当前位置:文档之家› 生物陶瓷材料的分类

生物陶瓷材料的分类

生物陶瓷材料的分类
生物陶瓷材料的分类

惰性生物陶瓷材料

生物惰性陶瓷主要是指化学性能稳定,生物相容性好的陶瓷材料。这类陶瓷材料的结构都比较稳定,分子中的键力较强,而且都具有较高的机械强度、耐磨性以及化学稳定性。主要由氧化物陶瓷、非氧化物陶瓷以及陶材组成。其中,以Al、Mg、Ti、Zr 的氧化物应用最为广泛。

早在1969 年,Talbert[2]就将不同孔隙率的颗粒状Al2O3 陶瓷作为永久性可移植骨假体,植入成年杂种狗的股骨中进行实验,发现多晶氧化铝陶瓷对包括生物环境在内的任何环境都呈现惰性及其优越的耐磨损性和高的抗压强度。使氧化铝陶瓷材料成为最早获得临床应用的生物惰性陶瓷材料。目前氧化铝陶瓷材料已经应用于人造骨、人工关节及人造齿根的制作方面。

氧化铝陶瓷植入人体后,体内软组织在其表面生成极薄的纤维组织包膜,在体内可见纤维细胞增生,界面无化学反应,多用于全臀复位修复术及股骨和髋骨部连接[3]。单晶氧化铝陶瓷的机械性能更优于多晶氧化铝,适用于负重大、耐磨要求高的部位。但是由于Al2O3 属脆性材料,冲击韧性较低,且弹性模量和人骨相差较大,可能引起骨组织的应力,从而引起骨组织的萎缩和关节松动,在使用过程中,常出现脆性破坏和骨损伤,且不能直接与骨结合。

目前,国外有关学者通过各种方法,使Al2O3 陶瓷在韧性和相容性方面取得了显著提高[4],如在陶瓷表面涂上骨亲和性高的陶瓷,特别是能和骨发生化学结合的磷灰石,已经制造出更加先进的人工关

节。通过相变或微裂等方法,使材料内部产生微裂纹,只要微裂纹的尺寸足够小,则均匀分布的微裂纹会起到应力分散的作用。也可以提高材料的韧性[5]。

近年,氧化锆陶瓷由于其优良的力学性能,尤其是其远高于氧化铝瓷的断裂韧性,使其作为增强增韧第二相材料在人体硬组织修复体方面取得了较大研究的进展。Hench[6]报道,部分稳定氧化锆陶瓷的抗弯强度可达100 MPa,断裂韧性可达15MPa·m- 1/2。

但惰性生物陶瓷在体内被纤维组织包裹或与骨组织之间形成纤维组织界面的特性影响了该材料在骨缺损修复中的应用,因为骨与材料之间存在纤维组织界面,阻碍了材料与骨的结合,也影响材料的骨传导性,长期滞留体内产生结构上的缺陷,使骨组织产生力学上的薄弱。

2 生物活性陶瓷材料

生物活性陶瓷包括表面生物活性陶瓷和生物吸收性陶瓷,又叫生物降解陶瓷。生物表面活性陶瓷通常含有羟基,还可做成多孔性,生物组织可长入并同其表面发生牢固的键合;生物吸收性陶瓷的特点是能部分吸收或者全部吸收,在生物体内能诱发新生骨的生长。生物活性陶瓷有生物活性玻璃(磷酸钙系),羟基磷灰石陶瓷,磷酸三钙陶瓷等几种。

2.1 羟基磷灰石陶瓷

羟基磷灰石(hydroxyapatite),简称HAp,化学式为Ca10(PO4)6(OH)2,属表面活性材料,由于生物体硬组织(牙齿、骨)

的主要成分是羟基磷灰石,因此有人也把羟基磷灰石陶瓷称之为人工骨。具有生物活性和生物相容性好、无毒、无排斥反应、不致癌、可降解、可与骨直接结合等特点,是一种临床应用价值很高的生物活性陶瓷材料,引起了广泛的关注。

为提高羟基磷灰石的力学性能,人们开展了致密HAP 陶瓷的研究。研究得到的致密HAp 机械性能得到了一定的提高,但表面显气孔率较小,植入人体内后,只能在表面形成骨质,缺乏诱导骨形成的能力,仅可作为骨形成的支架[7]。因此,近年来,人们又将研究重点放在了多孔羟基磷灰石陶瓷方面。研究发现,多孔钙磷种植体模仿了骨基质的结构,具有骨诱导性,它能为新生骨组织的长入提供支架和通道,因此植入体内后其组织响应较致密陶瓷有很大改善。

但羟基磷灰石的主要缺点在于本身的力学性能较差、强度低、脆性大,这一缺点影响了它在医学临床的广泛应用,同时也促使人们研究HAp 系列的各种复合材料,以期获得力学性能优良、生物活性好的生物医学复合材料。

(1)羟基磷灰石与金属相结合

利用等离子喷涂和化学气相沉积等各种技术,使羟基磷灰石陶瓷与金属基复合,得到既具有金属的强度和韧性,又具有生物活性的复合材料。Hsieh等人[8]在Ti 合金表面涂覆多层凝胶,经烧结得到表面多孔HAp 涂层。结果表明多孔HAp 涂层与多孔HAp 陶瓷相似,可提供骨细胞生长的空间,并能起到支架的作用,使骨与植体通过化学结合和机械互锁而固定。在国外,钛合金等离子喷涂羟基磷灰石复

合材料已被用于制备人工关节。

(2)羟基磷灰石与惰性生物陶瓷材料相复合

在羟基磷灰石中掺入生物惰性陶瓷材料(如氧化铝,氧化锆等)或生物玻璃粉体后,在烧结体中形成一定量的α- 磷灰石和微量β- 磷灰石可提高材料的强度,并且在耐磨性、抗生理腐蚀性和生物相容性方面不会损失。但是Cales 等人[9]提出,虽然生物惰性材料含量的提高可大幅度提高材料的强度和韧性,但同时也会导致材料的生物活性降低。因此应根据使用要求,设计复合陶瓷的成分及生成工艺条件。

(3)羟基磷灰石与有机物相复合

将HAp 粉末或纤维填充于高聚物基体中,既可提高聚合物复合材料的刚性和韧性,又能够提高其生物活性,加快新生骨的生长。常用的高聚合物有聚乳酸、壳聚糖、胶原蛋白等。同时人体骨骼本身含有有机和无机质两部分,有机部分的主要成分是骨胶原纤维和骨蛋白,它使骨骼具有柔韧性,而无机部分主要是羟基磷灰石,这使骨骼有一定的强度。从仿生学角度讲,人工合成材料若按自然骨组成设计是最理想的。所以目前有些研究者着手将羟基磷灰石与自体骨、骨形成蛋白、骨胶原等有机物分别进行复合,以期达到预想的效果。

2.2 磷酸三钙陶瓷材料

目前广泛应用的生物降解陶瓷为β- 磷酸三钙(简称β- TCP),是磷酸钙的一种高温相。与HAp 相比,TCP 最大的优点在于更易于在体内溶解,其溶解度约比HAp 高10~20 倍,植入机体后与骨直接

融合而被骨组织吸收,是一种骨的重建材料。可根据不同部位骨性质的不同及降解速率的要求,制成具有一定形状和大小的中空结构构件,用于治疗各种骨科疾病。磷酸钙陶瓷的主要缺点是其脆性较高,难以加工成型或固定钻孔。致密磷酸钙陶瓷可以通过添加增强相提高它的断裂韧性,多孔磷酸钙陶瓷虽然可被新生骨长入而极大增强,但是在再建骨完全形成之前,为及早代行其功能,也必须对它进行增韧补强。

陶瓷的分类及性能

陶瓷材料的力学性能 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。 金属:金属键高分子:共价键(主价键)范德瓦尔键(次价键) 陶瓷:离子键和共价键。普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。 可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) 陶瓷的分类 玻璃 — 工业玻璃 (光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 陶瓷 —普通陶瓷日用,建筑卫生,电器(绝缘) ,化工,多孔 ……特种陶瓷 -电容器,压电,磁性,电光,高温 …… 金属陶瓷 -- 结构陶瓷,工具(硬质合金) ,耐热,电工 …… 玻璃陶瓷 — 耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷 … 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合)普通陶瓷(粘土,石英,长石等天然材料)特种

陶瓷(人工的化学或化工原料 --- 各种化合物如氧、碳、氮、硼化合物) (2) 坯料的成形 (可塑成形,注浆成形,压制成形) (3)烧成或烧结 3. 陶瓷的性能 (1)硬度 是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。 2 (E/1000--E/100)。耐压(抗压强度高),抗弯(抗弯强度高),不耐拉(抗拉强度很低比抗压强度低一个数量级)较高的高温强度。 (4)塑性:在室温几乎没有塑性。 (5) 韧性差,脆性大。是陶瓷的最大缺点。 (6) 热膨胀性低。导热性差,多为较好的绝热材料(λ=10-2~10-5w/m﹒K) (7)热稳定性 — 抗热振性(在不同温度范围波动时的寿命)急冷到水中不破裂所能承受的最高温度。陶瓷的抗热振性很低(比金属低的多,日用陶瓷 220 ℃) (8)化学稳定性 :耐高温,耐火,不可燃烧,抗蚀(抗液体金属、酸、碱、盐) (9) 导电性 — 大多数是良好的绝缘体,同时也有不少半导体( NiO , Fe3O4 等) (10) 其它: 不可燃烧,高耐热,不老化,温度急变抗力低。 普通陶瓷

简析生物陶瓷材料

简析生物陶瓷材料 姓名: 班级: 学号:

摘要:生物陶瓷是一种具有与生物体或生物化学有关的区别于传统陶瓷材料的新型材料,有着传统陶瓷所不具备的特殊功能。随着材料科学的发展,生物陶瓷材料越来越为人们所重视和关注,应用也越来越广泛,成为生物医学材料中不可或缺的一部分。本文将回顾生物陶瓷材料的发展,介绍生物陶瓷材料的分类、性能和优点,并展望其发展热点。 关键词:生物陶瓷材料种类性能应用发展热点 现代医学中,人们对生物医学材料的需求越来越大,而在这众多生物材料中,目前应用比较广泛且生产工艺比较成熟的是生物陶瓷材料。它是指与生物体或生物化学有关的新型陶瓷。它能同人体骨骼起生物化学作用,导致成骨过程,使移植体或骨骼修补物能于人体组织长合在一起,从而达到治疗目的。 生物陶瓷材料的发展备受关注也越发迅速,本文将回顾生物陶瓷材料的发展,对其分类、性能、优点以及发展前景等作简要介绍。 1生物陶瓷材料的发展简史 当今人类社会使用的材料可分为三大类:金属及其合金材料、有机材料、无机非金属材料。这些材料都曾先后被用作人工硬组织的代替物, 并在应用中取得了宝贵的经验、教训。回顾历史, 可分为以下几个阶段。 1.1人工骨研究的启蒙阶段 18世纪前, 主要采用天然材料作为骨修复材料, 如柳枝、木、麻、象牙及贵金属等。 1.2自然发展阶段 约19世纪前, 由于冶金技术和陶瓷制备工艺的发展, 开始用纯金、纯银、铂等贵金属。 1.3探索阶段 20世纪中叶以前, 由于冶金的进步, 纯钦和钦合金年等被应用到人工骨领域, 开始有目的地探索新材料, 有机玻璃等高分子材料年也开始应用临床, 并在医学种植技术与病例选择方面积累了丰富经验,但基础理论的研究还很不深人。1.4迅速发展阶段 20世纪60年代初, 在新技术革命浪潮推动下, 材料科学迅速发展。人们开始有目的、有计划地探索、发现和合成新材料, 其中最有代表性的生物陶瓷的研究和应用获得了突飞猛进的发展。生物陶瓷的发展虽然还不到几十年, 但也同样经历了上述时期。起初以单晶氧化铝陶瓷为先导, 随后是多晶氧化铝、表面呈珊瑚状的氧化铝等。其后是生物活性陶瓷, 包括生物玻璃, 经基磷灰石和玻璃陶瓷类。 自20世纪70年代起, 生物陶瓷显露头角, 世界各国相继开展了理论和应用研究, 并且不断取得突破性进展。 2生物陶瓷材料的分类 2.1 根据其用途分类 根据用途,广义的生物陶瓷可以分为以下两大类: (1)植入陶瓷:又称生物体陶瓷,主要有人造牙、人造骨、人造心脏瓣膜、人

陶瓷分类

陶瓷分类 (一)按瓷种分。目前市场上流通的主要有日用瓷器、骨灰瓷器、玲珑日用瓷器、釉下(中)彩日用瓷器、日用精陶器、普通陶瓷和精细陶瓷烹调器等。除骨灰瓷外,其余产品又按外观缺陷的多少或幅度的大小分为优等品、一等品、合格品等不同等级。 (二)按花面装饰方式分。按花面特色可分为釉上彩、釉中彩、釉下彩和色釉瓷及一些未加彩的白瓷等。 釉上彩陶瓷就是用釉上陶瓷颜料制成的花纸贴在釉面上或直接以颜料绘于产品表面,再经700~850℃烤烧而成的产品。因烤烧温度没有达到釉层的熔融温度,所以花面不能沉入釉中,只能紧贴于釉层表面。如果用手触摸,制品表面有凹凸感,肉眼观察高低不平。 釉中彩陶瓷彩烧温度比釉上彩高,达到了制品釉料的熔融温度,陶瓷颜料在釉料熔融时沉入釉中,冷却后被釉层覆盖。用手触摸制品表面平滑如玻璃,无明显的凹凸感。 釉下彩陶瓷是我国一种传统的装饰方法,制品的全部彩饰都在瓷坯上进行,经施釉后高温一次烧成,这种制品和釉中彩一样,花面被釉层覆盖,表面光亮、平整,无高低不平的感觉。 色釉瓷则在陶瓷釉料中加入一种高温色剂,使烧成后的制品釉面呈现出某种特定的颜色,如黄色、兰色、豆青色等。 白瓷通常指未经任何彩饰的陶瓷,这种制品市场上销量一般不大。 以上不同的装饰方式,除显示其艺术效果外,主要区别铅、镉等重金属元素含量上。其中釉中彩、釉下彩和绝大部份的色釉瓷、白瓷的铅、镉含量是很低的,而釉上彩如果在陶瓷花纸加工时使用了劣质颜料,或在花面设计上对含铅、镉高的颜料用量过大,或烤烧时温度、通风条件不够,则很容易引起铅、镉溶出量的超标。有的白瓷,主要是未加彩的骨灰瓷,由于采用含铅的熔块釉,如果烧成时不严格按骨灰瓷的工艺条件控制,铅溶出量超标的可能性也很大。 铅、镉溶出量是一项关系人体健康的安全卫生指标。人体血液中的铅、镉含量应越少越好。人们如长期食用铅、镉含量过高的产品盛装的食物,就会造成铅在血液中的沉积,导致大脑中枢神经,肾脏等器官的损伤。尤其对少年儿童的智力发育会产生严重的影响。 (一)按用途的不同分类 1、日用陶瓷:如餐具、茶具、缸,坛、盆、罐、盘、碟、碗等。 2、艺术{工艺}陶瓷:如花瓶、雕塑品.园林陶瓷器皿陈设品等。 3、工业陶瓷:指应用于各种工业的陶瓷制品。又分以下6各方面: ①建筑一卫生陶瓷:如砖瓦,排水管、面砖,外墙砖,卫生洁其等; ②化工{化学}陶瓷:用于各种化学工业的耐酸容器、管道,塔、泵、阀以及搪砌反应锅的耐酸砖、灰等; ③电瓷:用于电力工业高低压输电线路上的绝缘子。电机用套管,支柱绝缘于、低压电器和照明用绝缘子,以及电讯用绝缘子,无线电用绝缘子等; ④特种陶瓷:甩于各种现代工业和尖端科学技术的特种陶瓷制品,有高铝氧质瓷、镁石质瓷、钛镁石质瓷、锆英 石质瓷、锂质瓷、以及磁性瓷、金属陶瓷等。 (二)按所用原料及坯体的致密程度分类可分为: 粗陶(brickware or terra-cotta),细陶(potttery),炻器(stone Ware),半瓷器(semivitreous china),以至瓷器(130relain),原料是从粗到精,坯体是从粗松多孔,逐步到达致密,烧结,烧成温度也是逐渐从低趋高。

生物陶瓷材料的研究及应用

生物陶瓷材料的研究及应用 张波化工07-3班 120073304069 摘要介绍了生物陶瓷的定义,对羟基磷灰石生物陶瓷材料、磷酸钙生物陶瓷材料、复合生物陶瓷材料、涂层生物陶瓷材料和氧化铝生物陶瓷的特性和制备方法进行了较为深入的分析,在现代医学中的应用及发展前景。 关键词生物陶瓷,磷酸钙,复合生物陶瓷材料,涂层生物陶瓷材料,氧化铝陶瓷,生物陶瓷应用。 Bioceramic Materials Research and Application Zhangbo Chemical Engineering and Technology 073 class 120073304069 Abstract This paper introduces the definition of bio-ceramics, bio-ceramic material of hydroxyapatite, calcium phosphate bio-ceramic materials, composite bio-ceramic materials, coating materials, bio-ceramics and alumina ceramics of biological characteristics and preparation methods for a more in-depth analysis In modern medicine the application and development prospects. Key words bio-ceramics, calcium phosphate, composite bio-ceramic materials, coating materials, bio-ceramic, alumina ceramic, bio-ceramic applications. 1 引言 生物陶瓷是指用作特定的生物或生理功能的一类陶瓷材料,即直接用于人体或与人体相关的生物、医用、生物化学等的陶瓷材料。做为生物陶瓷材料,需具备如下条件:生物相容性;力学相容性;与生物组织有优异的亲和性;抗血栓;灭菌性并具有很好的 物理、化学稳定性。生物陶瓷材料可分为生物惰性陶瓷(如Al 2O 3 、ZrO 2 等)、生物活性 陶瓷(如致密羟基磷灰石、生物活性微晶玻璃等)和生物复合材料三类。生物陶瓷材料因其与人的生活密切相关,故一直倍受材料科学工作者的重视。 2 生物陶瓷材料的发展 目前世界各国相继发展了生物陶瓷材料,它不仅具有不锈钢塑料所具有的特性,而且具有亲水性、能与细胞等生物组织表现出良好的亲和性。因此生物陶瓷具有广阔的发展前景。生物陶瓷的应用范围也正在逐步扩大,现可应用于人工骨、人

生物陶瓷材料的分类

惰性生物陶瓷材料 生物惰性陶瓷主要是指化学性能稳定,生物相容性好的陶瓷材料。这类陶瓷材料的结构都比较稳定,分子中的键力较强,而且都具有较高的机械强度、耐磨性以及化学稳定性。主要由氧化物陶瓷、非氧化物陶瓷以及陶材组成。其中,以Al、Mg、Ti、Zr 的氧化物应用最为广泛。 早在1969 年,Talbert[2]就将不同孔隙率的颗粒状Al2O3 陶瓷作为永久性可移植骨假体,植入成年杂种狗的股骨中进行实验,发现多晶氧化铝陶瓷对包括生物环境在内的任何环境都呈现惰性及其优越的耐磨损性和高的抗压强度。使氧化铝陶瓷材料成为最早获得临床应用的生物惰性陶瓷材料。目前氧化铝陶瓷材料已经应用于人造骨、人工关节及人造齿根的制作方面。 氧化铝陶瓷植入人体后,体内软组织在其表面生成极薄的纤维组织包膜,在体内可见纤维细胞增生,界面无化学反应,多用于全臀复位修复术及股骨和髋骨部连接[3]。单晶氧化铝陶瓷的机械性能更优于多晶氧化铝,适用于负重大、耐磨要求高的部位。但是由于Al2O3 属脆性材料,冲击韧性较低,且弹性模量和人骨相差较大,可能引起骨组织的应力,从而引起骨组织的萎缩和关节松动,在使用过程中,常出现脆性破坏和骨损伤,且不能直接与骨结合。 目前,国外有关学者通过各种方法,使Al2O3 陶瓷在韧性和相容性方面取得了显著提高[4],如在陶瓷表面涂上骨亲和性高的陶瓷,特别是能和骨发生化学结合的磷灰石,已经制造出更加先进的人工关

节。通过相变或微裂等方法,使材料内部产生微裂纹,只要微裂纹的尺寸足够小,则均匀分布的微裂纹会起到应力分散的作用。也可以提高材料的韧性[5]。 近年,氧化锆陶瓷由于其优良的力学性能,尤其是其远高于氧化铝瓷的断裂韧性,使其作为增强增韧第二相材料在人体硬组织修复体方面取得了较大研究的进展。Hench[6]报道,部分稳定氧化锆陶瓷的抗弯强度可达100 MPa,断裂韧性可达15MPa·m- 1/2。 但惰性生物陶瓷在体内被纤维组织包裹或与骨组织之间形成纤维组织界面的特性影响了该材料在骨缺损修复中的应用,因为骨与材料之间存在纤维组织界面,阻碍了材料与骨的结合,也影响材料的骨传导性,长期滞留体内产生结构上的缺陷,使骨组织产生力学上的薄弱。 2 生物活性陶瓷材料 生物活性陶瓷包括表面生物活性陶瓷和生物吸收性陶瓷,又叫生物降解陶瓷。生物表面活性陶瓷通常含有羟基,还可做成多孔性,生物组织可长入并同其表面发生牢固的键合;生物吸收性陶瓷的特点是能部分吸收或者全部吸收,在生物体内能诱发新生骨的生长。生物活性陶瓷有生物活性玻璃(磷酸钙系),羟基磷灰石陶瓷,磷酸三钙陶瓷等几种。 2.1 羟基磷灰石陶瓷 羟基磷灰石(hydroxyapatite),简称HAp,化学式为Ca10(PO4)6(OH)2,属表面活性材料,由于生物体硬组织(牙齿、骨)

功能陶瓷材料的分类及发展前景

功能陶瓷材料的分类及发展前景 功能陶瓷是指在应用时主要利用其非力学性能的材料,这类材料通常具有一种或多种功能。如电、磁、光、热、化学、生物等功能,以及耦合功能,如压电、压磁、热电、电光、声光、磁光等功能。功能陶瓷已在能源开发、空间技术、电子技术、传感技术、激光技术、光电子技术、红外技术、生物技术、环境科学等领域得到广泛应用。 1.电子陶瓷 电子陶瓷包括绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、热释电陶瓷、敏感陶瓷、磁性材料及导电、超导陶瓷。根据电容器陶瓷的介电特性将其分为6类:高频温度补偿型介电陶瓷、高频温度稳定型介电陶瓷、低频高介电系数型介电陶瓷、半导体型介电陶瓷、叠层电容器陶瓷、微波介电陶瓷。其中微波介电陶瓷具有高介电常数、低介电损耗、谐振频率系数小等特点,广泛应用于微波通信、移动通信、卫星通信、广播电视、雷达等领域。 2.热、光学功能陶瓷 耐热陶瓷、隔热陶瓷、导热陶瓷是陶瓷在热学方面的主要应用。其中,耐热陶瓷主要有Al2O3、MgO、SiC等,由于它们具有高温稳定性好,可作为耐火材料应用到冶金行业及其他行业。隔热陶瓷具有很好的隔热效果,被广泛应用于各个领域。 陶瓷材料在光学方面包括吸收陶瓷、陶瓷光信号发生器和光导纤维,利用陶瓷光系数特性在生活中随处可见,如涂料、陶瓷釉。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面广泛应用。陶瓷还是固体激光发生器的重要材料,有红宝石激光器和钇榴石激光器。光导纤维是现代通信信号的主要传输媒介,具有信号损耗低、高保真性、容量大等特性优于金属信号运输线。 透明氧化铝陶瓷是光学陶瓷的典型代表,在透明氧化铝的制造过程中,关键是氧化铝的体积扩散为烧结机制的晶粒长大过程,在原料中加入适当的添加剂如氧化镁,可抑制晶粒的长大。其可用作熔制玻璃的坩埚,红外检测窗材料,照明灯具,还可用于制造电子工业中的集成电路基片等。 3.生物、抗菌陶瓷 生物陶瓷材料可分为生物惰性陶瓷和生物活性陶瓷,生物陶瓷除了用于测量、诊断、治疗外,主要是用作生物硬质组织的代用品,可应用于骨科、整形外科、口腔外科、心血管外科、眼科及普通外科等方面。抗菌材料主要应用于家庭用品、家用电器、玩具及其他领域,

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

陶瓷材料的分类及性能

陶瓷材料的力学性能 高分子091 项淼学号17 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料 之间的主要区别在于化学键不同。 金属:金属键 高分子:共价键(主价键)+范德瓦尔键(次价键) 陶瓷:离子键和共价键。 普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能: 耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。 可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) 陶瓷的分类 ※玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 ※陶瓷—普通陶瓷--日用,建筑卫生,电器(绝缘),化工,多孔…… 特种陶瓷--电容器,压电,磁性,电光,高温…… 金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工…… ※玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷… 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合) 普通陶瓷(粘土,石英,长石等天然材料) 特种陶瓷(人工的化学或化工原料--- 各种化合物如氧、碳、氮、硼化合物) (2)坯料的成形(可塑成形,注浆成形,压制成形) (3)烧成或烧结 3. 陶瓷的性能 (1)硬度是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢207000MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。

生物功能陶瓷的应用

生物功能陶瓷简介 摘要:材料是社会技术进步的物质基础与先导,现代高技术的发展,更是紧密依赖与材料的发展。生物陶瓷不仅具有不锈钢塑料所具有的特性,而且具有亲水性、能与细胞等生物组织表现出良好的亲和性。生物陶瓷除用于测量、诊断治疗等外,主要是用作生物硬组织的代用材料,可用于骨科、整形外科、牙科、口腔外科、心血管外科、眼外科、耳鼻喉科及普通外科等方面。 关键词:生物功能陶瓷介绍生物陶瓷性能口腔陶瓷应用展望 引言:生物功能陶瓷以医疗为目的,具备完成某种生物功能时应该具有的一系列性能,如:承受或传递负载功能、控制血液或体液流动功能、电、光、声传导功能、填充功能。近年来器官移植取得巨大进展,但有难题:排异、器官来源、法律、伦理等。因此医学界对生物医学材料和人工器官的要求日益增加。生物陶瓷应运而生为解决人类的健康问题带来福音。 生物功能陶瓷的介绍 1.生物惰性陶瓷材料 生物惰性陶瓷主要是指化学性能稳定,不发生或发生极小反应且生物相溶性好的陶瓷材料。这类陶瓷材料的结构都比较稳定,分子中的键力较强,而且都具有较高的机械强度,耐磨性以及化学稳定性,它主要有氧化铝陶瓷、单晶陶瓷、氧化锆陶瓷、玻璃陶瓷等。应用于临床的为高密度、高纯度Al2O3陶瓷,它有良好的生物相容性、优良的耐磨性、化学稳定性、高的机械强度。当Al2O3陶瓷的平均晶粒<4μm;:纯度超过99.7%时,其抗弯强度可达500MPa,因此能用于牙根、颌骨、髋关节及其他关节和骨的修复和置换。特种碳材料也在临床应用中获得相当的成功,它具有良好的生物相容性,特别是抗凝血性能显著,模量低,摩擦系数小,韧性好,因此耐磨和抗疲劳。在临床中广泛应用于心血管外科,如心脏瓣膜、缝线、起搏器电极等。 2.生物活性陶瓷材料

陶瓷分类及用途

陶瓷分类及用途 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。金属:金属键 高分子:共价键(主价键)+范德瓦尔键(次价键)陶瓷:离子键和共价键。 普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。工程陶瓷的性能: 耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。(可通过热处理改善材料的力学性能) 陶瓷的分类 ※玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃※陶瓷—普通陶瓷--日用,建筑卫生,电器(绝缘),化工,多孔……特种陶瓷--电容器,压电,磁性,电光,高温……金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工…… ※玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷… 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合) 普通陶瓷(粘土,石英,长石等天然材料)特种陶瓷(人工的化学或化工原料--- 各种化合物如氧、碳、氮、硼化合物) (2)坯料的成形(可塑成形,注浆成形,压制成形) (3)烧成或烧结 3. 陶瓷的性能 (1)硬度是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢207000MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。 (E/1000--E/100)。耐压(抗压强度高),抗弯(抗弯强度高),不耐拉(抗拉强度很低,比抗压强度低一个数量级)较高的高温强度。 (4) 塑性:在室温几乎没有塑性。 (5) 韧性差,脆性大。是陶瓷的最大缺点。

功能陶瓷的简介

功能陶瓷的简单介绍 功能陶瓷是具有电、磁、声、光、热、化学及生物体特性,具有相互转化功能的陶瓷。它主要是利用纳米技术使陶瓷的性能发生改变的。 热学功能陶瓷、生物功能陶瓷、化学功能陶瓷、电磁功能陶瓷、光学功能陶瓷,还是在涂层/薄膜和复合材料死当今比较主要的几种功能陶瓷。 生物功能陶瓷 在生物功能陶瓷方面: 利用纳米技术生产的纳米抗菌材料有三类:一类Ag+系抗菌材料(当高价银离子与细菌接触时使细菌体内的蛋白质变性。);第二类是是ZnO,Tio2:等光触媒型纳米抗菌材料(通过催化反应,将细菌的尸体分解得一干二净,一般还有除臭,自洁,防霉,防锈,高效防老化,全能净化空气,自造“负离子雨林”气候等功能);第三类是C-18A纳米蒙脱土等无机材料。将前两类加人陶瓷中可制成对病菌、细菌有强的杀菌和抑菌作用的陶瓷产品。北京陶瓷厂和日本东陶机器株式会社合资生产的高档卫生洁具“TOTO”产品,即是应用这一技术生产的具有抗菌性能的卫生洁具。生物陶瓷材料亦可作为作为无机生物医学材料,且没有毒副作用,与生物组织有良好的生物相容性、耐腐蚀性等优点,已越来越爱人们的重视。 主要有以下几种活性材料; (1)羟基磷灰石生物活性材料。人工听小骨羟基磷灰石听小骨临床应用效果优于其它各种听小,具有优良的声学性质,平均提高病人的听力20-30db。在特定语言频率范围提高45-60db。微晶与人体及生物关系密切,在生物和医学中已有成功应用,利用ha 微晶能使细胞内部结构发生变化,抑制癌细胞生长和增殖,可望成为治疗癌症的“新药”。(2)磷酸钙生物活性材料。磷酸钙又称生物无机骨水泥,是一种广泛用于骨修补和固定关节的新型材料。有望部分取代传统的pm-ma有机骨水泥。国内研究抗压强度已达到60mpa以上;磷酸钙陶瓷纤维:磷酸钙陶瓷纤维具有一定机械强度和生物活性,可用于无机骨水泥的补强及制务有机与无机复合型植入材料。 (3)磁性材料。生物磁性陶瓷材料主要为治疗癌症用磁性材料,植入肿瘤灶内,在外部交变磁场的作用下,产生磁滞热效应,导致磁性材料区域内局部温度升高,借以杀死肿瘤细胞,抑制肿瘤的发展。

主要功能陶瓷器件现状及趋势

MLCC:积层陶瓷晶片电容(Multiplayer Ceramic Chip Capacitors) 称雄电容器市场 MLCC(多层陶瓷电容器)是各种电子、通讯、信息、军事及航天等消费或工业用电子产品的重要组件。MLCC由于其小体积、结构紧凑、可靠性高及适于SMT技术等优点而迅猛发展。目前,电容器市场无论从数量上还是市场潜力上来看都以陶瓷电容器份额最大。 全球MLCC产量随着IT产业的发展而不断增长,国内产量占全球产量的比例近年来也有较大的增长,我国已经逐渐成为世界MLCC的制造大国。 目前MLCC的国际上的发展趋势是微型化、高比容、低成本、高频化、集成复合化、高可靠性的产品及工艺技术。 当前MLCC需求的热点主要集中在手机、P4主板、DVD、数码相机和PS2游戏机等。手机对MLCC的要求特点是:数量大、尺寸小、质量高。在手机应用领域里,日商凭借技术上的绝对优势基本垄断市场。国内企业在手机配套实力明显不足。 片式陶瓷电感器: 电感元件发展方向 多层片式电感类元件包括了一大类具有叠层式介质/线圈结构的新型电子元件,是电感类元件发展的方向,也是三大类无源片式元件中技术含量最高的一大类。目前,这类元件已形成了规模相当大的产业和近百亿美元的国际市场。片式电感器的主要应用领域包括移动通信、计算机、音像产品、家电、办公自动化等。大屏幕彩电等新型家电产品也是片式电感器的重要应用领域。预计在今后若干年中,随着第三代移动通信技术、数字电视、高速计算机、蓝牙产品等新一代数字化电子产品的推出和世界各国EMI控制标准的相继制定,对各种片式电感类元件,特别是抗EMI类片式电感元件的需求将急剧上升。因此从整体上看,片式电感器的市场前景将十分看好。 片式电感器的生产企业主要分布在日本、美国、欧洲、韩国、我国的台湾和珠江三角洲地区。日本是生产片式电感器最早的国家,TDK、村田、Tokin和太阳诱电都是具有大规模生产能力的厂商。其中TDK占全球片式电感市场的32%,村田的市场占有率是18%,太阳诱电为16%。 目前片式电感器元件发展的主要趋势是:抗电磁干扰成为片式电感类材料的主要应用领域; 高感量和大功率;高频化;集成化。 片式微波电容器: 快速渗透通信领域 陶瓷电容器除在技术上继续向小尺寸、大容量、介质薄层化方向发展外,高频化也是一个重要的发展方向。为了满足通信设备的高频化对电子元器件的强劲需求,高电流承载能力的

功能陶瓷材料总复习题

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 频率围: 松弛极化 铁电体, 晶体在某温度围具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据 介电陶瓷的改性机理。 1、居里区与相变扩: 热起伏相变扩、应力起伏相变扩、成分起伏相变扩散、结构起伏相

生物陶瓷材料的研究及应用

生物陶瓷材料的研究及 应用 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

生物陶瓷材料的研究及应用 张波化工07-3班 摘要介绍了生物陶瓷的定义,对羟基磷灰石生物陶瓷材料、磷酸钙生物陶瓷材料、复合生物陶瓷材料、涂层生物陶瓷材料和氧化铝生物陶瓷的特性和制备方法进行了较为深入的分析,在现代医学中的应用及发展前景。 关键词生物陶瓷,磷酸钙,复合生物陶瓷材料,涂层生物陶瓷材料,氧化铝陶瓷,生物陶瓷应用。 Bioceramic Materials Research and Application Zhangbo Chemical Engineering and Technology 073 class Abstract This paper introduces the definition of bio-ceramics, bio-ceramic material of hydroxyapatite, calcium phosphate bio-ceramic materials, composite bio-ceramic materials, coating materials, bio-ceramics and alumina ceramics of biological characteristics and preparation methods for a more in-depth analysis In modern medicine the application and development prospects. Key words bio-ceramics, calcium phosphate, composite bio-ceramic materials, coating materials, bio-ceramic, alumina ceramic, bio-ceramic applications. 1 引言 生物陶瓷是指用作特定的生物或生理功能的一类陶瓷材料,即直接用于人体或与人体相关的生物、医用、生物化学等的陶瓷材料。做为生物陶瓷材料,需具备如下条件:生物相容性;力学相容性;与生物组织有优异的亲和性;抗

陶瓷材料的分类及发展前景

陶瓷材料的分类及发展前景 学校: 太原理工大学 学院: 材料科学与工程 专业:无机0801 姓名:孙佩

摘要: 根据陶瓷材料的不同特性及用途对其进行了较为准确的分类,并对各类陶瓷的应用进行了概述。通过对各类陶瓷特性及应用领域的总结,对陶瓷材料未来的发展作出了新的展望,揭示了陶瓷材料的应用方向及发展趋势。 引言 陶瓷材料在人类生活和现代化建设中是不可缺少的一种材料。它是继金属材料,非金属材料之后人们所关注的无机非金属材料中最重要的材料之一。它兼有金属材料和高分子材料的共同优点,在不断改性的过程中,已经使它的易碎性有了很大的改善。陶瓷材料以其优异的性能在材料领域独树一帜,受到人们的高度重视,在未来的社会发展中将发挥非常重要的作用。陶瓷材料按其性能及用途可分为两大类:结构陶瓷和功能陶瓷。现代先进陶瓷的性能稳定、高强度、高硬度、耐高温、耐腐蚀、耐酸耐碱、耐磨损、抗氧化以及良好的光学性能、声学性能、电磁性能、敏感性等性能远优于金属材料和高分子材料;而且,先进陶瓷是根据所要求的产品性能,经过严格的成分和生产工艺制造出来的高性能材料,因此可用于高温和腐蚀介质的环境当中,是现代材料科学发展最活跃的领域之一。在此,笔者将对先进陶瓷的种类及应用领域做详细的介绍。 1.结构陶瓷 陶瓷材料优异的特性在于高强度、高硬度、高的弹性模量、耐高温、耐磨损、耐腐蚀、抗氧化、抗震性、高导热性能、低膨胀系数、

质轻等特点,因而在很多场合逐渐取代昂贵的超高合金钢或被应用到金属材料所不可胜任的的场合,如发动机气缸套、轴瓦、密封圈、陶瓷切削刀具等。结构陶瓷可分为三大类:氧化物陶瓷、非氧化物陶瓷、陶瓷基复合材料。 1.1氧化物陶瓷 氧化物陶瓷主要包括氧化镁陶瓷、氧化铝陶瓷、氧化铍陶瓷、、氧化锆陶瓷、氧化锡陶瓷、二氧化硅陶瓷、莫来石陶瓷,氧化物陶瓷最突出的优点是不存在氧化问题。 氧化铝陶瓷,利用其机械强度较高,绝缘电阻较大的性能,可用作真空器件、装置瓷、厚膜和薄膜电路基板、可控硅和固体电路外壳、火花塞绝缘体等。利用其强度和硬度较大的性能,可用作磨料磨具、纺织瓷件、刀具等。 氧化镁陶瓷具有良好的电绝缘性,属于弱碱性物质,几乎不被碱性物质侵蚀,对碱性金属熔渣有较强的抗侵蚀能力。不少金属如铁、镍、铀、釷、钼、镁、铜、铂等都不与氧化镁作用。因此,氧化镁陶瓷可用作熔炼金属的坩埚,浇注金属的模子,高温热电偶的保护管,以及高温炉的炉衬材料等。氧化镁在空气中易吸潮水化生成Mg(OH)2,在制造过程中必须注意。为了减少吸潮,应适当提高煅烧温度,增大粒度,也可增加一些添加剂,如TiO2、Al2O3等。 氧化铍陶瓷具有与金属相似的良好的导热系数,约为209.34W/(m.k),可用来做散热器件;氧化铍陶瓷还具有良好的核性能,对中子减速能力强,可用作原子反应堆的减速剂和防辐射材料;另外,

功能陶瓷

1、考核形式(采用大作业、论文、调研报告、实验报告等): 主要采用论文形式。 2、考查(内容、目的等)具体要求: (1)论文题目:中国功能陶瓷的研究及生产现状分析; (2)论文内容:对中国功能陶瓷的研究现状及生产现状进行调研、分析、总结;(3)论文格式:以综述性论文格式撰写;需有参考文献(20篇以上),并于文中注明参考文献出处;字数5000字以上。 中国功能陶瓷的研究及生产现状分析 摘要:简要评述了陶瓷基板,微波介质陶瓷,铁电压电陶瓷和半导体陶瓷等功能陶瓷的基本原理, 结合近年来我国功能陶瓷的研究情况,从几个方面简述了功能陶瓷领域相关研究的新进展、面临的挑战及发展趋势。 关键词:功能陶瓷; 陶瓷基板; 微波介质陶瓷; 铁电压电陶瓷; 半导体陶瓷 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。近十年来,在人类社会对能源、计算机、信息、激光和空间等现代技术的迫切需求的牵引下,随着微电子技术、光电子技术、计算技术等高新技术的发展以及高纯超微粉体、厚膜和薄膜等制备工艺的进一步完善,功能陶瓷在新材料探索、现有材料潜在功能的开发和材料、器件一体化以及应用等方面都取得了突出的进展,成为材料科学和工程中最活跃的研究领域之一,也成为现代微电子技术、光电技术、计算技术、激光技术等许多高技术领域的重要基础材料。

当前功能陶瓷发展的趋势可以归纳为以下几个特点:复合化,多功能化,低维化,智能化和设计、材料、工艺一体化。单一材料的特性和功能往往难以满足新技术对材料综合性能的要求,材料复合化技术可以通过加和效应与耦合乘积效应开发出原材料并不存在的新的功能效应,或获得远高于单一材料的综合功能效应。最近提出的梯度功能材料也可看作一类特殊的复合材料。功能性与结构性结合的材料,或者具有多种良好功能性的材料,为提高 产品的性能和可靠性,促使产品向薄、轻、小发展提供了基础。当材料的特征尺寸小到纳米级,由于量子效应和表面效应十分显著,可能产生独特的电、磁、光、热等物理和化学特性,功能陶瓷进入纳米技术领域是研究的热点之一,如铁电薄膜和超细粉体的制备等。智能材料是功能陶瓷发展的更高阶段,它是人类社会的需求和现代科学技术发展的必然结果[1]。 一研究现状和发展趋势 1陶瓷基板 随着电子元器件功率密度的日益增大,陶瓷基板的应用越来越广泛。目前普遍使用的陶瓷基板材料主要有Al2O3、BeO、Si3N4、莫来石、AlN以及玻璃陶瓷。其中Al2O3和AlN陶瓷因无毒、原料来源广泛,介电常数小,机械性能好,同时制备工艺性好,既可以用流延成形又可以常压烧结,所以是两种使用占比最高的电子封装导热基板。但是若将Al2O3和AlN陶瓷材料应用于电子封装领域,首先要解决其和金属的敷接问题。近几年这方面的研究工作也很活跃,目前常见的金属敷接方法主要有:Al2O3、AlN陶瓷和钨、铜、钛和铝等金属的结合[2]。在与不同金属结合的方法过程中都有不可避免的缺点,如Al2O3、AlN陶瓷和金属钨的结合共烧温度很高达1900℃,工艺条件要求苛刻,而且形成的是厚膜电路,无法应用在电力电子技术领域。它和金属铝的结合相对容易,但是铝的化学性质十分活泼,非常容易与空气中的氧发生化学反应而在其表面上形成一层化学性质稳定、结构致密的氧化膜,这层氧化膜的厚度通常在几十纳米左右。该氧化膜的存在严重阻碍了铝和陶瓷的接合,使得其接合强度低而且牢固性差,所以在使Al2O3、AlN陶瓷敷铝方法中,必须去除熔化的铝液表面那层致密的氧化膜,铝液才能够湿润Al2O3、AlN陶瓷基板,从而与Al2O3、AlN陶瓷基板牢固地粘结在一起。Al2O3、AlN陶瓷和金属铜在敷接过程中,由于Cu与Al2O3、AlN陶瓷的浸润性差异,所以通常需要采取不同的工艺进行敷接,才能将Cu箔与Al2O3、AlN陶瓷紧密结合。由于Cu与

新型功能陶瓷材料的分类与应用

V〇1.23,N〇.12,2016新型功能陶瓷材料的分类与应用 刘炫志 (湖南省长沙市明德中学,湖南长沙410008) 摘要:新型功能陶瓷具备耐磨、高强、耐腐的性能,在光电子技术、激光技术、光纤技术、微电子技术、超导技术的发展中起到了重要的作用,也是军事、国防工业的重要材料。随着经济的不断发展,陶瓷材料也不断更新,开始向新型功能方向迈进。主要针对新型功能陶瓷材料的分类与应用进行分析。 关键词:新型功能陶瓷材料;分类;应用 d〇i:10. 3969/j.issn.1006 -8554.2016.12.151 专题研究T E C H N O L O G Y A N D M A R K E T 〇引言 随着经济的不断发展,陶瓷材料也不断更新,开始向新型功能方向迈进。所谓的新型功能陶瓷指的是通过电、磁、光、声、热等信息进行检测、处理等的材料,在电子技术、激光技术中起着不可替代的作用,并得到推广和普及。电子材料的一个非常重要的分支便是功能陶瓷材料。新型陶瓷中的70%产值都来自于新功能陶瓷。在科技和技术的不断推动之下,新型功能陶瓷也迈向更加广阔的领域,不断运用到生活中的各方面,促进经济和社会更快更好发展。 1新型功能陶瓷材料的分类 随着时代的发展,陶瓷材料的种类越来越繁多,而且都是现代科技之下的产物。新型功能陶瓷材料根据功能的不同可以分为以下几种,常见的材料类型有导电陶瓷、半导体陶瓷、高温超导陶瓷、介电陶瓷、压电陶瓷、磁性陶瓷、纳米陶瓷、保健陶瓷等。随着技术的不断进步,其功能也在不断扩大和细分,陶瓷的功能和种类会更加的齐全,给人们的生活带来更多的便捷。 新型功能陶瓷材料可以分为结构陶瓷与功能陶瓷两个内容,其中,结构陶瓷就是具备热功能、机械功能、化学功能的陶瓷,具备电、磁、光、生物、化学特性的材料是功能陶瓷,在科技水平的发展下,各类学科之间相互渗透,功能陶瓷材料的性能也有了显著的提升。 2新型功能陶瓷材料的发展趋势和应用 2.1新型功能陶瓷材料的发展趋势 功能材料研究的范围非常广泛,不仅包括合成和制备,还包括结构和组成,性能和效能等。功能材料把电、磁、光等不同元素融人进去,使其材料产生特性。功能陶瓷就是通过电、磁等元素,使陶瓷发生效应。在日常生活中,很多的地方都会用到功能陶瓷,比如我们平常所使用的打火机,它的喷嘴就是功能陶瓷所构成的。还有,医院里的B超,其探头也是利用功能 陶瓷所制成的,功能陶瓷的使用越来越广泛。 随着科技的不断发展,能源的新功能也被挖掘出来。一些新的技术也应运而生,如电子技术、激光技术、传感技术等,随着这些技术的产生,现有的材料无法满足这些新技术的发展,必须生产出新型的材料来满足新的技术,这样研发新型功能材料就成为一个焦点。陶瓷材料有很多优点,如耐高温、耐腐蚀等都是陶瓷材料的显著优势,这也使得陶瓷材料开始向新功能迈进。现在,陶瓷材料成为一支不可小觑的力量,与金属材料、高分子材料相媲美,成为行业的佼佼者。同时,这三种材料相互融为一体,取长补短,互相依赖,在技术革命中成为重要的三支力量。2.2新型功能陶瓷材料的运用 随着现代技术的发展,陶瓷材料也开始向多功能发展,并 运用到生活中的每个领域,对新技术的发展也起到了促进性作 用。在现代,功能陶瓷具有很多的特征,如品种齐全,价格低 廉,功能齐备,技术性价比高等,这些使功能陶瓷迅速发展起 来,并得到了广泛运用。通过对陶瓷材料的研究发现,很多有 独特性能的功能陶瓷可以运用离子置换等方法进行调节和优 化,使其性能更完美。现在,学界已经开始着手改善陶瓷材料 功能,其研究重点包括几个方面。 1) 直接进行调节。对材料的组成进行直接调节,对陶瓷的内在品质进行优化,可以使用离子置换法添加不同杂质等,从 而使陶瓷的功能呈现出多样性。 2)改变外部条件。通过对工艺条件或者是陶瓷材料的性能进行改变,从而得到更加优质的功能陶瓷。 不管是从应用的广度来看,还是从市场占有的多少来看, 功能陶瓷将长期占据主导地位。所以,功能陶瓷在性能上会朝 着多功能、高效能等方向发展,在设备技术方面会朝着超细超 纯、薄膜技术等发展。总之,随着现代工业技术更新加快,对陶 瓷工业发展有很大的促进作用。在运用上,陶瓷产品也不断扩 大,所以,现代陶瓷一定会给我们的生活带来巨大变化,会让我 们的生活变得更加丰富多彩,必将在生活的每个方面呈现出夺 目的光芒。在我国发展新型功能陶瓷材料,一方面,可以引进 国外的先进技术,购买材料配方和专利技术,从而使陶瓷的潜 在功能得到充分的开发;另一方面,要对国外的先进技术进行 消化和吸收,转换成适合我国实际情况的技术,达到取长补短 的作用。 3结语 总之,要想使功能陶瓷材料组成、结构和性能、应用等得到 改善,就需要采取科学的措施促进功能陶瓷材料产业的有序发 展。在科技发展的浪潮中,陶瓷材料功能会不断被挖掘,使其 运用到各个领域中。新型功能陶瓷材料的性能会不断发展,呈 现出更加全面的功能,推动科技和社会进步,为社会的全面发 展奠定好基础。 参考文献: [1]闫学增,林文松,方宁象,等.金属封装陶瓷复合材料制备 方法的研究进展[J].轻工机械,2015(6). [2]曹爱红,刘粤惠,程小苏,等.陶瓷材料综合性实验的尝试 和分析[].化学工程与装备,2009(5). [3] 卢丹丽,何志平.热压烧结a-Sialon陶瓷的致密化过程和 显微结构研究[].陶瓷科学与艺术,2015(9). 232

相关主题
文本预览
相关文档 最新文档