受压面与试验机承压板(钢板)之间存在着摩擦力,当试件受压时,承压板的横向应变小于混凝土试件的横向应变,因而承压板对试件的横向膨胀起着约束作用,通常称为“环箍效应”。

38、轻骨料混凝土:用轻粗骨料、轻细骨料(或普通砂)、水泥和水配制成的体积密度不大于1950kg/ m3的混凝土。

39、多孔混凝土:内部均匀分布大量细小气孔而无骨料的轻质混凝土。

40、高性能混凝土:高性能混凝土是以耐久性和可持续发展为基本要求,并适应工业化生产与

施工的新型混凝土。高性能混凝土应具有的技术特征是高抗渗性(高耐久性的关键性能)、高体积稳定性(低干缩、低徐变、低温度应变率和高弹性模量)、适当高的抗压强度、良好的施工性(高流动性、高粘聚性、达到自密实)。

二、填空题

1、润滑,胶结,骨架

2、轻混凝土普通混凝土重混凝土

3、细度模数,级配区, 级配曲线,小,小

4、泥与泥块,云母,轻物质,硫化物和硫酸盐,有机质,氯化物,坚固,针、片状颗粒

5、园,光滑,差,流动性,多棱角,粗糙,高,流动性

6、强度,耐久性,干缩

7、空隙率,总表面积,水泥

8、水泥,结构截面尺寸,钢筋间净距,施工条件,结构最小截面尺寸,钢筋间最小净距, 1/2,50

9、公称粒级,31.5

10、抗压强度,压碎指标,硫酸钠溶液法,骨料在自然风化或物理化学因素作用下抵抗破裂

11、流动性粘聚性保水性流动性粘聚性保水性;

12、水泥浆用量,水胶比,砂率,组成材料,温度和时间,加外加剂,调整骨料种类、粗细、级配或砂率,改善施工工艺

13、11.15031503150mm,标准,28,抗压强度,标准值,总体分布,5%

14、水泥强度与水胶比骨料的种类及级配养护条件龄期试验条件水胶比f

cu

a f

b

(B/W –α

b

)

15、采用高强度水泥和低水胶比掺入外加剂与掺合料采用机械搅拌与振捣采用湿热处理

16、化学收缩干湿变形温度变形在荷载作用下的变形

17、抗渗性抗冻性抗侵蚀性混凝土的碳化碱-骨料反应合理选择水泥品种控制水

胶比及水泥用量选用质量良好的砂石骨料掺入引气剂或减水剂及掺合料加强混凝土施工质量控制

18、强度和易性耐久性经济性

19、混凝土配制强度胶凝材料强度粗骨料种类最大水胶比最小胶凝材料用量

20、消除应力集中消除大体积混泥土一部分温度变形引起的破坏应力使钢筋的预应力受到损失

三、判断题

13;23;33;4√;5√;6√;73;8√;93;10√;113;12√;133;143;15√;16√;17√;18√;193;203

四、选择题

1 (D) 提示:烧结普通砖的干体积密度在1600~1800k g/m3;普通混凝土的干体积密度为2000~2800kg/m3(见《普通混凝土配合比设计规程》JCJ55---2011)。

2(B)提示:掺合料具有一定活性,可替代部分水泥,降低混凝土的成本。

3(D)提示:河砂、海砂和湖砂颗粒呈圆形,表面光滑,与水泥的粘结较差,而山砂颗粒具有棱角,表面粗糙,与水泥粘结性较好。

4(C)提示:在混凝土中,水泥浆的作用是包裹骨料的表面,并填充骨料的空隙,使混凝土达到充分的密实程度。因此,为了节省水泥,降低成本,提高混凝土质量,应尽量使骨料的总表面积及总空隙率小些。

5 (B)提示:间断级配是指人为剔除某些骨料的粒级颗粒,使粗骨料尺寸不连续。大粒径骨料之间的空隙,由小粒径的颗粒填充,是空隙率达到最小,密实度增加,节约水泥,但因其不同粒级的颗粒粒径相差太大,拌合物容易产生分层离析,一般工程中很少用。

6 (D) 提示:普通混凝土和轻集料混凝土都是以立方体抗压强度作为强度指标;轻集料是以筒

压强度作为强度指标。石子则是以压碎指标和岩石立方体强度两种方式表示。

7(C) 提示:目前我国采用边长为150mm 的立方体试件作为混凝土标准试件,试验中也可采用非标准尺寸试件,但必须将测定结果乘以换算系数,换算成标准试件的抗压强度。对于边长为100mm 的立方体试件,换算系数为0.95,边长为200mm的立方体试件,换算系数为1.05。

8 (B) 提示:国家标准规定:以混凝土的立方体抗压强度标准值来划分混凝土的强度等级。

9(C)提示:细度模数与级配是反映砂的技术性能的两个指标,细度模数相同的砂,其级配可以很不相同。因此,配制混凝土时,必须同时考虑这两者。

10(B)提示:塑性混凝土的流动性用坍落度表示,粘聚性和保水性主要采用目测及其它辅助方法来评定。

11(B)提示:粘聚性反映了混凝土拌合物各组成材料之间的粘聚力,对于混凝土保持整体的均匀性和稳定性具有重要作用。

12(B)提示:在保持水灰比不变的情况下,掺加减水剂能够释放出包裹在未水化水泥颗粒周围多余的水分,从而增加拌合物的流动性;采用合理砂率,增加水泥浆的数量,也能增大拌合物流动性。

13(D)提示:合理砂率能在用水量和水泥用量一定时,使混凝土拌合物获得最大流动性,且粘聚性及保水性良好。当然,若不打算提高流动性时,采用合理砂率也可使水泥用量最小。

14(D)提示:在原材料一定时,混凝土强度取决于其密实度,水胶比决定了混凝土的密实度的大小。低水胶比意味着低孔隙率与高强度,是混凝土的真正的命脉。

15(C) 提示:混凝土在浇注过程中,如果自由倾落高度过高,由于混凝土各组分密度不同,会造成混凝土的分层离析,导致大粒径的粗骨料下沉,而水泥砂浆上浮,由于柱底部粗骨料多,因而相应强度也较上部高。所以在浇注混凝土时,其自由倾落高度一般不宜超过2m,在竖向结构中浇注高度不得超过3m,否则应采取串筒、斜槽、溜管等下料。

16(D)提示:混凝土的碳化会破坏钢筋表面的钝化膜,引起钢筋锈蚀,为避免混凝土的碳化,最有效的措施是减小水胶比,提高其密实度,使碳化作用仅限于表面,不易向内部发展,从而保证混凝土内的碱性环境。当然,设置足够的钢筋保护层厚度也是必要的。

17(A)提示:大体积混凝土施工时为延缓水泥水化热的放出,常掺入缓凝剂。

18(B)提示:大体积混凝土体积厚大,内部水泥水化热不宜放出,水化热集聚在内引起内外温差超过25℃则容易产生温度应力而导致混凝土产生裂缝。

19(D)提示:喷射混凝土要求快速凝结,必须掺入速凝剂。

20(B)提示:在其他条件相同时,水胶比是影响混凝土强度的最重要的因素。水胶比越小,混凝土强度越高。要减小水胶比,而又不致影响混凝土的工作性,最有效的办法就是加减水剂。

21(A) 提示:泵送混凝土系指拌合物的坍落度不小于80mm、采用混凝土输送泵输送的混凝土。为使拌合物具有良好的可泵性,拌合物能顺利通过管道,摩阻力小,不离析,不阻塞和粘聚性好的性能,除选择好原材料以外,还应掺入适当的掺合料和高效减水剂。

22(D)提示:混凝土耐久性不良的根本原因是内部存在各种毛细管孔隙,使外界水分及有害介质的侵蚀提供了通道。因而提高混凝土的密实度,不仅可以提高强度,而且水分和有害介质也难于侵入,因而耐久性提高。

23(C)提示:在寒冷地区使用的室外混凝土工程,为使混凝土具有良好的抗冻性,常掺入引气剂,改善混凝土的孔隙特征,使其内部产生较多的闭口孔隙,它们能隔断混凝土中的毛细孔渗水通道,对冰冻破坏起缓冲作用,不但能显著提高混凝土的抗冻性,也可提高抗渗性。

24(B)提示:质量相同时,砂的细度模数越小,则砂的总表面积就越大,在混凝土中需要包裹砂粒表面的水泥浆就越多,从而增加水泥用量。砂的细度模数并不能反映级配优劣。

25(D)提示:特细砂的比表面积大、空隙率大、含泥量大,故配制混凝土时水泥用量应适当提高些,采用较低砂率。另外,宜采用较小的坍落度,因为在拌合物中大量水分被吸附于砂粒表面,

使拌合物流动性较差,但在振动成型时,砂粒表面的水被释放出来,增大了拌合物的流动性。不可取的措施是掺减水剂,因采用低砂率,虽然拌合物流动性大大提高,但粘聚性与保水性较难保证。

26(D)提示:配制高强混凝土关键是采用较小的水胶比,所以应掺加高效减水剂;夏季大体积混凝土施工关键是要降低水泥水化速度,即控制水化热释放,木钙减水剂具有缓凝作用,因而适用;因在负温下混凝土强度发展缓慢,要掺加早强剂提高其早期强度;对于抗冻融混凝土,掺入引气剂,能显著提高混凝土的抗冻性。

27(A)提示:碱-集料反应是水泥中的碱与骨料中的活性二氧化硅发生反应引起混凝土的膨胀,使骨料界面呈现广泛的地图形开裂或图案形开裂,开裂处经常伴有凝胶渗出或界面膨胀,最终导致混凝土结构破坏。该反应必须同时具备以下3个条件:水泥中的碱含量或混凝土的总碱量超过水泥质量的0.6﹪;集料中活性集料含量超过1﹪;混凝土处于潮湿环境中。

28(D)提示:抗渗等级检测龄期应为28d。

29(D)提示:因为混凝土配合比设计实际上就是确定水泥、砂、石和水这4项基本组成材料用量之间的3个比例关系,正确确定水胶比、砂率和单位用水量后就能使混凝土满足各项技术和经济要求。

30(D)提示:混凝土的强度与水胶比有直接的关系,水胶比越小,强度越高。

31(C)提示:普通防水混凝土依据的是提高砂浆密实性和增加混凝土的有效阻水截面的原理,依靠本身的密实性来达到防水目的,不同于掺外加剂(如引气剂、减水剂、防水剂、密实剂等)的防水混凝土,因此不掺减水剂。

五、问答题

1、普通混凝土的主要组成材料有水泥、砂、石和水,另外还常加入适量的掺合料和外加剂。在混凝土中,水泥与水形成水泥浆,水泥浆包裹在骨料的表面并填充其空隙。在混凝土硬化前,水泥浆起润滑作用,赋予拌合物一定的流动性,便于施工操作;在硬化后,水泥浆则将砂、石骨料胶结成一个坚实的整体。砂、石在混凝土中起骨架作用,可以降低水泥用量,限制硬化水泥浆的收缩,提高混凝土的强度和耐久性。

2、(1)混凝土拌合物应具有与施工条件相适应的和易性;(2)混凝土在规定龄期达到设计要求的强度;(3)硬化后的混凝土具有与工程环境条件相适应的耐久性;(4)经济合理,在保证质量的前提下,节约造价;(5)大体积混凝土(结构物实体最小尺寸≥1m的混凝土)尚需满足低热性要求。

3、两种砂的细度模数相同,级配不一定相同,反之,如果级配相同,其细度也不一定相同。

4、骨料的级配是指骨料大小颗粒的搭配情况。在混凝土中粗骨料的空隙由砂粒填充,砂粒之间的空隙由水泥浆所填充。为尽量减少骨料颗粒之间的空隙,达到节约水泥和提高强度的目的,就必须骨料提出级配的要求。良好的级配的标准是:骨料中含有较多的粗颗粒,并以适当的中颗粒及小颗粒填充其空隙,即可使骨料的空隙率和总面积均较小。使用良好级配的骨料,不仅所需水泥浆量较少,经济性好,而且还可以提高混凝土的和易性、密实度和强度。

5、影响混凝土拌合物的和易性的主要因素有:(1)水泥浆数量与水胶比;(2)砂率;(3)水泥、骨料等原材料的品种及性质;(4)外加剂;(5)时间及温度;(6)施工工艺。

改善混凝土拌合物的和易性的主要措施为:

(1)改善砂、石(特别是石子)的级配;(2)尽量采用较粗的砂、石;(3)尽量降低砂率,通过试验,采用合理砂率,以提高混凝土的质量及节约水泥;(4)当混凝土拌合物坍落度太小时,保持水灰比不变,适当增加水泥浆用量;当坍落度太大,但粘聚性良好时,保持砂率比不变,适当增加砂、石用量;当拌合物粘聚性、保水性不良时,适当增大砂率;(5)有条件时尽量掺用减水剂、引气剂等外加剂。

6、混凝土的水胶比是混凝土配合比的一个非常重要的参数,影响到混凝土的强度、体积变形和耐久性等性质。若在混凝土浇注现场,施工人员随意向混凝土拌合物中加水,则增大了混凝土的水胶比,导致混凝土拌合物的粘聚性、保水性降低,硬化混凝土的密实度、强度、耐久性降低,变形

增大。而混凝土成型后,混凝土中的水分会不断的蒸发,对混凝土的强度发展不利,为了保证水泥能够正常水化硬化所需的水分,所以要进行浇水养护。

7、(1)可行。适当增加水泥浆的用量,可提高流动性;(2)不可行。直接多加水改变了混凝土的水胶比,将降低拌合物的粘聚性、保水性,还将影响硬化混凝土的强度、变形及耐久性等一系列性质;(3)可行。采用合理砂率可使拌合物获得良好的和易性;(4)可行。加减水剂可在不增加用水量的条件下提高拌合物的流动性;(5)可行。提高粗骨料最大粒径可使骨料的总表面积减小,需水量减少,即流动性提高;(6)可行。加强振搗可使混凝土拌合物的颗粒产生振动,暂时破坏水泥浆体的凝聚结构,从而降低水泥浆的粘度和骨料之间的摩擦阻力,使拌合物的流动性提高。

8、(1)坍落度小于要求时,保持水灰胶比不变,适量增加水泥浆的用量。

(2)坍落度大于要求时,保持砂率不变,适量增加砂、石的用量。

(3)坍落度小于要求且粘聚性较好时,保持水胶比不变,适量减小砂率。

(4)坍落度大于要求且粘聚性、保水性差时,保持水胶比不变,适量增大砂率。

9、影响混凝土强度的主要因素是:(1)水泥强度等级和水灰胶比;(2)骨料的种类、质量和级配;(3)养护温度与湿度;(4)期龄;(5)试验条件如试件尺寸、形状及加荷速度等。

提高混凝土强度的措施主要有:

(1)采用高强度等级水泥和低水胶比;(2)选用质量与级配良好的骨料;(3)掺入合适的外加剂(如减水剂)与掺合料;(4)采用机械搅拌和振捣;(5)采用合适的养护工艺。

10、(1)试件尺寸加大,实验值将偏小;(2)试件高宽比加大,实验值将偏小;(3)试件受压表面加润滑剂,实验值将偏小;(4)试件位置偏离支座中心,实验值将偏小;(5)加荷速度加快,实验值将偏大。

11、混凝土的体积变形包括非荷载作用下的变形与荷载作用下的变形。非荷载作用下的变形主要有:化学收缩、干湿变形、温度变形和碳化收缩。荷载作用下的变形有短期荷载作用下的变形与长期荷载作用下的变形(即徐变)。

混凝土的体积变形过大会引起混凝土开裂,产生裂缝。裂缝不仅会影响混凝土的承载能力,而且还会严重影响混凝土的耐久性和外观。

无论是荷载作用下的变形还是非荷载作用下的变形,产生的原因都是由于混凝土中水泥石的存在所引起的。因此,尽管发生变形的种类不同,但就其如何减小变形的措施来说,却有共同之处,即:(1)合理选择水泥品种:如高强度等级水泥或早强型水泥的细度较大,则收缩较大;掺大量混合材料的水泥干缩较大。

(2)尽量减小水胶比:如采用掺减水剂等措施。这是控制和减小混凝土变形的最有效的措施。

(3)尽可能降低水泥用量:如用活性掺合料取代部分水泥等。

12、(1)掺入活性掺合料;(2)掺入适量缓凝剂;(3)分段施工;(4)预冷原材料(如搅拌水中加冰等);(5)预埋水管,用冷水降低温度(但温差不可过大)。

13、(1)由于水泥水化热大且集中放出,积聚在混凝土的内部,导致混凝土内外温差很大(可达50~70℃),由于温差应力使混凝土开裂。防止措施:在混凝土中掺矿物掺合料取代部分水泥,减少水泥用量,或使用低热水泥。

(2)由于温度变化较大使混凝土产生热胀冷缩变形,导致开裂。防止措施:每隔一段距离设置一道伸缩缝,或在结构中设置温度钢筋等。

(3)由于混凝土中的水分结冰,产生体积膨胀导致混凝土开裂。防止措施:负温下的混凝土施工,要掺早强剂、防冻剂并注意保温养护,以免混凝土早期受冻破坏。

(4)混凝土养护时缺水,使水泥水化反应不能进行,导致混凝土强度较低,结构疏松,形成干缩裂缝。防止措施:浇注成型后加强保湿养护。

(5)碳化会显著增加混凝土的收缩,引起混凝土表面产生拉应力而出现微细裂纹。防止措施:合理选择水泥品种,掺减水剂降低水胶比,提高混凝土的密实度,加强施工质量控制与养护等。

相关主题
文本预览
相关文档 最新文档