当前位置:文档之家› 板式塔设备机械设计资料

板式塔设备机械设计资料

板式塔设备机械设计资料
板式塔设备机械设计资料

1 板式塔设备机械设计任务书

1.1 设计任务及操作条件

试进行一蒸馏塔与裙座的机械设计

已知条件为:塔体内径mm D i 2000=,塔高m 30,工作压力为MPa 2.1,设计温度为300℃,介质为原油,安装在广州郊区,地震强度为7度,塔内安装55层浮阀塔板,塔体材料选用16MnR ,裙座选用A Q -235。

1.2 设计内容

(1)根据设计条件选材;

(2)按设计压力计算塔体和封头壁厚; (3)塔设备质量载荷计算; (4)风载荷与风弯矩计算; (5)地震载荷与地震弯矩计算; (6)偏心载荷与偏心弯矩计算; (7)各种载荷引起的轴向应力;

(8)塔体和裙座危险截面的强度与稳定校核; (9)塔体水压试验和吊装时的应力校核; (10)基础环设计; (11)地脚螺栓计算; (12)板式塔结构设计。

1.3.设计要求:

(1)进行塔体和裙座的机械设计计算; (2)进行裙式支座校核计算; (3)进行地脚螺栓座校核计算; (4)绘制装备图(A3图纸)

2 塔设备已知条件及分段示意图

已知设计条件

分段示意图

塔体内径i D 2000mm

塔体高度H 30000mm 设计压力P 1.2MPa 设计温度t

300℃ 塔 体

材料

16MnR 许用应力

[σ]

170MPa [σ]t

144MPa

设计温度下弹性模量E

MPa 51086.1?

常温屈服点s σ 345MPa 厚度附加量C 2mm 塔体焊接接头系数φ

0.85

介质密度ρ 3/800m kg

塔盘数N

55 每块塔盘存留介质层高度w h

100mm 基本风压值0q 500N/㎡ 地震设防烈度 7度 场地土类别 II 类 地面粗糙度 B 类 偏心质量e m 4000kg 偏心距e 2000mm 塔外保温层厚度s δ 100mm

保温材料密度2ρ 3/300m kg

材料 Q235-A 裙 座

许用应力t s ][σ 86MPa 常温屈服点s σ 235MPa

设计温度下弹性模量s E

3 塔设备设计计算程序及步骤3.1 按设计压力计算塔体和封头厚度

3.2 塔设备质量载荷计算

3.3 自振周期计算

3.4 地震载荷与地震弯距计算

m

gH

3.5 风载荷与风弯距计算

3.6 偏心弯距

3.7 最大弯距

3.8 圆筒轴向应力校核和圆筒稳定校核

板式塔设计

板式塔设计 概述 本章符号说明 英文字母 A a——塔板开孔区面积,m2; A f——降液管截面积,m2; A0——筛孔总面积,m2; A T——塔截面积,m2; c0——流量系数,无因次; C——计算u max时的负荷系数,m/s; C s——气相负荷因子,m/s; d0——筛孔直径,m; D——塔径,m; ev——液沫夹带量,kg(液)/kg(气); E——液流收缩系数,无因次; E T——总板效率,无因次; F——气相动能因子,kg1/2/(s·m1/2); F0——筛孔气相动能因子,kg1/2/(s·m1/2); h1——进口堰与降液管间的水平距离,m; h c——与干板压降相当的液柱高度,m液柱; h d——与液体流过降液管的压降相当的液柱高度,m:h f——塔板上鼓泡层高度,m; h l——与板上液层阻力相当的液柱高度,m; h L——板上清液层高度,m; h0——降液管的底隙高度,m; h ow——堰上液层高度,m; h w——出口堰高度,m; h′w——进口堰高度,m; hσ——与克服σ的压降相当的液柱高度,m;H——板式塔高度; H B——塔底空间高度,m; H d——降液管内清液层高度,m; H D——塔顶空间高度,m; H F——进料板处塔板间距,m ;

H P——人孔处塔板间距,m; H T——塔板间距,m; H1——封头高度,m; H2——裙座高度,m; K——稳定系数,无因次; l W——堰长,m; L h——液体体积流量,m3/h; L S——液体体积流量,m3/s; n——筛孔数目; N T——理论板层数; P——操作压力,Pa; △P——压力降,Pa; △P p——气体通过每层筛板的压降,Pa;r——鼓泡区半径,m; t——筛孔的中心距,m; u——空塔气速,m/s; u F——泛点气速,m/s u0——气体通过筛孔的速度,m/s; u0.min——漏液点气速,m/s; u′0——液体通过降液管底隙的速度,m/s;V h——气体体积流量,m3/h; V S——气体体积流量,kg/s; W L——液体质量流量,kg/s; W V——气体质量流量,kg/s; W c——边缘无效区宽度,m; W d——弓形降液管宽度,m; W s——破沫区宽度,m; Z——板式塔的有效高度,m; 希腊字母 β——充气系数,无因次; δ——筛板厚度,m θ——液体在降液管内停留时间,s;μ——粘度,Pa·s; ρ——密度,kg/m3; σ——表面张力,N/m; φ——开孔率或孔流系数,无因次;

机械设计常用资料大全

机械设计常用资料大全》(Mechanical design common documents daqo)1.0 这么多的机械设计用资料,对你进行机械设计或者学习,有非常大的帮助,省去了你查找资料的时间。本资源对机械设计的资料进行了分类,极大地方便了你下载需要参考的资料,同时也会对你学习机械专业知识,有一个整体性的了解,可以帮助你应该加强哪部分内容的学习! 供在校大学生或机械类工程技术人员使用。 一、手册类 机械设计课程设计手册(第三版) 机械设计手册(第五版)第1卷 机械设计手册(第五版)第2卷 机械设计手册(第五版)第3卷 机械设计手册(第五版)第4卷 机械设计手册(第五版)第5卷 机械设计手册.(新版).第1卷 机械设计手册.(新版).第2卷 机械设计手册.(新版).第3卷 机械设计手册.(新版).第4卷 机械设计手册.(新版).第5卷 机械设计手册.(新版).第6卷 [精密加工技术实用手册].精密加工技术实用手册 包装机械选用手册上-印刷实务 包装机械选用手册下-印刷实务 机电一体化专业必备知识与技能手册 机械工程师手册.第二版 机械加工工艺师手册 机械设计、制造常用数据及标准规范实用手册 机械制图手册(清晰版) 机械制造工艺设计简明手册 联轴器、离合器与制动器设计选用手册 实用机床设计手册 运输机械设计选用手册.上册 运输机械设计选用手册.下册 中国机械设计大典数据库 最新金属材料牌号、性能、用途及中外牌号对照速用速查实用手册 最新实用五金手册(修订本) 最新轴承手册 二、机构类 高等机构设计 机构参考手册 机构创新设计方法学 机构设计丛书.凸轮机构设计 机构设计实用构思图册-verygood

精馏塔-PPT

填料塔的附属结构填料支承板(Packing support plate ) 主要包括:填料支承装置;液体分布及再分布装置;气体进口分布装置;除沫装置等。 要求:(1)足够的机械强度以承受设计载荷量,支承板的设计载荷主要包括填料的重量和液体的重量。(2)足够的自由面积以确保气、液两相顺利通过。总开孔面积应不小于填料层的自由截面积。一般开孔率在70%以上。常用结构:栅板;升气管式;气体喷射式。

栅板(support grid): 优点是结构简单,造价低; 缺点是栅板间的开孔容易被散装填料挡住,使有效开孔面积减小。

升气管式:具有气、液两相分流而行和开孔面积大的特点。气体由升气管侧面的狭缝进入填料层。

气体喷射式(multibeam packing support plate): 具有气、液两相分流而行和开孔面积大的特点。气体由波形的侧面开孔射入填料层。

床层限位圈和填料压板(Bed limiter and hold down plate)填料压紧和限位装置安装在填料层顶部,用于阻止填料的流化和松动,前者为直接压在填料之上的填料压圈或压板,后者为固定于塔壁的填料限位圈。 规整填料一般不会发生流化,但在大塔中,分块组装的填料会移动,因此也必需安装由平行扁钢构造的填料限制圈。

液体分布器(Liquid distributor) 作用:将液体均匀分布于填料层顶部。 莲蓬头分布器: 一种结构十分简单的液体喷洒器,其喷头的下部为半球形多孔板,喷头直径为塔径的1/3~1/5,一般用于直径在0.6m以下的塔中。它的主要缺点是喷洒孔易堵塞,且气量较大时液沫夹带量大。

板式塔介绍

塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。 根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。 板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。 填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。 目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 本章重点介绍板式塔的塔板类型,分析操作特点并讨论浮阀塔的设计,同时还介绍各种类型填料塔的流体流体力学特性和计算。 第1节板式塔 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 3.1.1塔板类型 按照塔内气液流动的方式,可将塔板分为错流塔板与逆流塔板两类。 错流塔板:塔内气液两相成错流流动,即流体横向流过塔板,而气体垂直穿过液层,但对整个塔来说,两相基本上成逆流流动。错流塔板降液管的设置方式及堰高可以控制板上液体流径与液层厚度,以期获得较高的效率。但是降液管占去一部分塔板面积,影响塔的生产能力;而且,流体横过塔板时要克服各种阻力,因而使板上液层出现位差,此位差称之为液面落差。液面落差大时,能引起板上气体分布不均,降低分离效率。错流塔板广泛用于蒸馏、吸收等传质操作中。 逆流塔板亦称穿流板,板间不设降液管,气液两相同时由板上孔道逆向穿流而过。栅板、淋降筛板等都属于逆流塔板。这种塔板结构虽简单,板面利用率也高,但需要较高的气速才能维持板上液层,操作范围较小,分离效率也低,工业上应用较少。 本教材只介绍错流塔板。

机械设计工程师考试大纲

机械工程师考试大纲,你看一下有没有含金量 Ⅰ.基本要求 1.熟练掌握工程制图标准和表示方法。掌握公差配合的选用和标注。 2.熟悉常用金属材料的性能、试验方法及其选用。掌握钢的热处理原理,熟悉常用金属材料的热处理方法及其选用。了解常用工程塑料、特种陶瓷、光纤和纳米材料的种类及应用。3.掌握机械产品设计的基本知识与技能,能熟练进行零、部件的设计。熟悉机械产品的设计程序和基本技术要素,能用电子计算机进行零件的辅助设计,熟悉实用设计方法,了解现代设计方法。 4.掌握制订工艺过程的基本知识与技能,能熟练制订典型零件的加工工艺过程,并能分析解决现场出现的一般工艺问题。熟悉铸造、压力加工、焊接、切(磨)削加工、特种加工、表面涂盖处理、装配等机械制造工艺的基本技术内容、方法和特点并掌握某些重点。熟悉工艺方案和工艺装备的设计知识。了解生产线设计和车间平面布置原则和知识。 5.熟悉与职业相关的安全法规、道德规范和法律知识。熟悉经济和管理的基础知识。了解管理创新的理念及应用。 6.熟悉质量管理和质量保证体系,掌握过程控制的基本工具与方法,了解有关质量检测技术。7.熟悉计算机应用的基本知识。熟悉计算机数控(CNC)系统的构成、作用和控制程序的编制。了解计算机仿真的基本概念和常用计算机软件的特点及应用。 8.了解机械制造自动化的有关知识。 Ⅱ.考试内容 一、工程制图与公差配合 1.工程制图的一般规定 (1)图框 (2)图线 (3)比例 (4)标题栏 (5)视图表示方法 (6)图面的布置 (7)剖面符号与画法 2.零、部件(系统)图样的规定画法 (1)机械系统零、部件图样的规定画法(螺纹及螺纹紧固件的画法齿轮、齿条、蜗杆、蜗轮及链轮的画法花键的画法及其尺寸标注弹簧的画法) (2)机械、液压、气动系统图的示意画法(机械零、部件的简化画法和符号管路、接口和接头简化画法及符号常用液压元件简化画法及符号) 3.原理图 (1)机械系统原理图的画法 (2)液压系统原理图的画法 (3)气动系统原理图的画法 4.示意图 5.尺寸、公差、配合与形位公差标注 (1)尺寸标注 (2)公差与配合标注(基本概念公差与配合的标注方法) (3)形位公差标注 6.表面质量描述和标注 (1)表面粗糙度的评定参数

精馏塔机械设计方案

精馏塔机械设计方案 1.1 塔设备概论 塔设备是化工、石油化工和炼油、医药、环境保护等工业部门的一种重要的单元操作设备。它的作用是实现气(汽)——液相或液——液相之间充分的接触,从而达到相际间进行传质及传热的目的。可在塔设备中完成的常见的单元操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。 塔设备应用面广、量大,其设备投资费用占整个工艺设备费用较大的比例。在化工或炼油厂中,塔设备的性能对整个装置的产品产量、质量、生产能力和消耗定额以及三废处理和环境保护等各个方面都有着重大影响。因此,塔设备的设计和研究受到化工、炼油行业的极大重视。 为了使塔设备能更有效、更经济地运行,除了要求它满足特定的工艺条件外,还应满足以下要求: (1)气(汽)液两相充分接触,相际间的传热面积大; (2)生产能力大,即气液处理量大; (3)操作稳定,操作弹性大; (4)流体流动的阻力小,即流体通过塔设备的压力降小。这将大大减少生产中的动力消耗,以降低操作的费用; (5)结构简单,制造、安装、维修方便,并且设备的投资及操作费用低; (6)耐腐蚀,不易堵塞。方便操作、调节和检修。 塔设备的分类: (1)按操作压力可分有加压塔、常压塔以及减压塔;

(2)按单元操作可分有精馏塔、吸收塔、介吸塔、萃取塔、反应塔、干燥塔等; (3)按件结构可分有填料塔、板式塔; (4)按形成相际接触界面的方式可分为具有固定相界面的塔和流动过程中形成相界面的塔。 1.2 常压塔的主要结构 在塔设备的类别中,由于目前工业上应用最广泛的是填料塔以及板式塔,所以主要考虑这两种类别。 考虑到设计条件,成分复杂,并且板式塔和填料塔相比效率更高一些,更稳定,液——气比适用围大,持液量较大,安装、检修更容易,造价更低,故选用板式塔更为合理。 板式塔是一种逐级(板)接触的气液传质设备。塔使用塔板作为基本构件,气体自塔底向上以鼓泡或喷射的形式穿过塔板上的液层,使气——液相密切接触而进行传质与传热,并且两相的组分浓度呈阶梯式变化。 塔盘采用浮阀型式。因为浮阀塔在石油、化工、等工业部门应用最为广泛,并具备优异的综合性能,在设计和选用时经常作为首选的板式塔型式。 板式初馏塔的总体结构见装配草图。板式塔除了各种件之外,主要由塔体、支座、人孔或手孔、除沫器、接管、吊柱及扶梯、操作平台组成。 (1) 塔体 塔体即塔设备的外壳,常见的塔体由等直径、等厚度的圆筒和上下封头组成。对于大型塔设备,为了节省材料偶尔采用不等直径、不等厚度的塔体。塔设备一般情况下安装在室外,因而塔体除了承受一定的操作压力(压或外压)、温度外,还要考虑到风载荷、地震载荷、偏心载荷等。此外还要满足在试压、运输及吊装时的强度、刚度及稳定性要求。本设计中精馏塔为常压0.11MPa,采用等直径等厚度型式。 (2) 支座

塔设备机械设计

第一章绪论 1.1塔设备概述 塔设备是石油、化工、轻工等各工业生产中仅次与换热设备的常见设备。在上述各工业生产过程中,常常需要将原料中间产物或粗产品中的各个组成部分(称为组分)分离出来作为产品或作为进一步生产的精制原料,如石油的分离、粗酒精的提纯等。这些生产过程称为物质分离过程或物质传递过程,有时还伴有传热和化学反应过程。传质过程是化学工程中一个重要的基本过程,通常采用蒸馏、吸收、萃取。以及吸附、离子交换、干燥等方法。相对应的设备又可称为蒸馏塔、吸收塔、萃取塔等。 在塔设备中所进行的工艺过程虽然各不相同,但从传质的必要条件看,都要求在塔内有足够的时间和足够的空间进行接触,同时为提高传质效果,必须使物料的接触尽可能的密切,接触面积尽可能大。为此常在塔内设置各种结构形式的内件,以把气体和液体物料分散成许多细小的气泡和液滴。根据塔内的内件的不同,可将塔设备分为填料塔和板式塔。 在板式塔中,塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质。两相的组分浓度沿塔高呈阶梯式变化。 不论是填料塔还是板式塔,从设备设计角度看,其基本结构可以概括为: (1)塔体,包括圆筒、端盖和联接法兰等; (2)内件,指塔盘或填料及其支承装置; (3)支座,一般为裙式支座; (4)附件,包括人孔、进出料接管、各类仪表接管、液

体和气体的分配装置,以及塔外的扶梯、平台、保温层等。 塔体是塔设备的外壳。常见的塔体是由等直径、等壁厚的圆筒及上、下椭圆形封头所组成。随着装置的大型化,为了节省材料,也有用不等直径、不等壁厚的塔体。塔体除应满足工艺条件下的强度要求外,还应校核风力、地震、偏心等载荷作用下的强度和刚度,以及水压试验、吊装、运输、开停车情况下的强度和刚度。另外对塔体安装的不垂直度和弯曲度也有一定的要求。 支座是塔体的支承并与基础连接的部分,一般采用裙座。其高度视附属设备(如再沸器、泵等)及管道布置而定。它承受各种情况下的全塔重量,以及风力、地震等载荷,因此,应有足够的强度和刚度。 塔设备强度计算的主要的内容是塔体和支座的强度和刚度计算。 化工生产对塔设备的基本要求 塔设备设计除应满足工艺要求外,尚需考虑下列基本要求:(1)气、液处理量大,接触充分,效率高,流体流动阻力小。 (2)操作弹性大,即当塔的负荷变动大时,塔的操作仍然稳定,效率变化不大,且塔设备能长期稳定运行。 (3)结构简单可靠,制造安装容易,成本低。 (4)不易堵塞,易于操作、调试及检修。 1.2板式塔 板式塔具有物料处理量大,重量轻,清理检修方便,操作稳定性好等优点,且便于满足工艺上的特殊要求,如中间加热或或冷却、多段取出不同馏分、“液化气”较大等。但板式塔的结构复杂,成本较高。由于板式塔良好的操作的性能和成熟的使用经验,目前在化工生产的塔设备中,占有很大比例,广泛用于蒸馏、吸收等传质过程。 板式塔内部装有塔盘,塔体上有进料口、产品抽出口以及回流口等。此外,还有很多附属装置,如除沫器、入手孔、支座、

《机械设计基础》第六版重点复习资料

《机械设计基础》知识要点 绪论;基本概念:机构,机器,构件,零件,机械 第1章:1)运动副的概念及分类 2)机构自由度的概念 3)机构具有确定运动的条件 4)机构自由度的计算 第2章:1)铰链四杆机构三种基本形式及判断方法。 2)四杆机构极限位置的作图方法 3)掌握了解:极限位置、死点位置、压力角、传动角、急回特性、极位夹角。 4)按给定行程速比系数设计四杆机构。 第3章:1)凸轮机构的基本系数。 2)等速运动的位移,速度,加速度公式及线图。 3)凸轮机构的压力角概念及作图。 第4章:1)齿轮的分类(按齿向、按轴线位置)。 2)渐开线的性质。 3)基本概念:节点、节圆、模数、压力角、分度圆,根切、最少齿数、节圆和分度圆的区别。 4)直齿轮、斜齿轮基本尺寸的计算;直齿轮齿廓各点压力角的计算;m = p /π的推导过程。 5)直齿轮、斜齿轮、圆锥齿轮的正确啮合条件。 第5章:1)基本概念:中心轮、行星轮、转臂、转化轮系。 2)定轴轮系、周转轮系、混合轮系的传动比计算。 第9章:1)掌握:失效、计算载荷、对称循环变应力、脉动循环变应力、许用应力、安全系数、疲劳极限。 了解:常用材料的牌号和名称。 第10章: 1)螺纹参数d、d1、d2、P、S、ψ、α、β及相互关系。 2)掌握:螺旋副受力模型及力矩公式、自锁、摩擦角、当量摩擦角、螺纹下行自锁条件、常用螺纹类型、螺纹联接类型、普通螺纹、细牙螺纹。 3)螺纹联接的强度计算。 第11章: 1)基本概念:轮齿的主要失效形式、齿轮常用热处理方法。 2)直齿圆柱齿轮接触强度、弯曲强度的计算。 3)直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮的作用力(大小和方向)计算及受力分析。 第12章: 1)蜗杆传动基本参数:m a1、m t2、γ、β、q、P a、d1、d2、V S及蜗杆传动的正确啮合条件。 2)蜗杆传动受力分析。 第13章: 1)掌握:带传动的类型、传动原理及带传动基本参数:d1、d2、L d、a、α1、α2、F1、F2、F0 2)带传动的受力分析及应力分析:F1、F2、F0、σ1、σ2、σC、σb及影响因素。 3)弹性滑动与打滑的区别。 4)了解:带传动的设计计算。 第14章: 1)轴的分类(按载荷性质分)。 2)掌握轴的强度计算:按扭转强度计算,按弯扭合成强度计算。 第15章: 1)摩擦的三种状态:干摩擦、边界摩擦、液体摩擦。 第16章: 1)常用滚动轴承的型号。 2)向心角接触轴承的内部轴向力计算,总轴向力的计算。 滚动轴承当量动载荷的计算。滚动轴承的寿命计算。 第17章: 1)联轴器与离合器的区别 第一章平面机构的自由度和速度分析 1、自由度:构件相对于参考系的独立运动称为自由度。 2、运动副:两构件直接接触并能产生一定相对运动的连接称为运动副。构件组成运动副后,其运动受到约束,自由度减少。

化工机械设备课程设计精馏塔

目录 第1章绪论 (3) 1.1 课程设计的目的 (3) 1.2 课程设计的要求 (3) 1.3 课程设计的内容 (3) 1.4 课程设计的步骤 (3) 第2章塔体的机械计算 (5) 2.1 按计算压力计算塔体和封头厚度 (5) 2.1.1 塔体厚度的计算 (5) 2.1.2 封头厚度计算 (5) 2.2 塔设备质量载荷计算 (5) 2.2.1 筒体圆筒,封头,裙座质量 (5) 2.2.2 塔内构件质量 (6) 2.2.3 保温层质量 (6) 2.2.4 平台,扶梯质量 (6) 2.2.5 操作时物料质量 (6) 2.2.6 附件质量 (7) 2.2.7 充水质量 (7) 2.2.8 各种质量载荷汇总 (7) 2.3 风载荷与风弯矩计算 (8) 2.3.1自振周期计算 (8) 2.3.2 风载荷计算 (8) 2.3.3 各段风载荷计算结果汇总 (8) 2.3.4风弯矩的计算 (8) 2.4 地震弯矩计算 (9) 2.5 偏心弯矩的计算 (10) 2.6 各种载荷引起的轴向应力 (10) 2.6.1计算压力引起的轴向应力 (10) 2.6.2 操作质量引起的轴向压应力δ2 (10) 2.6.3 最大弯矩引起的轴向应力δ3 (10) 2.7 塔体和裙座危险截面的强度与稳定校核 (10)

2.7.1 塔体的最大组合轴向拉应力校核 (10) 2.7.2 塔体与裙座的稳定校核 (11) 2.7.3 各危险截面强度与稳定性校核 (11) 2.8 塔体水压试验和吊装时的应力校核 (14) 2.8.1 水压试验时各种载荷引起的应力 (14) 2.8.2 水压试验时应力校核 (14) 2.9 基础环设计 (15) 2.9.1 基础环尺寸 (15) 2.9.2 基础环的应力校核 (15) 2.9.3 基础环的厚度 (15) 2.10 地脚螺栓计算 (16) 2.10.1 地脚螺栓承受的最大拉应力 (16) 2.10.2 地脚螺栓的螺纹小径 (16) 第3章塔结构设计 (18) 3.1 塔体 (18) 3.2 板式塔及塔盘 (18) 3.3 塔设备附件 (18) 3.3.1 接管 (18) 3.3.2 除沫装置 (18) 3.3.3 吊柱 (18) 3.3.4 裙式支座 (19) 3.3.4 保温层 (19) 参考文献 (20) 课设结果与自我总结 (21) 附录A 主要符号说明 (22) 附录B塔设备的装配图 (24)

机械工程材料基本知识

机械工程材料基本知识 1.1 金属材料的力学性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 1.1.1强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,符号为c,单位为MPa 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用③ 表示。抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用c表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据。 1.1.2塑性 塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。 工程中常用的塑性指标有伸长率和断面收缩率。伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号S表示。断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用表示。 伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。 1.1.3 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。硬度的测试方法很多,生产

筛板式精馏塔机械设计说明书

一、塔设备课程设计任务书 ㈠设计课题 筛板式精馏塔机械设计 ㈡工艺条件 物料名称:甲醇-水 设计压力:0.1a MP 设计温度:C 100 物料平均密度:3 957m kg 产品特性:易燃、有毒 设计基本风压值:2 300m N 地震烈度:7度 ㈢工艺尺寸 塔内径 精馏段板数 提留段板数 板间距 堰长 1400 33 17 500 980 堰高 筛孔直径 孔间距 塔顶蒸汽出口管径 50 6 24 200D g 管口 符号 公称尺寸 用途 a Dg273 进料管口 b Dg38 出料管口 c Dg325 塔顶蒸汽出口 d Dg38 回流液口 e Dg20 液面计接口 f Dg38 釜液出口 设计要求 1、筛板精馏塔机械设计及整体结构设计。 2、绘制筛板式精馏塔装配图(一张一号图纸) 二、设计方法及步骤 1、材料选择 设计压力MPa p 1.0 ,属于低压分离设备,一类容器,未提技术要求;产品特性为易燃、易挥发;设计温度为C 100,介质为甲醇和水,年腐蚀欲度很小,考虑到设备材料经济性,筒体,封头和补强圈材料选用R Q 245,裙座选用A Q 235。 2、塔设备主要结构尺寸的确定

㈠塔高 1)塔主体高度 ()mm H Z 2450050011733=?-+= 2)塔的顶部空间高度 mm H a 1500= 3)塔的底部空间高度 mm H b 2000= 4)裙座高度 mm H S 3000= 5)封头高度 mm H c 390= 6)塔高 mm H H H H H H c S b a Z 3139039030002000150024500=++++=++++= 取m mm H 3232000== m mm H H H H H S b a Z 3131000300020001500245001==+++=+++= ㈡塔径 1)筒体厚度计算 []mm p pD t i 56.01 .085.014721400 1.02=-???= -= φσδ 式中:[]t σ——材料的许用应力。R Q 245在C 100厚度为3~16mm 时, []MP a t 147=σ。 φ——塔体焊接接头系数。采用双面对接焊,局部无损探伤,85.0=φ 名义厚度mm C n 86.23.256.0=+=+=δδ 厚度附加量mm C C C 3.223.021=+=+= 1C ——厚度负偏差。按709T JB 中的B 类要求R Q 245负偏差取mm C 3.01=。 2C ——腐蚀裕量。取mm C 22=。 对于碳素钢、低合金钢制容器mm 3min ≥δ,故按刚度条件,筒体厚度仅需3mm ,但考虑此塔较高,风载荷较大,取塔体名义厚度=n δ10mm 。

精馏塔---课程设计

第1章绪论 1.1课程设计的目的 (1)把化工工艺与化工机械设计结合起来,巩固和强化有关机械课程的基本理论和知识基本知识。 (2)培养对化工工程设计上基本技能以及独立分析问题、解决问题的能力。 (3)培养识图、制图、运算、编写设计说明书的能力。 1.2课程设计的要求 (1)树立正确的设计思想。 (2)具有积极主动的学习态度和进取精神。 (3)学会正确使用标准和规范,使设计有法可依、有章可循。 (4)学会正确的设计方法,统筹兼顾,抓主要矛盾。 (5)在设计中处理好尺寸的圆整。 (6)在设计中处理好计算与结构设计的关系。 1.3课程设计的内容 对二氯乙烷精馏塔的机械设计。DN=1800mm P N=1.2MPa 1.4课程设计的步骤 (1)全面考虑按压力大小、温度高低、腐蚀性大小等因素来选材。 (2)选用零部件。 (3)计算外载荷,包括内压、外压、设备自重,零部件的偏载、风载、地震载荷等。

(4)强度、刚度、稳定性设计和校核计算(5)传动设备的选型、计算。 (6)绘制设备总装配图。

第2章 塔体的机械计算 2.1 按计算压力计算塔体和封头厚度 2.1.1 塔体厚度的计算 (1)计算压力 MPa Pc 2.1= (2)塔体计算厚度 mm Pc t PcDi 8.72 .185.017021800 2.1]δ[2δ=×××== (3)塔体设计厚度 mm 8.9δc δ=+=c (4)塔体名义厚度 n δ=12mm (5)塔体有效厚度 mm c n e 10δδ== 2.1.2 封头厚度计算 (1)计算厚度 mm Pc t PcDi 5.72 .15.085.017021800 2.15.0][2=?-???=?-= ?δδ (2)设计厚度 mm c 5.9c =+=δδ (3)名义厚度 mm n 12=δ (3)有效厚度 mm c n e 10=-=δδ 2.2 塔设备质量载荷计算 2.2.1 筒体圆筒、封头、裙座质量 m 01 (1)圆筒质量 m 1=4.1971979.36536=×Kg (2)封头质量 m 2=8.67624.338=×Kg (3)裙座质量 m 3=2.164006.3536=×Kg 说明:1 塔体圆筒总高度为36.79m ; 2查得DN1800mm ,厚度10mm 的圆筒质量为536Kg/m ; 3 查得 DN1800mm ,厚度10mm 的椭圆形封头质量为338.4Kg/m ; 4 裙座高度3060mm 。

塔设备机械计算

第四章塔设备机械设计 塔设备设计包括工艺设计和机械设计两方面。机械设计是把工艺参数、尺寸作为已知条件,在满足工艺条件的前提下,对塔设备进行强度、刚度和稳定性计算,并从制造、安装、检修、使用等方面出发进行机构设计。 4.1设计条件 由塔设备工艺设计设计结果,并查相关资料[1],[9]知设计条件如下表。 表4-1 设计条件表

4.2设计计算 4.2.1全塔计算的分段

图4-1 全塔分段示意图 塔的计算截面应包括所有危险截面,将全塔分成5段,其计算截面分别为:0-0、1-1、2-2、3-3、4-4。分段示意图如图4-1。

4.2.2 塔体和封头厚度 塔内液柱高度:34.23.15.004.05.0=+++=h (m ) 液柱静压力:018.034.281.992.783101066=???==--gh p H ρ(MPa ) 计算压力:1=+=H c p p p MPa (液柱压力可忽略) 圆筒计算厚度:[]94.60 .185.017022000 0.12=-???=-= c i c p D p φσδ(mm ) 圆筒设计厚度:94.8294.6=+=+=C c δδ(mm ) 圆筒名义厚度:108.094.81=?++=?++=C c n δδ(mm ) 圆筒有效厚度:8210=-==-=C n e δδ(mm ) 封头计算厚度:[]93.60 .15.085.017022000 0.15.02=?-???=-= c i c h p D p φσδ(mm ) 封头设计厚度:93.8293.6=+=+=C h hc δδ(mm ) 封头名义厚度:108.093.81=?++=?++=C hc hn δδ(mm ) 封头有效厚度:8210=-==-=C hn he δδ(mm ) 4.2.3 塔设备质量载荷 1. 塔体质量 查资料[1],[8]得内径为2000mm ,厚度为10mm 时,单位筒体质量为495kg/m ,单个封头质量为364kg 。 通体质量:5.121275.244951=?=m (kg ) 封头质量:72823642=?=m (kg ) 裙座质量:14850.34953=?=m (kg ) 塔体质量:5.1434014857285.1212732101=++=++=m m m m (kg ) 0-1段:49514951-0,01=?=m (kg )

机械设计行业GB中常用标准

GB中常用标准 螺栓和螺柱 六角头螺栓 GB/T27-1988六角头铰制孔用螺栓A级 GB/T27-1988六角头铰制孔用螺栓B级 GB/T31.1-1988六角头螺杆带孔螺栓-A级和B级GB/T31.2-1988A型六角头螺杆带孔螺栓-细杆-B级GB/T31.2-1988B型六角头螺杆带孔螺栓-细杆-B级GB/T5780-2000六角头螺栓C级 GB/T5781-2000六角头螺栓-全螺纹-C级 GB/T5782-2000六角头螺栓 GB/T5783-2000六角头螺栓-全螺纹 GB/T5784-1986六角头螺栓-细杆-B级 GB/T5785-2000 六角头螺栓-细牙 GB/T5786-2000 型六角头螺栓-细牙-全螺纹 GB/T5787-1986 六角头法兰面螺栓 其它螺栓 GB/T8-1988 方头螺栓C级 GB/T 10-1988 沉头方颈螺栓 GB/T 11-1988 沉头带榫螺栓 GB/T 37-1988 T形槽用螺栓 GB/T 798-1988 活节螺栓 GB/T 799-1988 地脚螺栓 GB/T 800-1988 沉头双榫螺栓 GB/T 794-1993 加强半圆头方颈螺栓A型 GB/T 794-1993 加强半圆头方颈螺栓B型 双头螺柱 GB/T897-1988 双头螺柱B型 GB/T 898-1988 双头螺柱B型 GB/T 899-1988 双头螺柱B型 GB/T 900-1988 双头螺柱B型 GB/T 901-1988 等长双头螺柱-B级 GB/T 953-1988 等长双头螺柱-C级

螺母 六角螺母 1型六角螺母C级(GB41-86) GB56-1988六角厚螺母 GB808-1988小六角特扁细牙螺母 GB/T6170-2000(1型六角螺母) GB/T6171-2000(1型六角螺母-细牙) GB/T6172.1-2000六角薄螺母 GB/T6173-2000六角薄螺母-细牙 GB/T6174-2000六角薄螺母-无倒角 GB/T6175-2000(2型六角螺母) GB/T6176-2000(2型六角螺母-细牙) GB/T6177.1-2000六角法兰面螺母 GB/T6177.2-2000六角法兰面螺母细牙 六角锁紧螺母 GB/T6184-2000(1型全金属六角锁紧螺母) GB/T6185.1-2000(2型全金属六角锁紧螺母) GB/T6185.2-2000(2型全金属六角锁紧螺母-细牙) GB/T6186-2000(2型全金属六角锁紧螺母-9级) 六角开槽螺母 GB6179-1986(1型六角开槽螺母-C级) GB6180-1986(2型六角开槽螺母-A级和B级) GB6181-1986六角开槽薄螺母-A和B级 GB9457-1988(1型六角开槽螺母) GB9458-1988(2型六角开槽螺母-细牙-A级和B级) GB9459-1988六角开槽薄螺母 GB6178-1986(1型六角开槽螺母-A和B级) 圆螺母 GB810-1988小圆螺母 GB817-1988带槽圆螺母 GB812-1988圆螺母 滚花高螺母

常减压精馏塔机械设计

常减压精馏塔机械设计 DN4200/DN3000 减压塔机械设计摘要本设计是对工艺设计中的常滴油精馏塔进行设计,设计过程主要依据GB150-1998《钢制压力容器》标准和 JB/T4710-2005《钢制塔式容器》标准进行设计计算的。该减压塔采用的是变径板式塔结构,并采用单溢流型塔盘与泡罩塔盘,操作介质为常底油。精馏塔是目前石油化工领域应用的最多的塔设备。在说明部分中,主要介绍塔设备在石油化工生产中的作用、地位、发展现状、特点以及分类,优先选用板式塔的条件,以及舌型塔盘和泡罩塔盘的结构和优缺点,同时又对塔的材料选择,筒体和封头的选用进行了说明和论述。接下来又介绍了塔的附属构件结构,对筒体、裙座、封头、吊柱、地脚螺栓座、基础换班、筋板的选用进行了介绍并且校核了他们的强度,同时也对裙座与通体的连接方式与结构进行了说明。在计算部分主要是针对塔体的筒体、封头的材料选择、壁厚的选取进行了计算,还有稳定性的校核。对自振周期、地震载荷、风载荷进行了计算,同事又进行了该筒体的轴向强度以及稳定性的校核,全做的设计计算及其校核,地脚螺栓座的设计及其强度校核、筋板、盖板及开孔补强的设计计算校核。最后经过计算以及强度校核,设计出合理的减压精馏塔的结构,并绘制出图纸。关键词:筒体、封头、强度、校核。1 说明部分1.1 前言在石油炼化厂的生产装置中,气-液和液-液 2 相直接接触进行传质传热的工艺很多。例如,精馏、吸收、解吸、萃取和气体增湿等。这些公益大多数都在塔内完成。因此,塔设备的性能对炼油、化工装置的生产能力、产品质量与消耗指标以及三废处理以及环境保护等各个方面都有较大影响。据统计,在石油炼化厂中,塔设备的投资额占到总投资额的 10-20,塔设备消耗的钢材量占总投资刚才量的 25-30。塔设备之所以被大量采用,是因为它可以为气-液之间的传质传热提供了适宜的条件。这些条件除了维持一定的塔内压力、温度、气液流量以外,一些特定的塔内件还从

机械设计常用材料使用表2020.8.6

名称 牌号(日标)使用范围备注 45号钢45#(S45C)机架钢板,支撑板,普通连接零 件,轴杆零件,仿形件 调质硬度在(洛氏硬度) HRC20-30之间,电镀Cr,发 黑 铬12Cr12Mo1V2 (SKD11) 热处理后用于冲压模,高强度零 件,耐磨零件,冲切刀 硬化处理HRC35-62,电镀Cr P203Cr2Mo 适用于大中型精密模具,易加 工,材质匀称度高,适合抛光模 具 购买来就具备硬度HRC30-36 NAK80(NAK80)模具钢,适合做高效落料模,冲 载模及压印模, 各种切刀 购买来就具备硬度HRC37-43 ASP60ASP60超级高合金高速钢,刀具、切断 车刀、成形刀、冷作工具 良好的热处理尺寸稳定,红 硬性高,硬化处理HRC64-68 锋钢/风钢W6Mo5Cr4V2 (SKH51) 宜于制造强力切割用,耐磨,耐 冲击各种工具刀,高级冲模,螺 丝模 硬化处理HRC60-64 ,高温下 也可具备硬度 名称 牌号(日标)使用范围备注 冷轧钢板Q195钣金折弯件,镀锌板,外罩,壳 体,防护板,喷漆支架 0.5-6mm内选用 镀锌钢板镀锌钢板用于防生锈,强度要求不高,底 板,盖板,防护板,电气安装板 表面电镀有锌层,耐蚀性、 涂漆性、装饰性 不锈钢 0Cr18Ni9 (SUS304) 防锈零件,水箱,料盒,落料滑 槽,外观件 不需要电镀,快速加工使用 零件 ,比喷漆钢板更效率 不锈铁4Cr17(SUS430)紧急代替电镀件,可热处理,有 一定的防锈性能,连接件 HRC35-55,电镀Cr 软光轴45#或40cr 支撑柱,机构连接件,连杆,手 柄杆,轴承连杆 表面有硬铬,亮白,易加 工,轴外径公差g6 硬光轴GCR15直线轴承用轴杆,高耐磨高硬 度,尺寸精度要求高的零件,可 作定位销 HRC602硬化层深度:0.8- 3mm,轴外径公差g6

塔设备设计说明书精选文档

塔设备设计说明书精选 文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 035 036 姓名:万永燕郑舒元 分组:第四组

目录

前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便

机械设计常用材料

机械设计常用材料 1、45——优质碳素结构钢,是最常用中碳调质钢。 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235A(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。 应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 40CR属于低淬透性合金调质钢,一般调质使用,比45#钢要好点,做要求不是很严的轴类件,也可以热处理后表面处理做齿轮,一般做轴退火后800度保温5小时淬火,用油淬,然后520度保温80分钟用水或者油快冷回火 应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 4、HT150——灰铸铁

填料塔设计机械设计

目录 第一章前言 ................................................................................. 错误!未定义书签。 塔设备设计简介 .................................................................. 错误!未定义书签。 填料塔结构简介 .................................................................. 错误!未定义书签。第二章设计方案的确定 ............................................................. 错误!未定义书签。 装置流程的确定 .................................................................. 错误!未定义书签。 吸收剂的选择 ...................................................................... 错误!未定义书签。 填料的选择 .......................................................................... 错误!未定义书签。 材料选择 .............................................................................. 错误!未定义书签。第三章工艺参数 ......................................................................... 错误!未定义书签。第四章机械设计 ......................................................................... 错误!未定义书签。 塔体厚度计算 ...................................................................... 错误!未定义书签。 封头厚度计算 ...................................................................... 错误!未定义书签。 填料塔的载荷分析及强度校核 .......................................... 错误!未定义书签。 塔体的水压试验 .................................................................. 错误!未定义书签。 水压试验时各种载荷引起的应力 .............................. 错误!未定义书签。 水压试验时应力校核 .................................................. 错误!未定义书签。第五章零部件选型 ..................................................................... 错误!未定义书签。 人孔 ...................................................................................... 错误!未定义书签。 法兰 ...................................................................................... 错误!未定义书签。 除雾沫器 .............................................................................. 错误!未定义书签。 填料支撑板 .......................................................................... 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档