当前位置:文档之家› 断路器的分段能力

断路器的分段能力

断路器的分段能力

断路器的分段能力:

极限分段能力(icu):额定极限短路分断能力指的是低压断路器在分断了断路器出线端最大三相短路电流后还可再正常运行并再分断这一短路电流一次,至于以后是否能正常接通及分断,断路器不予以保证。

运行分段能力(ics):而额定运行短路分断能力

Ics指的是断路器在其出线端最大三相短路电流发生时可多次正常分断。

无论是哪种断路器,虽然都具备

Icu和Ics这两个重要的技术指标。但是,作为支线上使用的断路器,可以仅满足额定极限短路分断能力即可。现在出现的较普遍的偏颇是宁取大,不取正合适,认为取大保险。但取得过大,会造成不必要的浪费(同类型断路器,其H型—高分断型,比S型—普通型的价格贵1.3倍~1.8倍)。因此支线上的断路器没有必要一味追求它的运行短路分断能力指标。而对于干线上使用的断路器,不仅要满足额定极限短路分断能力的要求,同时也应该满足额定运行短路分断能力的要求,如果仅以额定极限短路分断能力Icu来衡量其分断能力合格与否,将会给用户带来不安全的隐患。

IEC947—2《低压开关设备和控制设备低压断路器》标准规定:A类断路器(指仅有过载长

延时、短路瞬动的断路器)的Ics可以是Icu的25%、50%、75%和100%。B类断路器(有过载长延时、短路短延时、短路瞬动的三段保护的断路器)的Ics可以是Icu的50%、75%和100% 。因此可以看出,额定运行短路分断能力是一种比额定极限短路分断电流小的分断电流

值,Ics是Icu的一个百分数。

断路器的1P,2P的意思:1. 1P表示直控制火线的输出。就是我们常用的空气开关。

2. 2P表示同时可以控制火线和零线的。但不是漏电保护器。

漏电保护器要控制底线的。

2.3P是指三相电的,可控制三相电的3根火线。

4. 4P是指可以控三根火线和1根零线。1P、2P、3P、4P指断路器的极数,电相序的排序是A、B、C、N。ABC指三相电的火线,N指三相四线的零线。1P断路器可接任意一相火线,2P断路器可接任意一相火线和一零线,

3P断路器接三相火线,但前后相序要正确,即ACB。如果你负载的设备额定电压是220V时,就可以用1P或2P的断路器,如果是380V,就需要3P或4P了,对负载设备不需要零的就只选3P就可以了,如电动机、风机、水泵等只用3P断路器;如是380V的开水器、热水器之类的设备,就需要4P了,而且还要带漏电保护功能的断路器,这是为防止漏电事故,保障人身安全是必须的要用的。

接线时需要注意的是:如果在同一个楼层里面,需要引出的1P及2P断路器较多的话,注意保持A、B、C相电的平衡,从总开关所引出的断路器ABC相要均衡引出,否则就会使总断路器使用寿命下降。

单母线单母线分段

单母线单母线分段公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

单母线分段接线 单母线分段接线形式,它是将单母线用分段断路器分成几段。与单母线不分段相比提高了可靠性和灵活性。 优点: 1,两母线段可以分裂运行,也可以并列运行; 2,重要用户可用双回路接于不同母线段,保证不间断供电; 3,任意母线或隔离开关检修,只停该段,其余段可继续供电,减少了停电范围。 缺点: 1,分段的单母线增加了分段部分的投资和占地面积; 2,某段母线故障或检修时,仍有停电情况;

3,某回路断路器检修时,该回路停电; 4,扩建时需向两端均衡扩建。 适用范围: 1,110-220KV配电装置,出线回路数为3-4回; 2,35-65KV配电装置,出线回路为4-8回; 3,6-10KV配电装置,出线回路为6回及以上。 单母线接线 单母线接线(single-bus configuration)是由线路、变压器回路和一组(汇流)母线所组成的电气主接线。 单母线接线的每一回路都通过一台断路器和一组母线隔离开关接到这组母线上,见图。

双电源单母线接线 特点优势 这种接线方式的优点是简单清晰,设备较少,操作方便和占地少。但因为所有线路和变压器回路都接在一组母线上,所以当母线或母线隔离开关进行检修或发生故障,或线路、变压器继电保护装置动作而断路器拒绝动作时,都会使整个配电装置停止运行,运行可靠性和灵活性不高,仅适用于线路数量较少、母线短的牵引变电所和铁路变、配电所。 母线段隔离开关 英文名称

busbar section disconnector 定义 串联在两母线段之间,用于将它们彼此隔离的开关。

小型断路器的国家标准

GB 10963-1989|家用及类似场所用断路器 GB 14048.2-1994|低压开关设备和控制设备低压断路器 GB 16916.1-1997|家用和类似用途的不带过电流保护的剩余电流动作断路器(RCCB)第1部分:一般规则 GB 16916.21-1997|家用和类似用途的不带过电流保护的剩余电流动作断路 器(RCCB)第2.1部分:一般规则对动作功能与线路电压无关的RCCB的适用性 GB 16916.22-1997|家用和类似用途的不带过电流保护的剩余电流动作断路 器(RCCB)第2.2部分:一般规则对动作功能与线路电压有关的RCCB的适用性 GB 16917.1-1997|家用和类似用途的带过电流保护的剩余电流动作断路器(RCBO)第1部分:一般规则 GB 16917.21-1997|家用和类似用途的带过电流保护的剩余电流动作断路器(RCBO)第2.1部分:一般规则对动作功能与线路电压无关的RCBO的适用性 GB 16917.22-1997|家用和类似用途的带过电流保护的剩余电流动作断路器(RCBO)第2.2部分:一般规则对动作功能与线路电压有关的RCBO的适用性 GB 1984-1989|交流高压断路器 GB 4876-1985|交流高压断路器的线路充电电流开合试验 GB 7675-1987|交流高压断路器的开合电容器组试验 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解ABB断路器、施耐德断路器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.doczj.com/doc/4d13453249.html,/

备自投逻辑动作顺序说明及注解

变电所备自投逻辑说明及试验方法 变电站备用电源自动投入装置时电站稳定自动化系统设备,按照功能主要分为分段备自投和进线备自投。本文以法国施耐德Sepam1000+s40系列保护为例详细说明变电站备自投动作原理及具体逻辑。由于施耐德保护具有强大逻辑编程功能,其备自投都是通过进线和分段开关保护设备逻辑变编程实现,具体逻辑需要技术人员根据现场实际情况及用户的特殊要求做修改,本片以实例说明备自投原理及具体逻辑程序。 一.变电站分段备自投动作顺序逻辑的说明。 A )使用范围 对于电站单母分段系统结构,其系统结构如下,平时正常运行时,两段母线独立运行,1DL和2DL开关在合闸位置,分断开关3DL分闸位置,但是处于热备用状态。当变电站上级系统因故障造成本站线路1DL开关或者2DL开关失电,分断开关在条件满足的情况自动投入运行,使得一条进线同时对两段母线供电,满足系统稳定性的要求。 3DL 1DL 2DL 变电站单母分段母线系统结构 B)分段备自投动作逻辑图:见下图

分段备自投逻辑图 C)分段备自投逻辑原理及具体应用实例分析 1.分段备自投逻辑动作充电条件:本段进线开关在合位置,备自投投入开关打到投入位置,所在的分段开关在分闸位置,本段进线母线电压正常,以上条件全部满足5秒后分段备自投充电完成。向另外一段进线发出分段备自投条件满足信号。也就是充电完成信号,具体逻辑如下。 VL1 = I12 (开关合位置)AND I23(备自投开关在投入位置)AND (NOT I24 )(分段开关在分位置)AND P59_1_3 (本段母线有电压) VL2 = TON(VL1 ,5000 ) V1 = TOF(VL2 ,2000 )//分段备自投充电逻辑完成,同时给对侧进线发分段备自投条件满足信号(此处延时的目的是防止母线电压波动,记住此处的时间必须比低电压的延时要短,否则会出现两边都失压的时候分段备自投跳本侧进线) VL3 = TOF(VL2 ,5000 )(此处延时的目的模拟本段电压从有压到无压的过程,分段备自投必须失母线开始有压到后来失压,记住此处的时间必须比低电压的延时要长一点,但是不能太长,最好是比低电压长1000ms左右,否则会出现多次备自投的情况) 2.分段备自投逻辑放电条件:进线开关在分闸位置,由于PT断线造成的失压,本段进线过流保护动作,本端进线失压发出分闸命令但是没有跳开自身,以及对侧备自投信号没有满足。以上条件任意一条不满足备自投都不会执行。 3.分段备自投逻辑动作过程:本段进线开关在合位置延时5秒后(即充电完成以后),低电压发生(延时0.5s),没有发生PT断线情况同是判断对侧进线满足

武汉供电局110kv变压器及分段备自投技术要求

武汉供电局110kV变压器及中低压侧分段备自投技术要求 1.主接线:2台110kV三卷变压器,三侧均为单母分段接线。35kV、10kV无小电源。 2.装置型号:CSC-246A 3.安装方式:放在主控室公用柜上 4.备投切换方式:根据断路器位置自动切换 5.备自投不具备过流保护、过负荷联切、TV断线功能和遥控功能。 6.备自投动作一次后闭锁。 7.技术要求: 方案一变压器备自投:两台变压器其中一台运行带负荷,另一台备用。1号(或2号) 主变三侧开关合位,2号(或1号)主变三侧开关分位,35kV、 10kV分段开关合位时。 (1)正常运行时若检1号(或2号)主变高压侧电流大于2号(或1号)主变过负荷整定值Iz2(或Iz1),报“主变过负荷告警”,闭锁主变备自投功能。 (2)当若35kV、10kV同时母线无压且对应1号(或2号)主变中低压无流时,备自投同时跳1号(或2号)主变三侧开关; (3)检2号(或1号)主变高压有压时,先延时t1合2号(或1号)主变高压侧开关,再延时t2合2号(或1号)主变中低压侧开关。 (4)主变备自投闭锁条件:手跳遥跳主变三侧开关、三侧变压器后备保护动作、35kV 母差动作。 35kV无压无流,10kV有压有流, 方案二35kV、10kV分段备投:两台变压器都运行,两台主变高压侧开关合位。(1)正常运行时若检两台主变高压侧电流之和大于单台主变过负荷定值Iz3时,报“合流过负荷告警”,并闭锁35kV、10kV分段备自投功能。 (2)当35kV分段开关分位,两台变压器中压侧开关都为合位时。若35 kV I段(或II段)母线无压且1号(或2号)主变中压无流时,备投跳1号(或2号)主 变中压侧开关,检35kVII段(或I段)母线有压时,合35kV分段开关。(3)当10kV分段开关分位,两台变压器低压侧开关都为合位时。若10kV I段(或II段)母线无压且1号(或2号)主变低压无流时,备投跳1号(或2号)主 变低压侧开关,检10kVII段(或I段)母线有压时,合10kV分段开关。(4)35kV分段备自投闭锁条件:手跳遥跳主变中压侧开关、变压器中后备保护动作、35kV母差动作。 (5)10kV分段备自投闭锁条件:手跳遥跳主变低压侧开关、变压器低后备保护动作。 8.交流输入端子定义(共12I,12U) X1-a1,X1-b1(I1):1#主变高压侧单相电流IB X1-a2,X1-b2(I2):2#主变高压侧单相电流IB X1-a3,X1-b3(I3):1#主变中压侧单相电流IA X1-a4,X1-b4(I4):1#主变中压侧单相电流IC X1-a5,X1-b5(I5):2#主变中压侧单相电流IA X1-a6,X1-b6(I6):2#主变中压侧单相电流IC X2-a1,X2-b1(I7):1#主变低压侧单相电流IA X2-a2,X2-b2(I8):1#主变低压侧单相电流IC

ABB断路器参数调试讲义解读

ABB 断路器参数调试讲义 电控柜的断路器进行设置,在ABB 塑壳断路器(正面)下方有两个旋钮(见下图),通过调节旋钮的位置可以设置断路器的过流、过载保护值,具体设置方法如下: 一、ABB 塑壳断路器过流、过载旋钮设置说明: 1、过流调节旋钮,设置电控箱整个负载的过流保护值,调节范围从2000A —4000A ,从MIN —MED —MAX 共有9个档位,档位对应值如下: MIN (1)档—2000A; (2)档—2250A; (3)档—2500A; (4)档— 2750A;

MED(5)档—3000A; (6)档—3250A; (7)档—3500A; (8)档—3750A; MAX(9)档—4000A; 2、过载调节旋钮,设置电控箱整个负载的过载保护值,调节范围从280A—400A,从MIN—MED—MAX共有9个档位,档位对应值如下: MIN(1)档—280A; (2)档—295A; (3)档—310A; (4)档—325A; MED(5)档—340A; (6)档—355A; (7)档—370A; (8)档—385A; MAX(9)档—400A; 二、ABB断路器机型设置说明

三ABB断路器低压断路器的参数详解 3.1、空气断路器的框架电流Iu、额定电流Ie、额定电流整定值Ir的 含义是什么? ?框架电流Iu: 又称为额定不间断电流。指在规定条件下,电器在长期工作 制下,各部件的温升不超过规定极限值时所承受的电流值。 ?额定工作电流Ie: 指在规定条件下,能保证电器正常工作的电流值。它和额定 电压、电网频率、额定工作制、使用类别、触头寿命及防护 等级等因素有关。有时被标识为In。 ?额定电流整定值Ir: 这是使用者通过断路器的脱扣器自行整定的一个电流值,断 路器根据使用者整定的Ir对电路进行过载、短路保护。 ?比如ABB的塑壳断路器S5N400 R320 PR112/LI FF 3P , Iu=400A Ie=320A, Ir=( 0.4 – 1)Ie 可调。 3.2、极限短路分断能力Icu、额定运行短路能力Ics、短时耐受电流 Icw的含义是什么? ?极限短路分断能力Icu 断路器在承受此短路电流时必须可靠的分断短路故障,但不要求断路器未经过维修或更换零件的条件下能继续使用。

浅谈“备自投”(二)

浅谈“备自投”(二) 上一次我们简单了解了“备自投装置”的定义,常用方式及基本运行原则。在基本运行原则中有提到“备自投装置”应能实现PT断线闭锁功能,合电流闭锁功能,手动跳闸闭锁及保护闭锁功能。 那么我们继续来分享一下“备自投装置”的闭锁原则. 为什么要有闭锁备自投呢? 因为“备自投装置”应该保证在条件满足下只动作一次,“备自投装置”应该与相关保护配合,当相关保护动作后,给“备自投装置”一个外部闭锁开入信号,避免其它关联动作引起“备自投装置”的再次动作。 备自投必须在设定的运行方式下,满足充电条件,经延时才能达到充电满状态。只有在充电满状态下,满足备自投启动条件,又无外部闭锁备自投而使备自投放电,备自投才会启动。无论备自投是否启动还是备自投逻辑执行过程中,一旦出现任一闭锁条件,备自投逻辑应立即终止。备自投闭锁功能实现方式有以下几种: a. 备自投装置通过采集相关断路器位置、母线电压、线路电压等运行状况,来判断是否满足备自投充电条件,如不满足,备自投装置应放电,备自投动作逻辑将无法启动; b. 在备自投启动以后,通过检测线路电流来闭锁因母线PT断线时引起的备自投误动作; c. 通过断路器操作箱的STJ接点来闭锁因远方遥控分断路器或者就地分断路器导致母线失压引起的备自投误动; d. 通过外部电气元件故障,相应保护装置动作出口来闭锁备自投,避免备用电源再次投入到故障元件中。 “备自投装置”应根据系统的运行方式,再配合二次设计、保护定值整定、动作逻辑设计等因素,选择合理的闭锁方案,才能够保证备自投动作的准确性。 内桥接线示意图

此处列举几种备自投常用的闭锁原则: ①内桥接线内桥备自投:正常运行时如上图所示1DL合,2DL合,3DL分,1#母、2#母三相有压;当1DL或2DL因故障断开且满足“备自投装置”充电条件时,“备自投装置”动作投入3DL实现备自投功能。 闭锁“备自投装置”条件:任一主变的差动保护、非电量保护、高后备保护及跳主变三侧保护应闭锁备自投,用闭锁压板控制投入,以防止主变内部故障及母线故障时,备自投合3DL于故障。 ②内桥接线进线备自投:正常运行时如上图1DL合位,3DL 合位,2DL分位;在“备自投装置”充电已完成,无外部闭锁情况下,I母、II母均无压且线路I无流,线路II有压,经延时跳开1DL,确认1DL跳开后经延时合开关2DL实现备自投功能。 闭锁“备自投装置”条件:当1#主变内部故障或者I段母线故障时,保护动作出口跳1#主变3侧断路器,备自投合2DL,保证2#主变正常供电,此时1#主变差动保护、非电量保护、高后备保护及跳主变三侧保护不应闭锁备自投,用闭锁压板控制退出。当2#主变内部故障或II段母线故障时,保护动作出口跳3DL及低压侧断路器,备自投不满足动作条件无法启动。但是如果故障仍存在,而此时I段母线失压,备自投动作逻辑将会启动,跳开1DL,合上2DL于故障。因此当2#主变差动保护、非电量保护、高后备保护及跳主变三侧保护应闭锁备自投,用闭锁压板控制投入。(2DL合位,3DL 合位,1DL分位运行状态下原理同上) ③单母分段备自投:单母线分段备自投动作方式及原理参照内桥接线的方式及原理。要考虑主变高压侧母线故障闭锁备自投。 变压器备自投接线示意图 ④变压器备自投:如上图所示以1#主变运行,2#主变冷备用方式为例进行分析。该运行方式下,4DL、1DL、3DL合位,5DL、2DL分位(2#主变运行,1#主变冷备用方式同理)。在备自投充电已完成,无外部闭锁情况下,I母、II母失压,且1#主变无流,2#主变高压侧有压,经延时跳开变压器低压侧开关1DL(采用重动接点,联跳高压侧开关4DL),确认1DL跳开后,2#主变高压侧有压,分别经延时分别合2#主变高、低压侧开关5DL、2DL。 闭锁“备自投装置”条件:主变低后备保护应闭锁备自投,用闭锁压板控制投入。因II段母线馈出线上发生故障而保护拒动时,主变低压侧后备保护将动作一时限出口跳闸3DL,切除故障。如果此时发生1#主变动作跳闸或者1#主变高压侧失压并且馈出线故障尚未处理,则I母、II母同时失压,备自投将启动,使2#主变投入故障线路。因此主变低后备

变电站0.4kV备自投系统分析

变电站0.4kV备自投装置分析 0.4kV备自投装置,原理为分段开关自投,即:进线1、2工作,分段开关处于跳位,当进线1、2失电时,分段开关自投。 从NSR600R系列保护测控装置技术使用说明书中的原理图(图1)我们可以看出,要使分段开关自投必须满足分段出口合逻辑,即满足以下条件: 1、0.4kVⅠ(Ⅱ)组母线无压(我站无压定值为30V) 2、0.4kVⅡ(Ⅰ)组母线有压(我站有压定值为70V) 3、0.4kVⅠ(Ⅱ)组母线电流(I X1)小于进线有流定值(I XZD,我站此定值整定为0.05A) 4、备自投充电 5、开放备自投 6、分段备自投压板、控制字均投入(FDBZT) 7、Ⅰ(Ⅱ)母失压动作时限(TU1L或TU2L,我站此整定值为3S)或着是加速备自投。(两个条件任意满足一个) 满足以上条件则满足跳进线1(2)出口逻辑(CKTJX1、CKTJX2),即动作跳开1ZKK (2ZKK) 满足以上7个条件后,同时还满足1ZKK(2ZKK)不在合位,3ZKK在跳位这个条件,即满足分段出口合逻辑(CKFDH),即3ZKK备自投。 从分段出口合逻辑中我们看出,要满足分段开关自投,首先需要满足备自投充电这一条件,而要满足备自投充电则必须满足以下这些条件: 1、0.4kVⅠ组母线有压 2、0.4kVⅡ组母线有压 3、检Ⅰ组母线进线电压正常(JUX) 4、检Ⅱ组母线进线电压正常(JUX) 5、1ZKK断路器在合位 6、2ZKK断路器在合位 7、分段备自投压板、控制字均投入(FDBZT) 8、经过10S延时 9、开放备自投 10、备自投未闭锁 11、备自投未放电 12、1ZKK断路器在合后位 13、2ZKK断路器在合后位 14、3ZKK断路器(分段开关)在分闸位 只有当同时满足以上14个条件的情况下,备自投充电。 从逻辑图中我们可看出,分段开关备自投的必要条件之一是1ZKK(2ZKK)取合后位置,备自投充电。只有备自投充电,才能使3ZKK在1ZKK(2ZKK)断开后实现备自投功能。 而从备投装置原理接线图(3/5)中,我们可以看到当1ZKK、2ZKK合闸时,1ZJ、2ZJ (1ZKK、2ZKK中间继电器)励磁,即合闸位置取1,跳闸位置取0。而当1ZKK、2ZKK 分闸是,1ZJ、2ZJ失磁,即合闸位置取0,跳闸位置取1。此时1ZKK(2ZKK)位置取跳位,合后位置为0,则备自投充电条件不满足,而备自投充电条件不满足则分段出口合逻辑不满足,即当1ZKK(2ZKK)跳开时,3ZKK不能自动投入,即我站现在的运行方式。而当我站301(302)断路器或345(346)断路器跳开时,因为1ZKK(2ZKK)仍然在合位,满足备自投充电条件,此时分段出口合逻辑满足,能自动合上3ZKK断路器。

断路器主要参数与特性

断路器主要参数与特性 断路器的特性主要有:额定电压Ue;额定电流In;过载保护(Ir或Irth)和短路保护(Im)的脱扣电流整定范围;额定短路分断电流(工业用断路器Icu;家用断路器Icn)等。 额定工作电压(Ue):这是断路器在正常(不间断的)的情况下工作的电压。 额定电流(In):这是配有专门的过电流脱扣的断路器在制造厂家规定的环境温度下所能无限承受的最大电流值,不会超过电流承受部件规定的温度限值。 短路继电器脱扣电流整定值(Im):短路脱扣继电器(瞬时或短延时)用于高故障电流值出现时,使断路器快速跳闸,其跳闸极限Im。 额定短路分断能力(Icu或Icn):断路器的额定短路分断电流是断路器能够分断而不被损害的最高(预期的)电流值。标准中提供的电流值为故障电流交流分量的均方根值,计算标准值时直流暂态分量(总在最坏的情况短路下出现)假定为零。工业用断路器额定值(Icu)和家用断路器额定值(Icn)通常以kA均方根值的形式给出。 短路分断能力(Ics):断路器的额定分断能力分为额定极限短路分断能力和额定运行短路分断能力两种。国标《低压开关设备和控制设备低压断路器》(GB14048.2—94)对断路器额定极限短路分断能力和额定运行短路分断能力作了如下的解释: 断路器的额定极限短路分断能力:按规定的实验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力; 断路器的额定运行短路分断能力:按规定的实验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力;

额定极限短路分断能力的试验程序为O—t—CO。 其具体试验是:把线路的电流调整到预期的短路电流值(例如380V ,50kA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50kA短路电流,断路器立即开断(open简称O),断路器应完好,且能再合闸。t为间歇时间,一般为3min,此时线路仍处于热备状态,断路器再进行一次接通(close简称C)和紧接着的开断(O),(接通试验是考核断路器在峰值电流下的电动和热稳定性)。此程序即为CO。断路器能完全分断,则其极限短路分断能力合格。 断路器的额定运行短路分断能力(Icn)的试验程序为O—t—CO—t—CO。它比Icn的试验程序多了一次CO,经过试验,断路器能完全分断、熄灭电弧,就认定它的额定运行短路分断能力合格。 因此,可以看出,额定极限短路分断能力Icn指的是低压断路器在分断了断路器出线端最大三相短路电流后还可再正常运行并再分断这一短路电流一次,至于以后是否能正常接通及分断,断路器不予以保证;而额定运行短路分断能力Ics指的是断路器在其出线端最大三相短路电流发生时可多次正常分断。 IEC947—2《低压开关设备和控制设备低压断路器》标准规定:A类断路器(指仅有过载长延时、短路瞬动的断路器)的Ics可以是25%、50%、75%和100%。B类断路器(有过载长延时、短路短延时、短路瞬动的三段保护的断路器)的Ics可以是Ics的50%、75%和100%。因此可以看出,额定运行短路分断能力是一种比额定极限短路分断电流小的分断电流值。 无论是哪种断路器,虽然都具备Icu和Ics这两个重要的技术指标。但是,作为支线上

单母线三分段接线的备自投实现方式

单母线三分段接线的备自投实现方式 教程来源:北极星电力论文网作者:未知点击:596次时间:2009-9-8 13:52:20 摘要:根据实际情况,介绍了单母线三分段接线方式下备自投的实施方法及其动作原理,并提出了两种备自投间相互配合的关键在于合理整定10kV母分备投的放电延时。 0引言 根据实际情况,介绍了单母线三分段接线方式下备自投的实施方法及其动作原理,并提出了两种备自投间相互配合的关键在于合理整定10kV母分备投的放电延时。主接线单母线三分段备用电源自投运行方式我局近几年新建的1 1 0kV和35kV变电所的建设规模大多为2条进线、2台主变,高压侧采用内桥接线,1 0kV侧采用单母线分段接线。为了提高供电的可靠性和连续性,均采用备用电源自投入(以下简称备自投)装置。近年来,电网负荷急速上升且日益集中化,越来越多的变电所负荷趋于饱和,对部分变电所的增容势在必行。而对建成变电所采用新增主变的增容方式必然引起电气主接线的调整,可能引起备自投动作方式的调整。 1运行现状 我局35kV皮都变电所2005年竣工投产,35kV主接线采用内桥接线,两回进线; 1 0kV采用单母线开关分段接线。本次扩建新增3}}进线和3}}主变,线变组接线。高压侧主接线形式为内桥加线变组方式,这是目前变电所增容中常用的接线方式,运行方式较简单,对建成部分改动较少,不存在备自投的配合问题。10kV部分采用何种主接线形式我们作了如下考虑。 图1三主变变电所常用的两组单母线分段接线 如果把单母线分段接线改为三主变变电所常用的两组单母线分段接线的方式(如图1),II段母线必须再分段,增加1台隔离柜和2台开关柜,开关柜重新布置,这在实际中无法操作。如果新建部分采用独立线变组的接线方式,10kV与一期独立,当3}}进线失电或3}}主变保护动作,1 0kV III段母线全部失电,供电可靠性大大降低。经过综合考虑,10kV主接线采用单母线三分段接线。为了提高供电的可靠性和连续性,在II/III段母线间增设1台备自投。 2备自投运行方式

单母线分段带旁路母线开关的操作方法

单母线分段带旁路母线开关的操作方法 摘要:该文列举并分析了单母线分段带旁路结线,在各种方式下线路开关相互转带和恢复带路操作中,曾经出现的错误操作方法的错误原因及含有隐性错误操作方法的错误所在,提出了正确的操作方法。 关键词:单母线分段;旁路;线路开关;代路;方法 变电站的倒闸操作是一项技术含量很高的工作,其中带路操作属于重要且复杂的操作。通过专用旁路开关或母联兼旁路开关进行的带路操作比较常见,一般变电站值班员都能较为熟练、正确地完成;用一台线路开关带一条以上线路的操作则相对较少见,所以一般变电站值班员不熟悉这种操作方法。同时,用线路开关相互转带的操作,需要考虑的问题也比较多,一旦考虑不周,就有酿成事故的可能。特别是10~35 kV由于电压等级低,线路开关相互转带操作往往不能引起人们足够的重视,使得一些操作过程中的隐性问题更加难以发现。笔者结合自身多年的运行工作经验,仅就10~35 kV单母线分段带旁路结线,在不同方式下用线路开关相互转带操作方法提出见解,以供同行们参考。 1 用一台线路开关带另一线路的操作 1.1 设定运行方式及操作任务 图1中4号、5号母线只有一个电源,电源开关在4号母线运行;母联兼旁路545开关做母联运行;514开关带着重要负荷,需保证用电安全,但开关严重漏油,需立即停电检修;母联兼旁路545-6刀闸损坏,待修;根据各路出线的负荷情况及其所带负荷的重要性,决定用511开关带514线路负荷运行,设定511线路保护定值满足带514负荷的要求。为了方便分析和版面整洁,以下倒闸操作步骤的填写与正常填写的操作票格式有所不同,且与分析问题关系不大的部分操作步骤被省略。请参看图1。 1.2 在给定方式下的操作方法(1) ①上511-6隔离开关,检查511-6隔离开关已合好; ②合上514-6隔离开关,检查514-6隔离开关已合好; ③拉开514开关,检查514开关已拉开; ④分别拉开514开关两侧隔离开关,并检查已拉开; ⑤在514开关两侧三相分别验电、封地线。 这种操作方法过去曾有人使用过,并顺利地完成了操作任务。下面分析操作方法(1)(以下简称方法(1),方法(2)……)。 方法(1)中的第?项合上511-6隔离开关,是对空母线(6号旁路母线)充电,符合《调度管理规程》中允许用隔离开关拉合空母线的规定,似乎没有问题,而实际上这样操作是错误的。因为调度规程规定,允许用隔离开关拉合空母线是有前提条件的,即在“系统正常时”方可用隔离开关拉合空母线,而6号旁路母线经常会长时间不带电运行,怎知该母线是否正常呢?操作人关键是对规程的规定没有很好地学习和掌

分段备自投运行异常分析及改进措施

分段备自投运行异常分析及改进措施 发表时间:2018-12-21T09:34:10.307Z 来源:《电力设备》2018年第23期作者:龚超 [导读] 摘要:本文针对ISA-358G型分段备自投装置充放电条件详细说明,并结合现场分段备自投装置运行中存在的异常情况,分析提出相应的改进措施,提高分段备自投装置运行的稳定性。 (红河供电局红河 661100) 摘要:本文针对ISA-358G型分段备自投装置充放电条件详细说明,并结合现场分段备自投装置运行中存在的异常情况,分析提出相应的改进措施,提高分段备自投装置运行的稳定性。 关键词:分段备自投;充放电条件;改进措施 0 引言 备自投装置作为一种灵活性高、适应性强的自动化装置,被广泛应用在电力系统中,能够有效提高电力系统的供电稳定性与供电可靠性,保障电力系统的不间断供电。 1 分段备自投充放电条件 1.1 分段备自投充电条件 备自投要实现动作,首先需要充满电。分段备自投充电条件(见图1):(a)备自投投退把手“投入”位置;(b)投退型定值“投入”;(c)Ⅰ、Ⅱ段母线有压满足UⅠ>70V、UⅡ>70V;(d)1DL满足位置监视HHW=1、HW=1;(e)2DL满足位置监视HHW=1、 HW=1;(f)3DL满足位置监视TW=1;(g)BZT闭锁=0,BZT放电=0。满足以上条件后,分段备自投装置经10s延时后完成充电,为分段备自投的正常动作做好准备。 图1 分段备自投充电条件 1.2段备自投放电条件 分段备自投在满足以下任一条件时,即可实现放电,闭锁分段备自投的功能,使分段备自投无法实现动作。 1)退出分段备自投功能连接片。功能连接片退出,或闭锁备自投开入,将导致分段备自投自动放电,无法实现分段备自投的功能。 2)分段备自投在合位或检修状态。分段备自投动作所需的3DL位置条件不满足,无法实现备自投合分段断路器的逻辑要求。而进线位置监视不对应,也将使得分段备自投自动放电或无法正常充电,影响分段备自投的正常动作。 3)母线电压监视有误。Ⅰ、Ⅱ段母线有压不满足UⅠ>70V、UⅡ>70V的条件,使得分段备自投无法判断是否存在备用电源,无备用电源,备自投装置应自动放电,避免分段备自投误动作。 4)1DL(或2DL)拒跳或3DL拒合。在分段备自投逐步进行相应逻辑时,如Ⅰ母暗备用,经d081延时动作跳2DL,而2DL拒跳时,分段备自投逻辑终止,自动进行放电。当分段备自投动作合3DL,而3DL拒合时,则分段备自投逻辑终止,自动进行放电。 5)主变后备保护动作,断开相应主变故障侧断路器来切除故障,同时主变后备保护开入闭锁分段备自投,使分段备自投放电失去其功能。 2 分段备自投缺陷分析 分段备自投动作不成功或误动作,严重影响电力系统的安全稳定运行,将造成恶劣的电力事故。在实际工作中,分段备自投动作不成功的原因主要包括以下几个方面: 2.1分段备自投充电不正常 实际工作中,经常发生分段备自投无法正常进行充电的情况,根据分段备自投充电条件进行分析,导致这一情况的影响因素主要有:(a)分段备自投是否受外部回路影响存在闭锁;(b)分段备自投充电所需的外部输入量是否满足要求;(c)分段备自投充电所需的断路器位置是否满足要求;(d)分段备自投动作定值设置是否正确无误。 针对以上几点可能导致分段备自投无法充电的情况,在实际工作中可以逐步进行排查: 1)对分段备自投装置内各闭锁开入点进行测量,检查是否有正电源输入,确定分段备自投是否存在闭锁情况。 2)在确定分段备自投不存在闭锁时,再检查各段母线电压是否正常,进线电流是否正确,是否满足充电所需的交流量。如果各交流量正常,则需对分段备自投交流输入回路进行排查,确定是否由于交流输入回路存在故障,导致分段备自投无法正常充电。 3)上述两点检查无异常时,查看分段备自投位置监视是否正确(即1DL和2DL合后为1,3DL跳位为1)。若位置监视有异常,则需对断路器的控制回路进行具体排查。 4)若外部分段备自投外部输入无任何异常,则可能是分段备自投的定值设置不正确,或分段备自投CPU插件发生故障。 2.2 位置指示不正常 分段备自投常常由于装置内部监测断路器位置不正确,在电力系统发生故障时,分段备自投装置拒动,而引起大范围的停电事故。 分段备自投的断路器位置接入是从操作箱内TWJ获得,而这种获取断路器位置的方式,可能由于断路器控制回路故障,分合闸回路发生异常,跳闸位置继电器误动作,使监测到的位置与实际位置不符,导致分段备自投拒动。

单母线接线和单母线分段接线

单母线接线 图1为单母线接线,其供电电源在 发电厂是发电机或变压器,在变电站是 变压器或高压进线回路。母线既可保证 电源并列工作,又能使任一条出线都可 以从任一个电源获得电能。各出线回路 输送功率不一定相等,应尽可能使负荷 均衡地分配于母线上,以减少功率在母 线上的传输。 单母线接线每条回路上都装有断路器和隔离开关,紧靠母线侧的隔离开关称为母线隔离开关,靠近线路侧的称为线路隔离开关。由于断路器具有开合电路的专用灭弧装置,可以开断或闭合负荷电流和开断短路电流,故用来作为接通或切断电路的控制电器。隔离开关没有灭弧装置,其开合电流能力极低,只能用作设备停运后退出工作时断开电路,保证与带电部分隔离,起着隔离电压的作用。所以,在断路器可能出现电源的一侧或两侧均应配置隔离开关,以便检修断路器时隔离电源。若馈线的用户侧没有电源时,断路器通往用户的那一侧,可以不装设线路隔离开关,但是由于隔离开关费用不大,为了阻止雷击过电压的侵入或用户启动自备柴油发电机的误倒送电,也可以装设。若电源是发电机,则发电机与其出口断路器之间可以不装设隔离开关,因为该断路器的检修必然是在发电机组停机状态下进行;但有时为了便于对发动机单独进行调整和试验,也可以装设隔离开关或设置可拆连接点。 高压隔离开关一般有主闸刀与接地开关,QE是线路隔离开关的接地开关,用于线路检修时替代临时安全接地线的作用,为避免发生接地开关接地状态下误合主闸刀的事故,主闸刀与接地开关之间装设有机械联锁装置。当电压在110KV 及以上时,断路器两侧的隔离开关和线路隔离开关的线路侧均应配置接地开关。此外,对于35KV及以上的母线,在每段母线上亦应设置1~2组接地开关或接地器,以保证电气设备和母线检修时的安全。 在运行操作时,必须严格遵守下列操作顺序:在接通电路时,应先合断路器两侧的隔离开关,如对馈线WL2送电时,须先合上母线隔离开关QS21,再合线路隔离开关QS22,然后再投入断路器QF2;切断电路时,应先断开断路器QF2,再依次断开QS22和QS21。这样的操作顺序遵守了两条基本原则:一是防止隔离开关带负荷合闸或拉闸;二是防止了在断路器处于合闸状态下(或虽在分闸位置,但因绝缘介质性能破坏而导通),误操作隔离开关的事故不发生在母线隔离开关上,以避免误操作的电弧引起母线短路事故;反之,误操作发生在线路隔离开关时,造成的事故范围及修复时间将大为缩小。为了防止误操作,除严格按照操作规程实行操作票制度外,还应对隔离开关和相应的断路器加装电磁闭锁、机械闭

继电保护--备自投的几种方式

1、基本备投方式: 变压器备自投方式 桥备自投方式 分段备自投方式 进线备自投方式 2、备用电源自动投入的基本原理 备用电源自动投入(以下简称备自投)装置一次接线方式较多,但备自投原理比较简单。下面介绍几种变电站中典型的备自投方式原理。对更复杂的备自投方式,都可以看成是这些典型方式的组合。 投入备自投充电过程时:装置上电后,15秒内均满足所有正常运行条件,则备自投充电完毕,备自投功能投入,可以进行启动和动作过程判断;当满足任一退出条件时,备自投立即放电,备自投功能退出。 退出备自投充电过程时:装置上电后,满足启动条件后备自投进行动作过程判断。在正常运行条件或退出条件下,备自投可靠不动作。 2.1、分段备自投 分段备自投接线示意图 a)正常运行条件 1)分段断路器3DL处于分位置,进线断路器1DL、2DL均处于合位置 2)母线均有电压 3)备自投投入开关处于投入位置 b)启动条件 1)II段备用I段:I段母线无压,1DL进线1无流,II段母线有压 2)I段备用II段:II段母线无压,2DL进线2无流,I段母线有压 c)动作过程 1)对启动条件1: 若1DL处于合位置,则经延时跳开1DL,确认跳开后合上3DL 若1DL处于分位置,则经延时合上3DL 2)对启动条件2: 若2DL处于合位置,则经延时跳开2DL,确认跳开后合上3DL 若2DL处于分位置,则经延时合上3DL d)退出条件

1)3DL处于合位置 2)备自投一次动作完毕 3)有备自投闭锁输入信号 4)备自投投入开关处于退出位置 2.2 桥备自投 桥备自接线投示意图 a)正常运行条件 1)桥断路器3DL处于分位置,进线断路器1DL、2DL均处于合位置 2)进线1、进线2均有电压 3)备自投投入开关处于投入位置 b)启动条件 1)进线2有电压,进线1无电压且无电流 2)进线1有电压,进线2无电压且无电 c)动作过程 1)对启动条件1 若1DL处于合位置,则经过延时跳开1DL,确认跳开后,合上3DL 若1DL处于分位置,则经延时后合上3DL 2)对启动条件2 若2DL处于合位置,则经过延时跳开2DL,确认跳开后,合上3DL 若2DL处于分位置,则经延时后合上3DL d)退出条件 1)3DL处于合位置 2)备自投一次动作完毕 3)有备自投闭锁输入信号 4)备自投投入开关处于退出位置 2.3 变压器备自投 变压器备自投接线示意图(一台变压器为主变压器,另一台变压器为辅变压器)a)正常运行条件 1)主变压器各侧断路器处于合位置,辅变压器各侧断路器处于分位置

备自投简述

备自投装置简述 一、概述 备用电源自动投入装置(以下简称BZT装置)的作用是:当正常供电电源因供电线路故障或电源本身发生事故而停电时,它可将负荷自动、迅速切换至备用电源,使供电不至中断,从而确保企业生产连续正常运转,把停电造成的经济损失降到最低程度。 备用电源的配置方式很多,形式复杂,一般有明备用和暗备用两种基本方式。系统正常运行时,备用电源不工作,称为明备用;系统正常运行时,备用电源也投入运行的,称为暗备用,暗备用实际上是两个工作电源的互为备用。主要有低压母线分段断路器备自投、内桥断路器备自投和线路备自投三种方案。 在企业高、低压供电系统中,只有重要的低压变电所和6kV及以上的高压变电所,才装设了BZT装置。但因供电系统主接线方式大多数为单母线分段接线或桥接线方式,故一般采用母联断路器互为自动投入的BZT装置。在过去,不论是新建变电所,还是改造老变电所,设计的BZT装置均由传统的继电器来实现,这种BZT装置因设计不完善或继电器本身存在的问题,而发生的拒动或误动故障率较高,所以有些企业用户供电系统虽已装设了BZT装置,但考虑到发生事故时不扩大停电事故,将其退出,这样BZT装置的作用就没有发挥出来。近年来,随着微机BZT装置的不断完善与快速发展,在一些老高压变电所的改扩建及新建高压变电所的设计中,逐步广泛采用分段断路器微机备用电源自动投入装置(以下简称微机BZT装置)。 目前,许多企业用户在高压供电系统中为何要采用微机BZT装置呢?是由于该装置与传统的BZT装置相比较,具有以下许多特点和优点,因而在工业企业的高压供电系统中获得了广泛的应用。 (1)装置使用直观简便。 可以在线查看装置全部输入交流量和开关量,以及全部整定值,预设值、瞬时采样数据和大部分事故分析记录。装置液晶显示屏状态行还实时显示装置编号、当前工作状态,当前通讯状态、备自投“充电”、“放电”状态以及当前可响应的键。 (2)装置测试方便,工作量小。 交流量测量精度调整由软件方式完成,其调试和开入/开出试验均由装置通过显示界面和键盘操作完成。

电力备自投装置基本原理

《备自投装置》 备自投装置由主变备自投、母联备自投和进线备自投组成。 ①若正常运行时,一台主变带两段母线并列运行,另一台主变作为明备用,采用主变备自投。 ②若正常运行时,每台主变各带一段母线,两主变互为暗备用,采用母联开关备自投。 ③若正常运行时,主变带母线运行,两路电源进线作为明备用,两段母线均失压投两路电源进线,采用进线备自投。 一、#2主变备自投 #1主变运行,#2主变备用,即1DL、2DL、5DL在合位,3DL、4DL在分位,当#1主变电源因故障或其它原因断开,2#变备用电源自动投入,且只允许动作一次。

1、充电条件:a. 66千伏Ⅰ母、Ⅱ母均三相有压; b. 2DL、5DL在合位,4DL在分位; c.当检备用主变高压侧控制字投入时,高压侧220kV母线任意侧有压。以上条件均满足,经备自投充电时间后充电完成。 2、放电条件:a.#2主变检修状态投入; b.4DL在合位; c.当检备用主变高压侧控制字投入时,220kV两段母线均无压, 经延时放电; d.手跳2DL或5DL; e. 5DL偷跳,母联5DL跳位未启动备自投时,且66kV Ⅱ母无压; f.其它外部闭锁信号(主变过流保护动作、母差保护动作); g.2DL、4DL位置异常; h.I母或II母TV异常,经10s延时放电; i.#1主变拒跳; j.#2主变自投动作; k.主变互投硬压板退出; l.主变互投软压板退出。 上述任一条件满足立即放电。 3、动作过程:充电完成后,Ⅰ母、Ⅱ母均无压,高压侧任意母线有压,#1变低压侧无流,延时跳开#1变高、低压侧开关1DL和2DL,联切低压侧小电源线路。确认2DL跳开后,经延时合上#2变高压侧开关3DL,再经延时合#2变低压侧开

电力系统母线接线几种方式

电力系统母线接线有几种方式?有何特点? 母线接线主要有以下几种方式: (1)单母线。单母线、单母线分段、单母线加旁路和单母线分段加旁路。 (2)双母线。双母线、双母线分段、双母线加旁路和双母线分段加旁路。 (3)三母线。三母线、三母线分段、三母线分段加旁路。 (4) 3/2接线、3/2接线母线分段。 (5) 4/3接线。 (6)母线一变压器一发电机组单元接线。 (7)桥形接线。内桥形接线、外桥形接线、复式桥形接线。 (8)角形接线(或称环形)。三角形接线、四角形接线、多角形接线。 电力系统母线接线方式有以下特点: (1)单母线接线。单母线接线具有简单清晰、设备少、投资小、运行操作方便且有利于扩建等优点,但可靠性和灵活性较差。当母线或母线隔离开关发生故障或检修时,必须断开母线的全部电源。 (2)双母线接线。双母线接线具有供电可靠、检修方便、调度灵活或便于扩建等优点。但这种接线所用设备(特别是隔离开关)多,配电装置复杂,经济性较差;在运行中隔离开关作为操作电器,容易发生误操作,且对实现自动化不便;尤其当母线系统故障时,须短时切除较多电源和线路,这对特别重要的大型发电厂和变电所是不允许的。 (3)单、双母线或母线分段加旁路。其供电可靠性高,运行灵活方便,但投资有所增加,经济性稍差。特别是用旁路断路器带该回路时,操作复杂,增加了误操作的机会。同时,由于加装旁路断路器,使相应的保护及自动化系统复杂化。 (4) 3/2及4/3接线。具有较高的供电可靠性和运行灵活性。任一母线故障或检修,均不致停电;除联络断路器故障时与其相连的两回线路短时停电外,其他任何断路器故障或检修都不会中断供电;甚至两组母线同时故障(或一组检修时另一组故障)的极端情况下,功率仍能继续输送。但此接线使用设备较多,特别是断路器和电流互感器,投资较大, 二次控制接线和继电保护都比较复杂。 (5)母线一变压器一发电机组单元接线。它具有接线简单,开关设备少,操作简便,宜于扩建,以及因为不设发电机出口电压母线,发电机和主变压器低压侧短路电流有所减小等特点。

断路器参数说明

[摘要] 结合塑壳断路器MCCB的常用电气参数,提出了各种MCCB的正确选用方法,指出了各电气参数之间的内在联系。 [关键词]塑壳断路器选择使用 1.引言 塑料外壳式断路器以下简称MCCB,作为低压配电系统和电动机保护回路中的过载、短路保护电器,是应用极广的产品。随着现代科技水平的不断发展,新技术、新工艺、新材料不断出现,断路器的生产工艺及各种材质不断改进,使断路器的性能有了很大的提高,除国际知名品牌,如ABB、施耐德外,国内一些企业也不甘落后,自行开发、研制或引进国外先进技术,并加以消化、吸收,也向市场推出了成熟了的产品如常熟开关厂的CMl、天津低压开关厂TM30等。这类产品具有零飞弧、高分断、大容量、进出线方向可以互换、智能型、四极、内部附件结构模块化、安装积木化、体积小型化等特点。实现了MCCB所需的选择性保护功能和多种辅助功能,并带有通信接口,使低压配电系统实现自动化和组网成为可能;降低了低压成套配电装置的动、热稳定性的要求;缩小了成套配电装置的体积;大大地提高了供配电系统和设备运行的可靠性。 然而,目前在一些电气设计方案中,对MCCB的正确合理选用并不尽人意,往往忽略了所选厂家的MCCB规格、型号、附件等其它电气参数,特别是对一些新型MCCB的电气参数理解不透,标注不全、应用类别、使用场合及用途等考虑不周。选用了不合适的MCCB,导致成套厂订货困难,保护的选择性变差,灵敏性,合理性不符合设计规范要求,不但使MCCB没有物尽所用,反而造成了浪费,降低了配电系统的可靠性,影响了工矿企业的生产和人们的生活。为此,本文结合有关MC—CB的常用参数和国家标准谈谈自己对MCCB正确选用的一些看法。 2.断路器的常用基本相关符号其合义及相互之间的关系 Inm——断路器壳架等级电流A,它所指的含义是本断路器内所能安装的最大开关及脱扣器电流值。 In——断路器的额定电流A,它所指的含义是该断路器内选用的额定热动型脱扣器电流值,在不可调固定式热脱扣器中In=Ir1。 Ir1——断路器的长延时整定电流A,它所指的含义是该断路器的过载保护脱扣器所整定的电流值。 Ir2——断路器的短延时整定电流A,它所指的含义是该断路器的短延时脱扣器整定的电流,它的数值

相关主题
文本预览
相关文档 最新文档