当前位置:文档之家› 生活垃圾填埋场渗滤液处理运行记录表

生活垃圾填埋场渗滤液处理运行记录表

生活垃圾填埋场渗滤液处理运行记录表
生活垃圾填埋场渗滤液处理运行记录表

生活垃圾填埋场渗滤液处理运行记录表

垃圾填埋场渗滤液处理方案

垃圾处理场 渗滤液处理工程方案 二〇一六年三月

一、工程概况 1、项目简介 根据《中华人民共和国环境保护法》规定“防止环境污染,保护人民健康,促进经济发展”的原则、国务院(98)253号令《建设项目环境保护设计规定》及有关法规的规定,需对生产和生活垃圾进行有效治理或综合利用。 在睢县城建局领导的高度重视下,以及当地主管部门的关心下,决定对睢县垃圾填埋场垃圾渗滤液进行升级改造,减轻渗漏废水对附近水环境的污染、保护人民身体健康、改善人类的环境卫生条件,使其达到2008年4月2日国家重新颁布的《生活垃圾填埋污染控制标准》(GB16889-2008)版新标准后排放,故提出此方案。 设备采用预处理+硝化+反硝化+MBR+NF+RO处理工艺,配有自控系统装置,有自动切换,报警功能。对垃圾渗滤液设施、设备和工艺进行方案设计,以供各方决策和参考。 为严格遵守有关环境法规,保护环境,本着经济建设和环境保护同步进行的“三同时”原则。我单位受投资者邀请,在进行初步调研,并经多项垃圾渗滤液成功的实践经验的基础上,编制该垃圾填埋场渗滤液设计方案,以供有关部门决策、实施。为了保护水体环境不受垃圾渗滤液影响,针对该垃圾填埋场渗滤液具体水质的特点,本方案拟采用常规的“预处理+硝化+反硝化

+MBR+NF+RO处理”工艺,该处理工艺较为简单,操作运行方便,日常费用低 廉,出水稳定。 2、设计要求: 遵守国家对环境保护、垃圾填埋场渗滤液治理的制定的法规、标准及规范,服从单位的总体规划,执行各种相关的标准和规定;节约能源,最大限度降低运行费用;延长设备的使用寿命。 3、方案设计原则: 1. 水质 工程出水水质必须达到2008年7月1日实施的《生活垃圾填埋场污染控制标准》(GB16889-2008)版新标准表2中的排放限值 2. 设计原则 1)严格执行国家现行的环保技术标准、规范,遵守国家和地方环保的有关 法律、法规及排放标准; 2)选用先进、合理、可靠的处理工艺,在确保处理排放达标的前提下,做 到操作简单、管理方便、占地小、投资省、运行费用低; 3)本工程系环境工程,尤其要注意环境保护,避免和减少二次污染。要求 改善劳动卫生条件,贯彻安全生产和清洁文明生产的方针; 4)为了提高污水处理站管理水平,设计采用PLC程序控制,减轻操作人员 的劳动强度;

生活垃圾填埋场渗滤液中氨氮的脱除

生活垃圾填埋场渗滤液中氨氮的脱除 孙英杰徐迪民张隽超 提要从垃圾填埋场渗滤液中氨氮的特性及其对渗滤液生化处理的影响出发,对渗滤液氨氮的脱除技术--氨吹脱、电化学氧化、生物脱氮进行了综述;并结合渗滤液回灌对生物脱氮新技术在渗滤液脱氮中的应用进行了探讨。 关键词垃圾填埋场渗滤液氨氮吹脱电化学氧化短程硝化厌氧氨氧化 渗滤液NH 3 -N的处理技术有曝气吹脱、电化学氧化、生物脱氮技术等,本文将从渗滤液填埋场内单独处理的角度对以上技术进行探讨。 1 渗滤液中NH 3-N的特性及其对处理的影响 渗滤液中NH 3 -N的主要来源是 填埋垃圾中蛋白质等含氮类物质的生物降解。渗滤液NH 3 -N具有浓度高(可达几 千mg/L)、浓度变化范围大(在整个填埋期内可以从低于100 mg/L到几千mg/L) 等特点。过高的NH 3 -N浓度不仅增加了渗滤液生化处理系统的负荷,并且随着填埋时间的延长渗滤液中COD浓度呈下降趋势,C/N呈下降趋势,一定填埋时间后会出现C /N<3的情况,造成营养比例的严重失调,影响生化处理系统稳定有效 的运行。高浓度游离氨也降低了微生物活性。赵庆良[1]等对NH 3 -N对微生物 活性指标--脱氢酶活性的研究表明,NH 3 -N的浓度从50 mg/L 升高到800 mg/L,脱氢酶的活性从11.04 μgTF/m gMLSS降至4.22 μgTF/mgMLSS,相应的COD的平均去除率从95.1%降至79.1%。 2 渗滤液NH 3 -N处理技术 2.1 调整C/N比为目的的预处理技术 鉴于晚期渗滤液营养比例失调的问题,对进生化处理系统的渗滤液进行氨吹脱调整C/N 比是预处理脱氨的主要目的。预处理脱氨对于中、晚期渗滤液尤为重要,预处理脱氨技术分为曝气吹脱与吹脱塔吹脱两类。 2.1.1 曝气吹脱技术 曝气吹脱是直接或调整pH后在调节池或专门吹脱池中曝气,达到脱氨和改善营养比例的作用。沈耀良[2],胡勤海[3],王小虎[4],王宗平[5]等对曝气吹脱用于渗滤液脱氨预处理进行了研究。沈耀良等在对苏州七子山垃圾填埋场渗滤液吹脱预处理试验中发现,在温度为25.5 ℃,pH为11左右,吹脱时间5 h,吹脱效率超过 82.5%,但文献中未明确气水比。王宗平等在对武汉青山垃圾填埋场渗滤液小试和中山市垃圾填埋场渗滤液中试研究表明:曝气吹脱预处理是经济有效的,不仅可以去除氨氮,COD 也大幅度下降,氨氮去除率可达68%,

生活垃圾填埋场渗滤液处理综述.

某城镇生活垃圾填埋场渗滤液处理工艺设计综述 郑世超 (四川理工学院材料与化学工程学院,四川自贡 643000) 摘要本文分析了填埋场渗滤液的现状,介绍了渗滤液处理的几种主要工艺,对比了好氧法、厌氧法、好氧-厌氧法、物理化学法、土地处理法及回灌技术处理渗滤液的特点,分析了综合工艺处理渗滤液的优势,描述了国内外填埋场渗滤液处理技术及其运用的现状及趋势。 关键词生活垃圾填埋场渗滤液 ABR SBR 1生活垃圾填埋场渗滤液现状 1.1渗滤液产生背景 随着我国城市化进程的加快,城镇数目不断增加,城市规模日益扩大(我国现有建制市668座,包括县城在内的中小城镇则达3万多座),人口也急剧增长,直接导致城镇生活垃圾大幅度增长,而垃圾处理设施、处理资金却面临很大的缺口,呈现垃圾包围城市的局面。垃圾问题已成为制约我国城镇发展的重要因素。 作为垃圾处理过程的副产品,渗滤液问题已严重影响我国垃圾处理事业的健康发展。现有的垃圾处理设施中,包括填埋场、焚烧场、垃圾中转站、堆场以及堆肥场都将产生大量的渗滤液。目前我国城市生活垃圾的新鲜渗滤液年产量约2900万吨,可控点源排放的渗滤液为1515万吨,如果加上填埋场/堆场历年垃圾产生的渗滤液,则其年产量估计为新鲜渗滤液的数倍,而lt渗滤液约相当于100t城市污水所含污染物的浓度。生活垃圾填埋场渗滤液一方面通过填埋场地向下渗透,随着时间延长,当填埋场底下的土壤对大部分有机污染物吸附达到饱和时,污染物会沿着地下水流向作扇形扩散,造成了对地下水的污染。另一方面经垃圾填埋场导流管引流出来的渗滤液,往往没有经过完全的处理就直接用于农田灌溉或排入江河湖泊。随渗滤液进入河流或农田的各种有机污染物、无机污染物,会使水生生物和农作物受到污染,并通过食物链和生态环境对人体健康产生危害。但到目前为止,适合我国国情、符合“高效、低耗”处理标准的渗滤液处理工艺仍处于研发阶段,渗滤液问题已成为垃圾产业化进程的“瓶颈”,严重威胁了垃圾处理设施周围环境的安全及居民的健康生活[1]。 1.2渗滤液水质分析 垃圾渗滤液是指从垃圾填埋场中渗出的黑棕红色水溶液,当垃圾含水47%时,每吨垃圾可产生0.0722t渗滤液[2]。填埋场渗滤液的来源有直接降水、

垃圾填埋场渗滤液处理实施方案

垃圾填埋场渗滤液处理方案

————————————————————————————————作者:————————————————————————————————日期:

垃圾处理场 渗滤液处理工程方案 二〇一六年三月

一、工程概况 1、项目简介 根据《中华人民共和国环境保护法》规定“防止环境污染,保护人民健康,促进经济发展”的原则、国务院(98)253号令《建设项目环境保护设计规定》及有关法规的规定,需对生产和生活垃圾进行有效治理或综合利用。 在睢县城建局领导的高度重视下,以及当地主管部门的关心下,决定对睢县垃圾填埋场垃圾渗滤液进行升级改造,减轻渗漏废水对附近水环境的污染、保护人民身体健康、改善人类的环境卫生条件,使其达到2008年4月2日国家重新颁布的《生活垃圾填埋污染控制标准》(GB16889-2008)版新标准后排放,故提出此方案。 设备采用预处理+硝化+反硝化+MBR+NF+RO处理工艺,配有自控系统装置, 有自动切换,报警功能。对垃圾渗滤液设施、设备和工艺进行方案设计,以供各 方决策和参考。 为严格遵守有关环境法规,保护环境,本着经济建设和环境保护同步进行的“三同时”原则。我单位受投资者邀请,在进行初步调研,并经多项垃圾渗滤液 成功的实践经验的基础上,编制该垃圾填埋场渗滤液设计方案,以供有关部门决策、实施。为了保护水体环境不受垃圾渗滤液影响,针对该垃圾填埋场渗滤液具 体水质的特点,本方案拟采用常规的“预处理+硝化+反硝化+MBR+NF+RO处理” 工艺,该处理工艺较为简单,操作运行方便,日常费用低廉,出水稳定。

2、设计要求: 遵守国家对环境保护、垃圾填埋场渗滤液治理的制定的法规、标准及规范,服从单位的总体规划,执行各种相关的标准和规定;节约能源,最大限度降低运行费用;延长设备的使用寿命。 3、方案设计原则: 1. 水质 工程出水水质必须达到2008年7月1日实施的《生活垃圾填埋场污染控制标准》(GB16889-2008)版新标准表2中的排放限值 2. 设计原则 1)严格执行国家现行的环保技术标准、规范,遵守国家和地方环保的有关 法律、法规及排放标准; 2)选用先进、合理、可靠的处理工艺,在确保处理排放达标的前提下,做 到操作简单、管理方便、占地小、投资省、运行费用低; 3)本工程系环境工程,尤其要注意环境保护,避免和减少二次污染。要求 改善劳动卫生条件,贯彻安全生产和清洁文明生产的方针; 4)为了提高污水处理站管理水平,设计采用PLC程序控制,减轻操作人员 的劳动强度; 5)合理选用优质配件,降低能耗,提高工作效益和使用寿命,降低系统运 行成本;

生活垃圾填埋场渗滤液处理工程技术规范(HJ564-2010)

HJ 中华人民共和国国家环境保护标准 HJ 564-2010 生活垃圾填埋场渗滤液处理工程技术规 范(试行) Leachate Treatment Project Technical Specification of Municipal Solid Waste Landfill 本电子版为发布稿。请以中国环境科学出版社出版的正式标准文本为准。2010—02—03发布 2010—04—01实施 环 境 保 护 部发布

前言 为贯彻《中华人民共和国固体废物污染环境防治法》和《中华人民共和国水污染防治法》,防治垃圾渗滤液对环境的污染,改善环境质量,保障人体健康,制定本标准。 本标准规定了生活垃圾填埋场渗滤液污染治理工程设计、施工、验收以及运行管理等的技术要求。 本标准为首次发布。 本标准由环境保护部科技标准司组织制订。 本标准主要起草单位:中国环境保护产业协会(城市生活垃圾处理委员会)、城市建设研究院、中国环境科学研究院(固体废物污染控制技术研究所)、北京东方同华科技有限公司、维尔利环境工程(常州)有限公司、北京天地人环保科技有限公司、西门子(天津)水技术工程有限公司、北京国环莱茵环境工程技术有限公司。 本标准环境保护部2010年2月3日批准。 本标准自2010年4月1日起实施。 本标准由环境保护部解释。 I

目次 前 言 (Ⅰ) 1 适用范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (2) 4 总体要求 (3) 5 水量和水质 (5) 6 工艺设计 (6) 7 检测与控制 (9) 8 施工与验收 (10) 9 运行与维护 (11) II

垃圾填埋场渗滤液处理方案

垃圾填埋场渗滤液处理 方案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

渗滤液的收集 在垃圾坝内侧设置两条H×W=2000×1000mm 渗滤液收集沟,总长220 米,收集沟为粘土盲沟,内填厚100cm 的卵石,卵石粒径8cm~12cm。沟上为厚50cm 的卵石导流层,卵石粒径4cm~6cm。收集沟底部为厚10 cm 的砾石, 砾石粒径4cm~6cm;沟内铺设两条平行的DN300 穿孔HDPE 收集管,穿孔管孔径15mm 孔距15cm。两条粘土沟将渗滤液收集沟与垃圾坝内预留的排水管道相连。穿过坝体的5 根DN300HDPE 管将坝内收集到的渗滤液输送至设置在坝外的两座转换井内。其中一个转换井作为渗滤液提升泵房将渗滤液通过一根DN300 的HDPE 管提升进入调节池。HDPE 管上设有闸阀一个,以调节排出的渗滤液量。 渗滤液收集沟下部基础采用大面积开挖施工,回填优质粘土并压实,使之形成不透水层基础面,基面垂直于坝体方向并向坝外形成2%的坡度。 有关内容详见“渗滤液收集系统平面布置图”。 渗滤液处理工艺 设计渗滤液量的确定 渗滤液的产量主要决定于降雨量、蒸发量、地下水浸入以及垃圾压实后产生的水分。渗滤液处理运行费用较高,确定适宜的处理规模,十分重要。在本工程设计中,采用经验公式计算,并参考重庆市及附近地区已有垃圾填埋场的实际运行经验对祺龙村垃圾处理场渗滤液产量进行预测。 经验公式法是根据多年的气象观测结果,以年平均降雨量为基础,来预测渗滤液产生量的方法。其计算公式为: Q=1000-1×C×I×A 式中: Q:渗滤液平均日产量,m3/d; C:渗透系数,一般在~之间; I:年平均日降雨量,mm; A:垃圾场面积,m2; 在本设计中,垃圾场面积A考虑场区截洪沟以内面积,约50000m2。本设计以两种降雨资料为基础,并考虑部分垃圾分解产生的渗滤液量,估算祺龙村垃圾场的渗滤液产量。 1、由降雨引起的渗滤液 (1)以重庆市年平均降雨量为基础,则I 为;相应渗滤液产量为: Q=1000 -1×(~)××50000=30~120m3/d (2)考虑到重庆市的降雨不均匀性,在5~8 月的(123 天)汛期中,其平均降雨量为,则I 为,渗滤液产量为: Q=1000 -1×(~)××50000=~246m3/d 2、垃圾分解产生的渗滤液

生活垃圾填埋场渗滤液处理工程

附件七: 生活垃圾填埋场渗滤液处理工程 技术规范 编制说明 (征求意见稿)

目录 一编制工作概述 (1) 二法律依据、编制原则和技术依据 (2) 三调研情况 (3) 四征求意见汇总情况 (7) 五主要条文说明 (8)

一编制工作概述 1、任务来源 目前,垃圾渗滤液是垃圾填埋场伴生的二次污染物,主要来源于降水和垃圾本身的内含水。由于液体在流动过程中有许多因素可能影响到渗滤液的性质,包括物理因素、化学因素以及生物因素等,所以渗滤液的性质在一个相当大的范围内变动。 垃圾渗滤液的组分复杂,污染物浓度高、色度大、毒性强,不仅含有大量有机污染物,还含有各类重金属污染物,是一种成分复杂的高浓度有机废水。垃圾渗滤液的不当处置,不但影响地表水的质量,还会危及地下水的安全,若不加处理而直接排入环境,会造成严重的环境污染。 以保护环境为目的,对渗滤液进行处理是必不可少的,垃圾渗滤液处理的水平是衡量一个填埋场的建设水平的关键。 因此尽快制订出垃圾渗滤液处理工程技术规范是很有必要的。 2、目的和意义 我国于二十世纪八十年代中后期,开始建设卫生填埋场,已有多座卫生填埋场建成并投入使用。随着填埋场的建设,对垃圾渗滤液的处理也进行了有益的探索,从最初的单一生物处理,到目前的组合处理工艺,对垃圾渗滤液的水质、水量及处理特性有了比较全面、系统、客观的认识。但是国内一部分已经建成的填埋场渗滤液处理设施在设计理论、方法上还存在很大不足,设计人员对填埋场渗滤液的认识、设计还缺乏足够的知识和经验,也无设计标准可供参考。因此,尽快制订出垃圾渗滤液处理工程技术规范是很有必要的。 由于垃圾渗滤液的水质水量变化大、氨氮含量高、有机污染物含量高和难于生物降解的有机物含量高等问题,致使我国大部分垃圾填埋场的渗滤液处理设施出水达不到排放要求,不能称为真正意义上的卫生填埋场。垃圾渗滤液的处理一直是填埋场设计、运行和管理中非常棘手的问题。 由于填埋场具有投资较省,适应性强等优点,垃圾填埋处理仍是我国生活垃圾处理的一种主要方式,并且在今后相当长的时间内将占垃圾处理的主导地位。因此,为了规范渗滤液处理设施的设计、建设和运营,也应尽快制订出垃圾渗滤液处理工程技术规范。 3、主要的工作过程 本技术规范编写组在编制的过程中,主要做了以下工作:收集国内外相关的技术标准、规范等资料;在全国范围内发放问卷调查表;到具有代表性的渗滤液处理厂(站)进行调研;

污水处理记录

污水处理基本知识 污水处理基本工艺流程 预处理阶段(物理法) 1、粗格栅是由一组(或多组)相平行的金属栅条与框架组成,倾斜安装在进水的渠道,以拦截污水中粗大的悬浮物及杂质。起到一个过滤作用。

2、污水提升泵站的作用就是将上游来的污水提升至后续处理单元所要求的高度。污水处理厂在运行工艺流程中一般采用重力流的方法通过各个构筑物和设备。但由于厂区地形和地质的限制。必须在前处理处加提升泵站将污水提到某一高度后才能按重力流方法运行。 3、细格栅作用与粗格栅作用相同,主要用来连续清除污水中较小的固体污染物。 4、旋流沉砂池是利用机械力控制水流流态与流速、加速沙粒的沉淀并使有机物随水流带走的沉砂装置。 生物处理阶段 1、前置的选择池可以使其内的生态环境有利于选择性的发展絮状菌,运用生物竞争机制抑制丝状菌的过度生长和繁殖,控制污泥膨胀。 其缺氧的环境适合反硝化细菌生长,起到一定的脱氮作用,并减弱了硝酸盐对厌氧池的不良影响; 达到更好的厌氧环境,提供聚磷菌良好的作用条件,从而达到较好的除磷效果。。 2、厌氧池内利用厌氧菌的作用,使有机物发生水解、酸化和甲烷化,去除废水中的有机物,并提高污水的可生化性,有利于后续的好氧处理。 高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。 3、氧化沟是活性污泥法的一种变型,废水和活性污泥混合液在曝气池内不断循环流动,主要采用生物处理的方式。污水首先进入到氧化沟的外沟,再到中沟,

再到内沟,最后流到沉淀池中。

氧化沟脱氮 氧化沟厌氧区对小分子有机物实现氨化(将小分子有机物转化为NO X的过程)和反硝化的过程。 氧化沟缺氧区实现硝化(将NH3、NH4+转化为NO X的过程)、反硝化(将NO X转化为N2的过程)。 氧化沟好氧区最后进行硝化等好氧处理的过程 注意:生物除氮主要是利用生物吸收转化将有机物最终转变为N2排出,从而达到除氮的效果。 氧化沟除磷 厌氧区实现聚磷菌释放P的过程 好氧区实现聚磷菌过量吸收P的过程 注意:生物除磷主要是利用聚磷菌在厌氧区释放P的量<聚磷菌在好氧区吸收的P的量,总体来说是吸收P的过程,从而达到除磷的效果。 曝气是使空气与水强烈接触的一种手段,其目的在于将空气中的氧溶解于水中,或者将水中不需要的气体和挥发性物质放逐到空气中。换言之,它是促进气体与液体之间物质交换的一种手段。它还有其他一些重要作用,如混合和搅拌。 后处理阶段 1、沉淀池利用悬浮物和水的密度差,重力沉降作用去除水中悬浮物。 沉淀池上清液到消毒池进行消毒后排放。

垃圾填埋场渗滤液的处理方法

对城市垃圾填埋场渗滤液的国内外处理技术结合实际作了较为详细的阐述和系统的分析。重点对当前国内外垃圾渗滤液的生物处理、物理化学处理、上地处理等处理方法在实际运行过程中的成功与失败的经验作了总结 和探讨。 关键词:城市垃圾,渗滤液,废水处理 近十几年来国外学者就垃圾渗滤液的处理进行了大量的探索和研究,取得了一些成功经验,有的已用于工程实践。我国在垃圾渗滤液的处理研究方面起步较晚、起点较低,有不少失败的教训,但也获得了一些宝贵的经验。由于渗滤液水质水量的复杂多变住,目前尚无十分完善的处理工艺,大多根据不同填埋场的具体情况及其它经济技术要求采取有针对性的处理工艺。纵观国内外垃圾渗滤液处理的现状,目前渗滤液的处理方案主要有场外综合处理和场内单独处理两大类。主要处理工艺有生物处理法、物化法、土地法以及上述方法的综合[1]。 l 生物法处理渗滤液 生物法是渗滤液处理中最常用的一种方法,由于其运行费用相对较低、处理效率高,不会出现化学污泥等造成二次污染,因而被世界各国广泛采用。具体的工艺形式有传统活性污泥法、稳定塘、生物转盘、厌氧固定膜生物反应器等。 1.1 活性污泥法 美国和德国几个垃圾填埋场采用活性污泥法处理渗

滤液,其实际运行结果表明,通过提高污泥浓度来降低污泥的有机负荷,可以获得令人满意的处理效果。如美国宾州的Fall Township污水处理厂,其垃圾渗滤液进水的ρ(CODcr)为6000~21000 mg/L,ρ(BOD5)为 3000~13000 mg/L,ρ(氨氮)为 200~2000 mg/L,曝气池的 p(污泥)为 6000~12000 mg/L,是一般污泥的质量浓度的3~6倍。在体积有机负荷为 1.87 kg[BOD5]/(m3·d),F/M 为 0.15-0.31 kg[BOD5]/kg[MLSS·d)时,BOD5的去除率为97%;在体积有机负荷为0.3kg[BOD5]/(m3·d),F /M为0.03-0·05 ks[BOD5]/(kg[MLSS]·d)时,BOD5的去除率为92%。该厂的数据说明,只要适当提高活性污泥的质量浓度,使F/M为0.03-0.31<kg[BOD5]/(kg[MLSS]·d)之间采用活性污泥法能够有效地处理垃圾渗滤液[2]。 1.2 稳定塘 国外早在80年代就有成功运用稳定塘技术处理渗

垃圾填埋场渗滤液处理方案修订稿

垃圾填埋场渗滤液处理 方案 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

渗滤液的收集 在垃圾坝内侧设置两条H×W=2000×1000mm 渗滤液收集沟,总长220 米,收集沟为粘土盲沟,内填厚100cm 的卵石,卵石粒径8cm~12cm。沟上为厚50cm 的卵石导流层,卵石粒径4cm~6cm。收集沟底部为厚10 cm 的砾石, 砾石粒径4cm~6cm;沟内铺设两条平行的DN300 穿孔HDPE 收集管,穿孔管孔径15mm 孔距15cm。两条粘土沟将渗滤液收集沟与垃圾坝内预留的排水管道相连。穿过坝体的5 根DN300HDPE 管将坝内收集到的渗滤液输送至设置在坝外的两座转换井内。其中一个转换井作为渗滤液提升泵房将渗滤液通过一根DN300 的HDPE 管提升进入调节池。HDPE 管上设有闸阀一个,以调节排出的渗滤液量。 渗滤液收集沟下部基础采用大面积开挖施工,回填优质粘土并压实,使之形成不透水层基础面,基面垂直于坝体方向并向坝外形成2%的坡度。 有关内容详见“渗滤液收集系统平面布置图”。 渗滤液处理工艺 设计渗滤液量的确定 渗滤液的产量主要决定于降雨量、蒸发量、地下水浸入以及垃圾压实后产生的水分。渗滤液处理运行费用较高,确定适宜的处理规模,十分重要。在本工程设计中,采用经验公式计算,并参考重庆市及附近地区已有垃圾填埋场的实际运行经验对祺龙村垃圾处理场渗滤液产量进行预测。 经验公式法是根据多年的气象观测结果,以年平均降雨量为基础,来预测渗滤液产生量的方法。其计算公式为: Q=1000-1×C×I×A 式中: Q:渗滤液平均日产量,m3/d; C:渗透系数,一般在~之间; I:年平均日降雨量,mm; A:垃圾场面积,m2; 在本设计中,垃圾场面积A考虑场区截洪沟以内面积,约50000m2。本设计以两种降雨资料为基础,并考虑部分垃圾分解产生的渗滤液量,估算祺龙村垃圾场的渗滤液产量。 1、由降雨引起的渗滤液 (1)以重庆市年平均降雨量为基础,则I 为;相应渗滤液产量为: Q=1000 -1×(~)××50000=30~120m3/d (2)考虑到重庆市的降雨不均匀性,在5~8 月的(123 天)汛期中,其平均降雨量为,则I 为,渗滤液产量为: Q=1000 -1×(~)××50000=~246m3/d 2、垃圾分解产生的渗滤液

垃圾填埋场渗滤液处理方案

4.6 渗滤液的收集 在垃圾坝内侧设置两条H×W=2000×1000mm 渗滤液收集沟,总长220 米,收集沟为粘土盲沟,内填厚100cm 的卵石,卵石粒径8cm~12cm。沟上为厚50cm 的卵石导流层,卵石粒径4cm~6cm。收集沟底部为厚10 cm 的砾石, 砾石粒径4cm~6cm;沟内铺设两条平行的DN300 穿孔HDPE 收集管,穿孔管孔径15mm 孔距15cm。两条粘土沟将渗滤液收集沟与垃圾坝内预留的排水管道相连。穿过坝体的5 根DN300HDPE 管将坝内收集到的渗滤液输送至设置在坝外的两座转换井内。其中一个转换井作为渗滤液提升泵房将渗滤液通过一根DN300 的HDPE 管提升进入调节池。HDPE 管上设有闸阀一个,以调节排出的渗滤液量。 渗滤液收集沟下部基础采用大面积开挖施工,回填优质粘土并压实,使之形成不透水层基础面,基面垂直于坝体方向并向坝外形成2%的坡度。 有关内容详见“渗滤液收集系统平面布置图”。 4.7 渗滤液处理工艺 4.7.1 设计渗滤液量的确定 渗滤液的产量主要决定于降雨量、蒸发量、地下水浸入以及垃圾压实后产生的水分。渗滤液处理运行费用较高,确定适宜的处理规模,十分重要。在本工程设计中,采用经验公式计算,并参考重庆市及附近地区已有垃圾填埋场的实际运行经验对祺龙村垃圾处理场渗滤液产量进行预测。 经验公式法是根据多年的气象观测结果,以年平均降雨量为基础,来预测渗滤液产生量的方法。其计算公式为: Q=1000-1×C×I×A 式中: Q:渗滤液平均日产量,m3/d; C:渗透系数,一般在0.2~0.8 之间; I:年平均日降雨量,mm; A:垃圾场面积,m2; 在本设计中,垃圾场面积A考虑场区截洪沟以内面积,约50000m2。本设计以两种降雨资料为基础,并考虑部分垃圾分解产生的渗滤液量,估算祺龙村垃圾场的渗滤液产量。 1、由降雨引起的渗滤液 (1)以重庆市年平均降雨量1094.6mm 为基础,则I 为3.00mm;相应渗滤液产量为:Q=1000 -1×(0.2~0.8)×3.0×50000=30~120m3/d (2)考虑到重庆市的降雨不均匀性,在5~8 月的(123 天)汛期中,其平均降雨量为756.6mm,则I 为6.15,渗滤液产量为: Q=1000 -1×(0.2~0.8)×6.15×50000=61.5~246m3/d 2、垃圾分解产生的渗滤液 垃圾分解产生渗滤液水是一个较为复杂而缓慢的过程,其分解速率与垃圾含水率、垃圾成分及温度、温度等气候条件有关,分解水量较为难以确定。根据重庆环境卫生科研所对重庆地区城市生活垃圾进行的垃圾分解试验结果:在垃圾含水率平均为50%左右(最高含水率),

垃圾填埋场渗滤液处理方案70035

渗滤液的收集 在垃圾坝内侧设置两条H×W=2000×1000mm 渗滤液收集沟,总长220 米,收集沟为粘土盲沟,内填厚100cm 的卵石,卵石粒径8cm~12cm。沟上为厚50cm 的卵石导流层,卵石粒径4cm~6cm。收集沟底部为厚10 cm 的砾石, 砾石粒径4cm~6cm;沟内铺设两条平行的DN300 穿孔HDPE 收集管,穿孔管孔径15mm 孔距15cm。两条粘土沟将渗滤液收集沟与垃圾坝内预留的排水管道相连。穿过坝体的5 根DN300HDPE 管将坝内收集到的渗滤液输送至设置在坝外的两座转换井内。其中一个转换井作为渗滤液提升泵房将渗滤液通过一根DN300 的HDPE 管提升进入调节池。HDPE 管上设有闸阀一个,以调节排出的渗滤液量。 渗滤液收集沟下部基础采用大面积开挖施工,回填优质粘土并压实,使之形成不透水层基础面,基面垂直于坝体方向并向坝外形成2%的坡度。 有关内容详见“渗滤液收集系统平面布置图”。 渗滤液处理工艺 设计渗滤液量的确定 渗滤液的产量主要决定于降雨量、蒸发量、地下水浸入以及垃圾压实后产生的水分。渗滤液处理运行费用较高,确定适宜的处理规模,十分重要。在本工程设计中,采用经验公式计算,并参考重庆市及附近地区已有垃圾填埋场的实际运行经验对祺龙村垃圾处理场渗滤液产量进行预测。 经验公式法是根据多年的气象观测结果,以年平均降雨量为基础,来预测渗滤液产生量的方法。其计算公式为: Q=1000-1×C×I×A 式中: Q:渗滤液平均日产量,m3/d; C:渗透系数,一般在~之间; I:年平均日降雨量,mm; A:垃圾场面积,m2; 在本设计中,垃圾场面积A考虑场区截洪沟以内面积,约50000m2。本设计以两种降雨资料为基础,并考虑部分垃圾分解产生的渗滤液量,估算祺龙村垃圾场的渗滤液产量。 1、由降雨引起的渗滤液 (1)以重庆市年平均降雨量为基础,则I 为;相应渗滤液产量为: Q=1000 -1×(~)××50000=30~120m3/d (2)考虑到重庆市的降雨不均匀性,在5~8 月的(123 天)汛期中,其平均降雨量为,则I 为,渗滤液产量为: Q=1000 -1×(~)××50000=~246m3/d 2、垃圾分解产生的渗滤液 垃圾分解产生渗滤液水是一个较为复杂而缓慢的过程,其分解速率与垃圾含水率、垃圾成分及温度、温度等气候条件有关,分解水量较为难以确定。根据重庆环境卫生科研所对重庆地区城市生活垃圾进行的垃圾分解试验结果:在垃圾含水率平均为50%左右(最高含水率),

垃圾填埋中的渗滤液形成和特性

垃圾填埋中的渗滤液形成和特性 一、城市垃圾的卫生填埋 随着我国城市化建设步伐的加快,城市人口的急剧增加、城市规模的扩大和居民生活水平的提高,我国城市生活垃圾的产量在急剧增加。据有关统计资料表明,2005年,我国的城市生活垃圾年产量已突破2亿吨,并且在进入21世纪以来,全国每年的递增速度在10 %以上,按照4亿城市人口日均人产垃圾已达到1.37 kg,与工业发达国家的人均数量已经基本持平。 进入21世纪以来,我国在垃圾资源化方面有了长足的进步,兴建了一批垃圾焚烧发电厂,但是,垃圾焚烧发电不仅是个高投资高风险的项目,还必须要有规模,只适合于大中城市应用,对于小城市、小城镇不宜采用。因此,根据垃圾处理“资源化、减量化、无害化”的“三化”原则,我国的中小城市和小城镇、甚至于绝大部分中等城市将全部采用卫生填埋场的形式来处置垃圾,而大城市和特大城市也将会由卫生填埋和焚烧发电同时并行,城市垃圾的卫生填埋仍然要在今后相当长的年代里担任垃圾处置的主角。 20世纪60年代中期以来,国际上大体形成了填埋、焚烧、堆肥、热解等一系列处理方法。各国根据本国的具体情况,发展了垃圾的处理方法:日本以焚烧为主;美国60%的垃圾用卫生填埋法处理;西欧则多采用有控制的填埋法;我国由于资金与技术等原因,主要也采用填埋法。填埋法由于其固有的经济实用、技术成熟等优点,仍然是当前世界上固体废弃物的主要处理方法。 按照最新出台的我国“十一五”环境保护规划,至2010年末以前,我国的城市垃圾处理率要达到60%,而目前我国的城市垃圾安全处置率还不足一半。可以想见,未来五年内将要新建一大批城市垃圾卫生填埋场。 二、垃圾填埋场的渗滤液 而垃圾卫生填埋场却将面临一个不可回避的问题——垃圾渗滤液;垃圾焚烧发电过程中,其垃圾临时堆场同样也存在垃圾沥滤液的问题,只是其量小而已。 废弃物在填埋处置过程中产生的含有大量污染物的渗滤液便会构成新的污染源。渗滤液来源于自然降水、废弃物自身含水、废物在堆场受热分解产生的液体等,以及在填埋场中产生重力流动并在固体废弃物中冲淋浸泡所产生的液体。虽然渗滤液的水量不大,但由于液体在流动过程中有许多因素可能影响到渗滤液的性质,包括废弃物的种类、污染物的溶出速度和其它相关物理因素、化学因素以及生物因素等,使得渗滤液中污染物的浓度非常高,水质

污水处理设施运行记录表检测版.doc

污水处理设施运行记录表单位名称:吉安昊丰化工有限公司 日期:年月日---月日 处理设备运行情况药品使用情况 设备名处理水加药加药数量 开闭时间(公称量(吨)时间名称 斤) 罗茨风 - 日--- 机 --- - --- - --- - 日--- - --- - --- - --- - 日--- - --- - --- - --- - 药品名称 用药 量合 投加总量 计 交接班 情况 水质处理情况及 监控 进 项目出水 水 BOD COD PH SS BOD COD PH SS BOD COD PH SS 设施 维修、 维护 记录 操作 人员 备注

填表说明: 一、开闭时间,填写实际开启及关闭时间,如:9:00-11:00; 二、处理水量,填写抽进污水池的水量,按实际估计量填写,如, ( 吨); 三、药品品使用情况:“--- ”可不填此项,加药名称 , 填写实际使用的物品 名称 , 如: 片碱等 , 数量 :1KG,PH 值正常或无污水进入时,可以不填; 四、水质处理情况及监控:进/ 出 PH值:测试实际污水的酸碱度,如填写 6/7 ,进水:填写混浊,出水:填写清澈,如不清澈需增加处理时间,以上有污水进入处理池时是必填项; 五、用药量合计:药品名称,投加总量,填写表格内实际使用量的总量和上 具体名称,无使用可不填; 六、设施维修、维护记录:填写是否设施维修,如,更换机罗茨风机机油等; 七、交接班情况:填写正常,不正常填写实际情况等; 八、备注:填写备注事项,如没有可不填。 污水处理设施运行记录表 单位名称:吉安昊丰化工有限公司 日期: **** 年 ** 月** 日--- ** 月** 日 处理设备运行情况药品使用情况水质处理情况及 监控 操作 设备名处理水加药加药数量 进 / 出进 人员 开闭时间(公出水称量(吨)时间名称PH值水 斤) 罗茨 ** 日 9:0.5 --- 片碱1 6/7 浑清澈李四00-11 : 00 --- 浊 ** 日9:李四 00-11 : 00 --- ---

生活垃圾填埋场渗滤液回灌技术(1)

生活垃圾填埋场渗滤液回灌技术(1) 详细介绍了渗滤液回灌工程中所采用的喷淋回灌、表面水塘回灌、垂直竖井回灌及水平回灌等工程技术,并对其优缺点和适应性进行了分析论述。通过对影响渗滤液回灌效果的三种因素——垃圾堆体特性、压实度、中间覆盖层的分析,提出了使用可生物降解的垃圾盛装袋、人工膜作为中间覆盖层等可行的操作建议,以提高渗滤液的回灌效果。 关键词:生活垃圾填埋场渗滤液回灌渗透性中间覆盖层 渗滤液回灌是将收集后的渗滤液再次回灌入填埋场,利用填埋场堆体内的微生物对渗滤液进行处理的一种技术,它是渗滤液管理的一种有效方法。 由于垃圾堆体内存在大量的孔隙,因此垃圾堆体具有较强的额外贮水能力,并且该贮水能力随垃圾堆体填埋高度的增加而增加。有关研究表明[3]:当所填埋生活垃圾的饱和度为50%,填埋高度为50 m时,每公顷生活垃圾填埋场额外贮水能力为125×103 m3。 许多研究表明[1,2,4],通过渗滤液回灌增加填埋场堆体内的湿度,不仅可以改善渗滤液的水质,降低渗滤液中BOD、COD及重金属的浓度,而且可以加速填埋堆体的稳定,使填埋场稳定期缩短至2~3 a,并增加填埋场的甲烷产气率。 1 回灌技术 将渗滤液回灌入填埋场的方式有多种,在生产中常用的方法通常有喷淋法、表面水塘回灌法、垂直竖井回灌法及水平回灌法。 1.1 喷淋回灌法 喷淋回灌法就是将垃圾渗滤液喷洒至垃圾填埋场表面,为了增加渗滤液的渗透性,可在垃圾填埋场的表面开挖一些纵横交错的沟槽。喷淋回灌法相对较为灵活,由于管线敷设在填埋场的表面,当填埋区域发生变化时,回灌系统比较容易建设。 该种方法通常用在蒸发量较大的地区,用以减少渗滤液的处理量,减少率可达75%左右。在降雨量充沛或冰冻的地域,则不适合运用此种方法。 目前,由于渗滤液在喷洒过程中所产生微小的雾状水滴及气味会对人的健康带来危害,有些国家已经开始禁止使用这种回灌方式。当采用这种回灌方式时,建议渗滤液的浓度应小于1000 mg/L[5]。

生活垃圾填埋场渗滤液处理工程实例

生活垃圾填埋场渗滤液处理工程实例摘要:针对垃圾填埋场渗滤液难降解有机物浓度高,可生化性差、氨氮浓度高等特点,设计了预处理+生化+膜处理的处理工艺。运行结果表明,处理出水的codcr、bod5、ss、tn、nh3-n等指标均达到《生活垃圾填埋场污染控制标准》(gb16889-2008)表三规定。 关键词:垃圾渗滤液;codcr;氨氮;a/o2-a/o;mbr engineering examples of landfill leachate treatment kong wei-li , li xiao-hua (shanghai duoda environmental protection industry co.,ltd. ,shanghai 200237) abstract: based on the characteristics of high concentrations of refractory organics , poor biodegradability and high ammonia of landfill leachate , a treatment process of pretreation & biological treatmention &membrane technology is put forward . operation results show that cod , bod5 , tn , nh3-n and ss in the effluent can satisfy the table ⅲ standard for pollution control on the landfill site for domestic waste(gb16889-2008). keywords: landfill leachate ; codcr; ammonia ; a/o2-a/o ; mbr

xx城市垃圾填埋场渗滤液处理工程答辩

xx城市垃圾填埋场渗滤液处理工程 调试方案及操作安全规程 一、工程概况 xx市城市生活垃圾填埋场日处理城市生活垃圾能力为600吨/日,填埋场有效填埋面积248亩,设计使用年限为12年。本垃圾填埋场渗滤液处理工程是城市垃圾无害化系统工程的配套工程,受xx市市政公用事业管理局委托,xx承担该工程的设计工作,设计采用厌氧+好氧+凝凝沉淀工艺,设计规模250吨/日。 二、调试条件 xx城市垃圾填埋场渗滤液处理工程现已基本施工完毕,各池经过试水无渗漏,设备安装就绪,全部工程经当地工程质量监督部门验收合格,废水、电、给水均引到处理场内,废水处理站现已完全具备试车调试的条件。 三、调试程序及时间安排 本工程调试工作主要包括:单机设备试车,系统设备联动试车,工艺调试等方面,根据初步预计,二个月时间内可以完成调试和菌种培养驯化工作,使处理系统正常运转并达到最终出水达标排放的目标。 调试工作按如下程序进行:

(1).各单机设备试车(2天); (2).系统设备联动试车(2天); (3).厌氧UASB启动(3-7天); (4).厌氧UASB调负荷(40-50天); (5).好氧单元启动(2-5天); (6).好氧单元调负荷(30-40天); (7).混凝单元调试(10天)。 注:(5)—(7)步骤与(4)步骤同步进行。 四、调试方案 1.厌氧UASB调试 (1)接种 外购同类或相近性质废水处理站的成熟厌氧污泥作为接种污泥投入二个UASB池中,进行UASB反应器的初级启动,启动阶段的主要目的是使UASB反应器进入工作状态,使接入的菌种由休眠状态恢复活性并逐步适应垃圾渗滤液废水。按接种量15—2 0g/l将接种污泥投入两个UASB反应器,共需投加接种污泥200—320吨(按95%含水率的厌氧泥计算,干基为10—16吨)。接

生活垃圾填埋场渗滤液性质随时间变化关系研究-环境科学学报

生活垃圾填埋场渗滤液性质随时间变化关系研究1 楼紫阳,赵由才*,宋玉,李雄,刘振宇 同济大学污染控制与资源化研究国家重点实验室,上海20092 摘要: 通过对上海老港填埋场不同年份渗滤液的取样分析,测定了以下参数:电导率、ORP、COD Cr、NPOC、NH3-N、TN、正磷酸盐与总磷、pH、阴离子(F-、Cl-、Br-、SO42-),并建立了各参数与时间的关系。发现不同的渗滤液指标随填埋时间延长,其变化趋势略有差异,其中NPOC、COD、N、P、pH、电导率等指标值随时间的延长,总体表现为降低趋势;而ORP则逐渐升高;阴离子等变化趋势不明显,呈现波动趋势。对于相同变化趋势的指标,其降解过程也并不一致,对于含C物质-NPOC和COD,经4年降解后分别达到<500 mg·L-1和<2000 mg·L-1;对于含N物质,则可分为三个阶段,前4年的快速降解阶段,随后3年的中速降解,最后进入慢速降解阶段稳定在500 mg·L-1以内;TP含量随填埋时间在开始的9年内降解迅速,从35 mg·L-1降到3.4 mg·L-1,后基本维持稳定值;pH值则在开始的7年内下降较快,随后变化不大;电导率在填埋开始的7年内下降较快;而ORP则在开始的9年内上升较多。同时发现,随着填埋时间的延长,NPOC/TOC、NH3-N/TN、正磷酸盐/TP 比例总体表现为降低,硫酸根/Cl-比例有稍微升高,最终保持在0.2左右。 关键词:渗滤液,老港填埋场,不同时间,性质表征 Characteristics of leachate with different ages from Laogang Refuse Landfill Lou Ziyang Zhao Youcai*Song Yu Li Xiong LiuZhengyu The State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 Abstract: Leachate with different ages were collected from Laogang Landfill in Shanghai, China, and the parameters, such as conductivity、ORP、COD Cr、NPOC、NH3-N、TN、orthophosphate、TP、pH、anion ions (F-、Cl-、Br-、SO42-), were determined, and the relationship between the parameters and times were co-related. It is found that values of these parameters, such as NPOC、COD、N、P、pH、conductivity, generally decreased and ORP increased and anions fluctuated, as time extended. NPOC and COD decreased quickly in the first 4 years to <500 mg·L-1and <2000 mg·L-1, respectively. The decomposition process of N can be divided into three stages, i.e., degradation fastest in the first 4 years, and then degradation slow in the next 3 years, while slower degradation in the latter 6 years, which reached to below 500 mg·L-1. TP decreased quickly in the first 9 years, and then reached to a stable value of around 3.4 mg·L-1. pH declined slightly in the 1本工作受到国家自然科学基金(No.20177014),教育部2005年重大科技项目(No. 305005)和2005上海市科委重重大项目资助(No.05DZ12003) Supported by China National Natural Science Foundation (No. 20177014); 2005 Key Project of Science and Technology of China Education Ministry (No. 305005); 2005 Key Project of Shanghai Science and Technology Commission(No.05DZ12003) 楼紫阳,男,1980年生,现为同济大学环境学院博士生,研究方向:固体废弃物处理及资源化,以及高浓度有机废水处理。 Biography: Lou Ziyang (1980~), male, Ph D. Candidate of Tongji University

相关主题
文本预览
相关文档 最新文档