当前位置:文档之家› 机构运动仿真

机构运动仿真

基于Solid Edge的高级机构运动仿真

基于Solid Edge的高级机构运动仿真 在机构设计中,分析输入/输出构件运动的相关性是比较困难和繁琐的,但若能方便地得到输入/输出构件及相关中间构件的运动曲线,解决这类问题就会容易许多。 Solid Edge 具有功能强大的三维造型模块和装配模块,而Dynamic Designer/Motion for Solid Edge实现了Dynamic Desinger和Solid Edge的无缝集成,用户不必离开自己所熟悉的Solid Edge界面,就可以对所设计的装配体进行运动仿真。 Dynamic Designer产品由Simply Motion、Motion和Professional组成,用户可以根据设计的复杂程度进行选择,也可以根据实际应用的情况逐步升级到更高一级的产品。在机构设计中,熟练使用以上模块,完成零件的三维实体造型,模拟整个机构的装配,分析装配干涉情况,进而实现运动模拟、运动干涉分析和动力分析,即可实现机构的精确设计,优化机器的性能和可靠性,从而减少从设计到产品的开发周期。 本文以单、双万向联轴结机构为例,简述了运用以上模块进行机构的装配、运动模拟及运动分析、动力分析的过程。 一、单万向联轴结机构的运动分析 图1是应用Solid Edge的Part模块制作的十字结、叉轴和支架。在支架的制作中要注意精确定位左右轴孔的位置及角度,以便准确安装。 图1 十字结、叉轴和支架的实体造型 图2为装配后的单万向联轴结,装配中左右叉轴与支架、十字结的定位关系均为轴对齐、面对齐。

图2 装配后的单万向联轴结 如果让右侧叉轴作为输入轴并以60r/min匀速旋转,左侧叉轴作为输出轴,由于其输出转速是变速的,在Solid Edge集成的Simply Motion模块中无法对该输出轴进行速度和加速度分析。应用Dynamic Designer/Motion for Solid Edge,在Edge Bar中选中左侧叉轴,单击鼠标右键,选“绘制曲线”→“角速度”→“幅值”,如图3所示;重复上述操作,在Edge Bar中选中左侧叉轴,单击鼠标右键,选“绘制曲线”→“角加速度”→“幅值”,图4为将会出现在操作区中的输出叉轴的角速度和角加速度曲线。 图3 绘制输出曲线的操作

机构运动仿真基本知识

机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习 仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义:主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动 的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺 省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体 的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。

基于MatlabSimulink的槽轮机构间歇运动特性的分析与仿真

基于Matlab/Simulink的槽轮机构间歇运动特性的分析与仿真 摘要:将槽轮机构转换为倒置曲柄滑块机构,建立了槽轮机构的运动数学模型,利用Matlab计算了槽轮机构的运动参数并绘制了相应的动态曲线,该方法直观精确,提高了设计效率。 关键词:槽轮机构间歇运动Matlab/Simulink 运动特性 Geneva mechanism based on Matlab/Simulink intermittent motion characteristics analysis and simulation Abstract :Converse geneva mechanism for inverted slider-crank mechanism,the geneva machanism motion mathematical model is established,using Matlab to calculate the dynamic movement parameters of the geneva mechanism and draw the corresponding curve,the method is accurate,intuitive improves the design efficiency Key words:the geneva mechanism intermittent motion Matlab / Simulink movement characteristics 0引言: 槽轮机构能将主动件连续旋转运动转换成从动件有规律的运动和停歇,是实现周期性运动和停歇的典型机构。槽轮机构的结构简单,外形尺寸小,效率高,并能较平稳地、间歇地进行传位,在现代机械设备中得到了广泛的应用,但因传动时尚存在柔性冲击,故常用于速度不高的场合。本文将针对槽轮机构的间歇运动,使用Matlab软件中的仿真工具箱Simulink进行运动学仿真,通过仿真得到从槽轮的运动变化曲线,并对槽轮机构的运动特性进行分析。 1槽轮机构的物理模型转换 图1 外槽轮机构简图图2 曲柄滑块机构 1-槽轮;2-拨盘1-滑块;2-曲柄;3-摇杆 在如图1所示为外槽轮机构简图,图2所示为倒置的曲柄滑块机构。当销子和轮槽结合时图2中倒置曲柄滑块构造形式与图1中槽轮机构类似。其中图1中带销子的拨盘2可视为连杆2,而槽轮可视为连杆3,滑块1代表销子。 2槽轮机构的数学建模 整个系统的运动过程可分为两个状态,即销子和轮槽结合与分离的两个状态

典型环节动态特性的仿真

院系电子信息工程学院班级姓名学号 实训名称典型环节动态特性的仿真实训日期 一、实训目的 1、掌握典型环节仿真结构图的建立方法; 2、通过观察典型环节在单位阶跃信号作用下的动态特性,熟悉各种典型环节的响应曲线。 2、定性了解各参数变化对典型环节动态特性的影响。 3、初步了解MATLAB中SIMULINK 的使用方法。 二、实训内容 掌握比例、积分、一阶惯性、实际微分、振荡环节的动态特性。 [例] 观察实际微分环节的动态特性 (1)连接系统, 如图所示: (2)参数设置: 用鼠标双击阶跃信号输入模块,设置信号的初值和终值,采样时间sample time 和阶跃 时间step time;用鼠标双击实际微分环节,设Kd=1,Td=1;用鼠标双击示波器,设置合适的示波器参数; (3)在simulation/paramater中将仿真时间(Stop Time )设置为10秒; (4)仿真:simulation/start,仿真结果如图1-1所示; (5)改变Td、Kd,观察仿真结果有什么变化。 图1-1 实际微分环节的动态特性图 第 1 页共 7 页指导教师签名

院系电子信息工程学院班级姓名学号 实训名称典型环节动态特性的仿真实训日期 ①惯性环节 建立如下图1所示的仿真结构图,K值为1,并保持不变;T值依次为1,2和3,运行得到阶跃响应曲线(图2): 图1 惯性环节仿真结构图 T值不同 图2 惯性环节T值不同的阶跃响应曲线 建立如下图2所示的仿真结构图,T值为1,并保持不变;K值依次为1,2和3,运行得到阶跃响应曲线(图3): 图3 惯性环节仿真结构图 K值不同 第 2 页共 7 页指导教师签名

常用机构的运动仿真(20个例程)

常用机构的运动仿真 一名资深机构设计师的话: 机构设计是机械设计中的灵魂,一种独特、新颖的机构设计体现了设计者的智慧与创新的精神。谁掌握、了解的机构越多,在研发设计新产品时就越主动,越有办法。 但是,熟练的掌握各种机构的设计并非易事,并非一日之功。它又是一种“隐性知识”,不是刚刚毕业就可以掌握的知识。需要日积月累,不断从实践、生活中学习,结合理论不断的总结,才能逐步地掌握。 但对于那些刚刚从事机械设计的人,才走上机械设计岗位的人,是否有一条稍微快捷的办法呢?我想尝试下面所述的方法:利用三维软件的运动仿真技术,把在实践中用到的、见到的以及在书本上学到的,常用的机构,绘制成三维模型仿真运动,让那些枯燥的平面图形变成实物一样的机构模型,并让他“动”起来,像看动画片一样。轻松地、在较短的时间里了解各种机构的运动原理,并大大地加深印象和记忆,用这样的办法来“缩短”掌握机构的时间。在老师的帮助下,首先完成了下面几个常用机构的仿真运动并作了简单的说明,方法是否可行?等候读者的消息。

20个常用机构的运动仿真案例 1、风扇摇头机构 图1是风扇摇头机构的原理模型。该机构把电机的转动转变成扇叶的摆动。红色的曲柄与蜗轮固接,蓝色杆为机架,绿色的连架杆与蜗杆(电机轴)固接。电机带扇叶转动,蜗杆驱动蜗轮旋转,蜗轮带动曲柄作平面运动,而完成风扇的摇头(摆动)运动。机构中使用了蜗轮蜗杆传动,目的是降低扇叶的摆动速度、模拟自然风。 图 1 风扇摇头机构 2、用摆动扇形齿轮实现间接送料机构 图2 是一个曲柄摇杆机构。绿色的可调曲柄可作整周旋转。并驱动扇形齿轮(摇杆)摆动,扇形齿轮又使蓝色小齿轮正反转动,若小齿轮与电磁离合器或超越离合器结合可完成间歇转动,可完成间断送料。 图 2 摆动扇形齿轮机构

槽轮机构运动学仿真

湖南农业大学工学院 课程设计说明书 课程名称:机械CAD/CAM课程设计 题目名称:槽轮机构运动学仿真 班级:20 11 级机制专业四班 姓名: 学号: 指导教师: 评定成绩: 教师评语: 指导老师签名: 20 年月日

目录 摘要 (1) 关键词 (1) 1 槽轮机构的结构组成和工作原理 (1) 2 零件三维实体模型建立的方法 (1) 2.1 主动转盘三维实体模型建立的方法 (1) 2.2 从动槽轮三维实体模型建立的方法 (3) 2.3 其他零件三维实体模型建立的方法 (4) 3 装配模型建立的方法和步骤 (6) 4 建立装配模型的运动仿真 (9) 5 装配模型的运动仿真分析 (13) 6 装配模型的运动仿真分析结论 (15) 7 装配模型图集 (16) 7.1 总成图 (16) 7.2 爆炸图 (16) 7.3 零件图 (17) 7.4 主动转盘工程图 (18) 8 总结 (19) 参考文献.......................................... (19)

槽轮机构运动学仿真 学生: (工学院,11-机制4班,学号) 摘要:槽轮机构是将主动拨盘的连续转动转化为从动槽轮的间歇转动,以达到间歇进给、转位和分度等工作要求。运用Pro/E软件对槽轮机构进行三维实体建模及装配,并运用模块进行运动仿真分析,得出机构的角速度、角加速度随时间变化的曲线。 关键词:槽轮机构;间歇运动;运动仿真 1、槽轮机构的结构组成和工作原理 槽轮机构由槽轮和圆柱销组成的单向间歇运动机构,又称马尔他机构。它常被用来将主动件的连续转动转换成从动件的带有停歇的单向周期性转动。槽轮机构有外啮合和内啮合以及球面槽轮等。外啮合槽轮机构的槽轮和转臂转向相反,而内啮合则相同,球面槽轮可在两相交轴之间进行间歇传动。槽轮机构典型结构由主动转盘、从动槽轮和机架组成。 2、零件三维实体模型建立的方法 2.1、主动转盘三维实体模型建立的方法 ②选择模板

槽轮机构的组成及其特点

槽轮机构的组成及其特点 newmaker (1) 槽轮的组成(Composition of Geneva Mechanism) 如右图所示,主动拨盘上的圆柱销进进槽轮上的径向槽以前,凸锁止弧将凹锁止弧锁住,则槽轮静止不动。圆柱销进进径向槽时,凸、凹锁止弧恰好分离,圆柱销可以驱动槽轮转动。当圆柱销脱离径向槽时,凸锁止弧又将凹锁止弧锁住,从而使槽轮静止不动。因此,当主动拨盘作连续转动时,槽轮被驱动作单向的间歇转动。 (2)槽轮的特点 构造简单,外形尺寸小; 机械效率高,并能较平稳地,间歇地进行转位; 但因传动时存在柔性冲击,故常用于速度不太高的场合。 槽轮机构的类型及应用 (1)槽轮机构的类型(Type of Geneva Mechanism) 外槽轮机构:运动时,拨盘与槽轮为异向回转。 内槽轮机构:运动时,拨盘与槽轮为同向回转。 两种机构均用于平行轴之间的间歇传动。 (2)槽轮机构的应用举例(Application Sample of Geneva Mechanism) 外槽轮机构被广泛应用于电影放映机中。

(3)球面槽轮机构(Sphere Geneva Mechanism) 当需要在两相交轴之间进行间歇传动时,可采用球面槽轮机构。右图为球面槽轮机构。 槽轮机构的运动系数及运动特性 (1)槽轮机构的运动系数k (Motion Factor of Geneva Mechanism) k=td/t 又因拨盘1一般为等速回转,因此时间的比值可以用拨盘转角的比值来表示。可得外槽轮机构运动系数的另一表达式: 由于运动系数k应大于零,所以由上式可知外槽轮径向槽的数目z应大于3。又由上式可知,

proe机构运动仿真教程

proe机构运动仿真教程 典型效果图 1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。 PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics (机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。

如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图 图1-2 机构模块下的主界面图 图1-3 机构菜单图1-4 模型树菜单图1-5 工具栏图标图1-5所示的“机构”工具栏图标和图1-3中下拉菜单各选项功能解释如下:

典型机构运动学

技术测量及运动学、力学分析能力训练 典 型 机 构 的 运 动 学 分 析 年级: 班级: 学号: 姓名:

对心曲柄滑块机构的运动学分析 一、已知参数: 在图1所示的曲柄滑块机构中,已知各构件的尺寸分别L1=80mm,L2=120mm,ω=66rad/s, 试确定连杆2和滑块3的位移、速度和加速度,并绘制出运动线图。 图1 曲柄滑块机构 二、机构的工作机理 1、机构自由度计算 F=3n-2p l -p h =3x3-2x4-0=1 2、机构的拆分及级别 该机构由一个Ι机构和一个ΙΙ 机构组成 三、数学模型的建立: 1、位置分析 由图1可以得到偏置曲柄滑块机构的向量模型,如图2所示,从而可得该机构的闭环位移矢量方程: 图2 对心曲柄滑块机构向量模型 C S l l =+21 将该闭环位移矢量方程向X 轴和Y 轴进行分解,可得该矢量方程的解析式: s i n s i n c o s c o s 22112211=+=+θθθθl l S l l C (1)

由式(1)得: 2211cos cos θθl l S C += ; ??? ? ??-=2112sin arcsin l l θθ ........... (2) 2、速度分析: 对(1)式两边求时间的一阶导数,可得机构的速度运动学方程: C v l l l l =--=+222111222111sin sin 0cos cos θωθωθωθω (3) 为了便于编写程序,将(3)式改写成矩阵形式: ??? ???-=????????????-11 11122222cos sin . 0 cos 1 sin θθωωθθl l v l l C (4) 3、加速度分析: 对(3)式两边求时间的一阶导数,可得机构的加速度运动学方程(矩阵形式): ? ?????--=????????????+????????????-11 11111222222222222sin cos 0 sin 0 cos 0 cos 1 sin θωθωωωθωθωαθθl l v l l a l l C C (5) 四、程序设计 1、主程序 %输入已经知道的数据 clear; l1=88; l2=102; e=0; hd=pi/180; du=180/pi; omega1=77; alpha1=0; %调用子函数 for n1=1:361 theta1(n1)=(n1-1)*hd; [theta2(n1),s3(n1),omega2(n1),v3(n1),alpha2(n1),a3(n1)]=slider_crank(theta1(n1),omega1,alpha1,l1,l2,e); end %绘制位移图 figure(1); n1=1:361; subplot(2,2,1); [AX,H1,H2]=plotyy(theta1*du,theta2*du,theta1*du,s3); set(get(AX(1),'ylabel'),'String','连杆角位移/\circ')

基于Matlab的机构运动仿真方法及其比较

基于Matlab的机构运动仿真方法及其比较 发表时间:2015-12-18T16:19:30.760Z 来源:《基层建设》2015年16期供稿作者:严家炜 [导读] 广东伊之密精密机械股份有限公司运动学仿真对于机构设计研究有着非常重要的地位,它能够去除大量的复杂繁琐和重复的计算工作,对运动过程进行直观的表达。 严家炜 广东伊之密精密机械股份有限公司 528306 摘要:机构运动仿真在机构学研究中占有着非常重要的地位,本文依照仿真活动生命周期,总结概括了三种机构运动仿真方法,并进行对比研究深入分析。基于MatLab平台,以曲柄摆杆机构为例探究这三种方法的实现途径。 关键词:Matlab;机构运动仿真;对比 前言 运动学仿真对于机构设计研究有着非常重要的地位,它能够去除大量的复杂繁琐和重复的计算工作,对运动过程进行直观的表达。在机构运动仿真中,明确不同仿真方法及其特点,把握仿真方法的发展趋势,从而充分选择和利用不同仿真平台的功能,对于节约仿真费用,提高研究效率等方面有积极作用。 1.Matlab概述 Matlab是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 2.机构运动仿真 机构仿真周期主要由建立模型,求解模型,展现结果,观察结果和调整模型等五部分构成,如图1所示。建立模型即列出相关构件或关键点的运动方程,通过求解模型解算出相关点的位姿数据,基于这些数据建立直观的人机界面,将运动过程动态展现给用户。通常仿真与优化配合使用,由于人机界面的直观性,通过观察常常可以获得优化方面的新信息,利用优化后的新参数调整仿真模型,开始一个新的仿真活动周期,直到获得满意结果为止。 根据对机构仿真中各阶段的侧重不同,可以将机构运动仿真方法基本归为三个大的类别。第一类的核心是,对仿真模型进行数值求解,称之为基于模型解算的仿真方法。第二类以提供建模支持手段为核心,利用一些辅助工具来提高建模效率,称之为基于辅助建模的仿真方法。第三类方法中引进了虚拟现实技术,称之为基于虚拟现实的仿真方法。以下以图1所示的曲柄摆杆机构为例,说明三种仿真方法的实现过程。该机构的相关参数分别为l1=370,l2=1049.6,l3=524.7,(xd,yd)=(1080.3,-270)。其中AB为曲柄,是原动件,以ω作匀速圆周运动,DC为摆杆。 图1:一个曲柄摆杆机构 3.运动仿真方法 3.1基于模型解算的运动仿真 基于模型解算的运动仿真方法属于传统的仿真方法,它以求解模型为核心,重点研究模型的求解方法,以及如何提高求解的效率。也就是说,仿真效率的提高主要体现为模型求解效率的提高。在MatLab中,具体表现为提供了大量的功能强大的函数,供求解模型时调用。 这种传统的机构仿真方法的另一个特点是,对仿真结果即运动轨迹的展现,除非用户满意字符界面,一般要用户本人利用图形函数绘制相关构件或关键点的轨迹。对于图2所示机构,如果要在基于OpenGL的环境下,以图形方式展现运动轨迹,开发人员必须调用多个GDI 函数。但在MatLab下,对于C点的位姿数据,只要调用plot函数即可获得运动图线。 3.2基于辅助建模的运动仿真 这种方法是以提高建模效率来提高仿真效率的,MatLab/Simulink就是以框图作为建立仿真模型的主要支持手段,框图成为描述模型的基本元素。而且,MatLab还提供了一个机构系统仿真工具SimMechanics,它可以在Simulink环境下直接使用,使得仿真建模更为便捷。 3.3基于虚拟现实的仿真方法 虽然在SimMechanics下也可采用VR的显示方式,问题是由于构件模型不是三维的,不能得到虚拟环境下的效果。尤其是对于空间机构,这种缺陷更为明显。如果能够从不同的空间位置,观察机构的构件基于三维实体模型的动态运动过程,则可以得到更为逼真的仿真效果,这有助于人们对机构的直观理解,对于发现设计缺陷是非常重要的。这可以利用MatLab中的VR工具箱[6]来实现。以虚拟现实的方式展现仿真结果数据时,必须将仿真模型的数据实时传送到虚拟场景中,用仿真模型驱动三维场景。 4.方法比较 4.1模型解算方法 这类方法强调仿真模型的求解,以提高求解仿真模型的效率为核心。主要优点是对软件平台的要求不高,比较灵活,不受制于仿真软件供应商。可以在多个较为通用平台上开发,如选择VisualC++或BorlandC++,可以开发自主知识产权的仿真软件。 这类方法主要缺点是,通用性相对较差,当面临每一个具体机构时,都要开发一个单独的仿真引擎,因此工作量较大。当要以图形方式展现仿真结果时,也必须进行额外的编程工作。这类方法的另外一个缺点是,要求技术人员掌握较多的编程知识和仿真领域的知识,增

第1节 四连杆机构运动仿真

第1讲四连杆机构运动仿真 一、建立连接 1.设置工作目录 选择【文件】→【设置工作目录】打开工作目录选取面板,如图1所示,选择如图所示2的文件夹为工作目录。 图1设置工作目录 图2 选择文件夹

2.建立新的装配文件 打开PROE软件,点击'文件',选择‘新建’,有如下对话框弹出(如图3所示),在类型项选择‘组件’,子类型项选择‘设计’,名称改为‘2009109120’,不使用缺省模板,点击‘确定’。有下对话框弹出(如图4所示),在模板中选择‘mmns -asm -design’,直接点击‘确定’开始进入制图过程。 图3 新建组件 图4 选择单位

二、装配文件 1.机架的放置 (1)进入PROE的主界面,点击右下角图标‘’,有如下对话框弹出(如图5所示),选择运动仿真四连杆中1ground.prt,单击打开。 图5 载入文件 在主界面出现一行任务栏,在‘自动’选项中选择,再在右边单击‘’,如图6所示。 图6 机架1 (2)再点击右下角图标‘’,选择运动仿真四连杆中1-ground-prt,单击‘打开’,则在主

界面中出现一行任务栏,如图7所示。 图7 机架2 用鼠标左键选择前面两平面对齐,如图8所示,再单击右边。再选择底面两平面对齐。 图8 平面对齐 再在选择两侧面对齐,在任务栏中选择,如图9所示,再单击右边。 图9 侧面对齐

2.曲柄的装配 在单击右下角‘’,在运动仿真四连杆中选择‘2-crank-prt',单击‘打开’。在主界面出 现一行任务栏:,在用户定义栏中有选择'’,在操作区中选择曲柄的轴线与机座的轴线重合,如图10所示。 图10 曲柄面匹配 再选择曲柄的前面与该机座的后面配对,如图11所示。在任务栏中点击‘’,和‘’,完成该次联结。 图11 轴对齐 3.摇杆的装配 单击右下角‘’,运动仿真四连杆中选择‘4rocker-prt’,单击‘打开’。任务栏: ,同理在用 户定义中选择‘’把第4摇杆与另一机座的轴线重合连结,如图12所示。

基于拨销与轮槽创成及啮合仿真的槽轮机构设计

1001 -2265(2013)06 -0110 -03 基于拨销与轮槽创成及啮合仿真的槽轮机构设计 陈殿华蔡军 大连大学机械工程学院,辽宁大连 116022 摘要:为了消除槽轮传动的柔性冲击和减小惯性负载以提高槽轮机构传动功效,提出了一种基于机构运动学和几何形状及啮合仿真的槽轮机构设计方法。研究以非圆截面驱动拨销和轮槽的几何形状设计为途径,以改善槽轮动力学特性为目标,利用拨销与轮槽创成运动分析进行槽轮机构的结构与传动设计。通过实例设计证明了该方法可实现槽轮动力特性和承载能力的显著改善。利用仿真分析进行槽轮机构的设计大大提高了设计质量和效率。该方法可用于高速精密无冲击槽轮机构的传动设计及加工仿真分析。 槽轮机构;柔性冲击;啮合仿真;凸轮拨销 TH112A Design of Geneva Mechanisms Bases on the Driving Pin and Wheel Lot  Generation and Meshing Simulation CHEN Dian-hua CAI Jun Institute of Mechanical Engineering, Dalian University, Dalian Liaoning 116022, ChinaAbstract: In order to raise efficacy of the Geneva driving by eliminating flexible shock and reducing inertia load, a new design method of Geneva mechanisms is presented based on kinematics, geometry shape and meshing simulation of the mechanisms. The design of configuration and driving for Geneva mechanisms has been discussed by using meshing generation analysis of the drive pin and slot in which the geometric shape design of the non-circular section driving pin and meshing slot are taken as the course, and the improve the dynamic character of the Geneva are taken as the object. It is proven that dynamic character and working capacity can be remarkably improved by designing of the practical examples for Geneva mechanism. The quantity and efficiency of Geneva mechanism design are greatly raised by using of simulation analysis. This design method can be used to the transmission design and machining simulation analysis for the high speed Geneva mechanism without any shock. geneva mechanisms; flexible shock; meshing simulation; cam driving pin 2012-11 -272012 -12 -17 国家自然科学基金资助项目(51075047)的资助 陈殿华(1953-),男,盘锦人,大连大学,教授,博士,硕士生导师,主要研究方向为机械设计及其强度可靠性研究,(E - mail) chendianhua@ dlu.edu.cn。 万方数据

iNVENTOR运动仿真分析

iNVENTOR运动仿真分析 第1章运动仿真 本章重点 应力分析的一般步骤 边界条件的创建 查看分析结果 报告的生成和分析 本章典型效果图 1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer 中“机构”模块是专门用来进行运动仿真和动态分析的模块。 PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,

可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。 如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图 图1-2 机构模块下的主界面图

小球运动仿真教程

第1章运动仿真进度 本章重点 应力分析的一般步骤 边界条件的创建 查看分析结果 报告的生成和分析 本章典型效果图

1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图

内槽轮机构的运动分析

% 内槽轮机构运动分析 dr=pi/180.0; % 角度与弧度的转换系数 % 销轮2转角范围:-f20

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E 点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD 的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。

机构运动参数测定 机械原理实验指导书 曲柄摇杆模拟仿真C语言程序

实验三机构运动参数测定 实验指导书 一、实验目的 1.利用计算机对平面机构结构参数进行优化设计,并且实现对该机构的运动进行仿真和测试分析,从而了解机构结构参数对运动情况的影响; 2.利用计算机对实际平面机构进行动态参数采集和处理,做出实测的机构动态运动和动力参数曲线,并与相应的仿真曲线进行对照,从而实现理论与实际的紧密结合; 3.利用计算机对机构进行平衡设置和调节,观察其运动不均匀状况和振动情况,进一步掌握平衡的意义和方法; 4.通过对平面机构中某一构件的运动、动力情况分析测定及整个机构运动波动及振动情况的测定分析,锻炼对于一般机械运动问题进行综合分析的能力。 二、实验设备和仪器 本实验所用仪器为:ZNH-A/1曲柄导杆滑块机构多媒体测试、仿真、设计综合实验台,ZNH-A/2曲柄摇杆机构多媒体测试、仿真、设计综合实验台,ZNH-A/3凸轮机构多媒体测试、仿真、设计综合实验台,ZNH-A/4槽轮机构多媒体测试、仿真、设计综合实验台。 1.ZNH-A/1曲柄导杆滑块机构多媒体测试、仿真、设计综合实验台 该实验台的测试机构一种形式为曲柄导杆滑块机构(如图3-1所示);还可拆装成另一种形式为曲柄滑块机构(如图3-2所示)。 图3-1 曲柄导杆滑块机构实验台图3-2 曲柄滑块机构实验台 2.ZNH-A/2曲柄摇杆机构多媒体测试、仿真、设计综合实验台 该实验台的测试机构如图3-3所示。

图3-3 曲柄摇杆机构实验台 3.ZNH-A/3凸轮机构多媒体测试、仿真、设计综合实验台 该实验台的测试机构一种形式为盘形凸轮机构(如图3-4所示),并配有四个不同运动 规律的测试凸轮;另一种形式为圆柱凸轮机构(如图3-5所示)。 图3-4 盘形凸轮机构实验台图3-5 圆柱凸轮机构实验台4.ZNH-A/4槽轮机构多媒体测试、仿真、设计综合实验台 该实验台的测试机构一种形式为四槽槽轮机构(如图3-6所示);另一种形式为八槽槽 轮机构(如图3-7所示)。 图3-6盘形凸轮机构实验台图3-7 圆柱凸轮机构实验台

基于proe的槽轮机构动力学仿真

目录 1 槽轮机构的应用 (1) 2 槽轮机构proe模型的建立 (3) 2.1 槽轮机构零件的建立 (3) 2.1.1 支架模型的建立 (4) 2.1.2 传动杆模型的建立 (5) 2.1.3 槽轮模型的建立 (6) 2.2 槽轮机构组件的装配 (7) 3 槽轮机构的仿真动力学分析 (8) 3.1 仿真运动的参数设置 (8) 3.1.1 凸轮副的建立 (8) 3.1.2 伺服电动机的定义 (9) 3.2 槽轮机构的动力学分析 (11) 3.2.1 测量的建立 (11) 3.2.2 槽轮机构分析 (12) 3.2.3 分析结果 (13) 3.3 总结 (17)

1 槽轮机构的应用 槽轮机构具有结构简单、制造容易、工作可靠和机械效率较高等优点。但是槽轮机构在工作时有冲击,随着转速的增加及槽数的减少而加剧,故不宜用于高速,其适用范围受到一定的限制。槽轮机构一般用于转速不是很高的自动机械、轻工机械和仪器仪表中。例如图1-1所示的电影放映机中的送片机构。由槽轮带动胶片,作有停歇的送进,从而形成动态画面。此外也常与其它机构组合,在自动生产线中作为工件传送或转位机构。如图1-2,为蜂窝煤制机模盘转位机构。 图1-1 电影胶片抓拍机构

图1-2 蜂窝煤制机模盘转位机构

2 槽轮机构proe模型的建立 2.1 槽轮机构零件的建立 槽轮机构主要由支架、传动杆和槽轮组成,其模型图如图2-1所示。 图2-1 槽轮机构模型

2.1.1 支架模型的建立 在proe软件中,新建“零件”,通过“草绘”和“拉伸“的操作,建立如图2-2 的支架零件。 图2-2 支架模型

相关主题
文本预览
相关文档 最新文档