当前位置:文档之家› Single-Walled Carbon Nanotube Electronics

Single-Walled Carbon Nanotube Electronics

Single-Walled Carbon Nanotube Electronics
Single-Walled Carbon Nanotube Electronics

Single-Walled Carbon Nanotube Electronics

Paul L.McEuen,Michael S.Fuhrer,and Hongkun Park Abstract—Single-walled carbon nanotubes(SWNTs)have

emerged as a very promising new class of electronic materials.

The fabrication and electronic properties of devices based on

individual SWNTs are reviewed.Both metallic and semicon-

ducting SWNTs are found to possess electrical characteristics

that compare favorably to the best electronic materials available.

Manufacturability issues,however,remain a major challenge.

Index Terms—Field-effect transistors(FETs),interconnections,

nanotechnology,nanotube.

I.I NTRODUCTION

S INGLE-W ALLED carbon nanotubes(SWNTs)are

nanometer-diameter cylinders consisting of a single

graphene sheet wrapped up to form a tube.Since their dis-

covery in the early1990s[1]and[2],there has been intense

activity exploring the electrical properties of these systems

and their potential applications in electronics.Experiments

and theory have shown that these tubes can be either metals

or semiconductors,and their electrical properties can rival,or

even exceed,the best metals or semiconductors known.Partic-

ularly illuminating have been electrical studies of individual

nanotubes and nanotube ropes(small bundles of individual

nantoubes).The first studies on metallic tubes were done in

1997[3]and[4]and the first on semiconducting tubes in

1998[5].In the intervening five years,a large number of

groups have constructed and measured nanotube devices,and

most major universities and industrial laboratories now have

at least one group studying their properties.These electrical

properties are the subject of this review.The data presented

here are taken entirely from work performed by the authors(in

collaboration with other researchers),but they can be viewed

as representative of the field.

The remarkable electrical properties of SWNTs stem from

the unusual electronic structure of the two-dimensional mate-

rial,graphene,from which they are constructed[6]and[7].

Graphene—a single atomic layer of graphite—consists of a2-D

honeycomb structure of sp

Fig.1.(a)Lattice structure of graphene,a honeycomb lattice of carbon atoms.(b)Energy of the conducting states as a function of the electron wavevector k. There are no conducting states except along special directions where cones of states exist.(c),(d)Graphene sheets rolled into tubes.This quantizes the allowed k s around the circumferential direction,resulting in1-D slices through the2-D band structure in(b).Depending on the way the tube is rolled up,the result can be

either(c)a metal or(d)a semiconductor.

effect,but these are not of direct relevance to most device ap-plications.We,therefore,refer the reader to existing reviews for further discussion of these topics[11]–[13].

The critical issues with respect to device applications are twofold.The first is how reproducibly and reliably nanotube devices can be manufactured.Some current approaches to device fabrication are discussed in Section II.The second issue is how the electrical properties of SWNT devices compare to other electronic materials.These properties are described below in Sections III and IV for metallic and semiconducting tubes,respectively.These sections show that devices based on individual SWNTs have remarkable electrical character-istics,making them a very promising new class of electronic materials.The manufacturability challenges,however,are very significant.While advances are being made,controlled, reproducible device fabrication remains an unattained goal. These issues will be discussed in more detail in Section V.

II.N ANOTUBE G ROWTH AND D EVICE F ABRICATION SWNTs are grown by combining a source of carbon with a catalytic nanostructured material such as iron or cobalt at ele-vated temperatures.Sources of carbon employed to date include bulk graphite,hydrocarbons,and carbon monoxide.While the details of the growth process are far from understood,the basic elements are now coming into focus.A schematic is shown in Fig.2(a).At elevated temperatures,the catalyst has a high sol-ubility for carbon.The carbon in the particle links up to form graphene and wraps around the catalyst to from a cylinder.Sub-sequent growth occurs from the continuous addition of carbon to the base of the tube at the nanoparticle/tube interface.Re-markably,tubes can grow to lengths of hundreds of microns by this process[14].

Creating the proper conditions for growth can done in a va-riety of ways.From the point of view of device fabrication,the techniques can be divided into categories.In the first category are tubes grown by bulk synthesis techniques that are subse-quently deposited on a substrate to make devices(“deposited tubes”).The most common methods for bulk fabrication are arc synthesis[1],[2]and laser assisted growth[15],and commercial sources of SWNTs from these techniques are now available.By controlling the growth conditions,high yields of SWNTs with narrow size distributions can be obtained.Unfortunately,tubes fabricated this way are in the form of a highly tangled“felt”of tubes and bundles of tubes.For electronic devices,these tubes

Fig.2.(a)Schematic of a SWNT growing from a catalyst seed particle.

(b)Atomic force microscope images of a single nanotube device fabricated using electron beam lithography.(c)Parallel fabrication of SWNT devices by growth from patterned catalysts and subsequent deposition of arrays of electrodes.The lower panel shows an AFM image of one pair electrodes bridged by two SWNTs.

must be separated,cut into usable sizes,and then deposited on a substrate.This is typically done by ultrasonication in an appro-priate solvent to disperse and cut the SWNTs,followed by de-position onto a substrate by spinning or drying.Unfortunately, this is to date an uncontrolled process,producing tubes on the substrate of varying lengths that are often still bundled together. This processing can also induce significant numbers of defects in the tubes.However,new techniques for the wet processing, cutting,and sorting of nanotubes are under constant develop-ment[16]–[20].

An alternative approach is to grow the nanotubes directly on the wafer[21].Currently this is done using chemical vapor deposition(CVD).The catalyst material is placed on the surface of a wafer,which is inserted in a standard furnace at 700C in a flow of a carbon source gas such as methane.The tubes grow from the catalyst seeds on the sub-strate.Engineering the properties of the catalyst and controlling the growth conditions control the properties of the tubes.For example,relatively monodisperse nanoparticle catalysts have been shown to yield SWNTs with a diameter closely matching that of the catalyst particle[22]and[23].

For both deposited and CVD-grown SWNTs,the tubes must be integrated with electrodes and gates on a wafer to make de-vices.A major challenge is the placement of the tubes relative to lithographically patterned features on the substrate.For both CVD-grown and deposited tubes,techniques have been devel-oped that are satisfactory for research purposes,if not for mass production.Examples are shown in Fig.2.For the device in Fig.2(b),SWNTs were grown by CVD and located relative to alignment marks on the surface using an atomic force micro-scope.Polymethylmethacrylate(PMMA)resist was then spun over the tubes and an electron beam mask was designed,fol-lowed by electron beam lithography and liftoff to attach the gold leads[4].The tubes remain bound to the substrate are unaffected by standard solvents for resist patterning.An alternate approach [21]is to pattern arrays of small catalyst islands from which SWNTs are grown.Electrode arrays are then deposited over the catalyst pads using optical or electron beam lithography.The result is pairs of electrodes with a random number of tubes con-necting them,as seen in Fig.2(c).By adjusting the parameters, a significant fraction of electrodes with only one tube bridging them can be obtained.Equivalent approaches exist to create de-vices for deposited tubes,with the CVD growth step replaced by a deposition step.An alternative method available for de-posited tubes is to pattern the electrodes first and then deposit the tubes on top of the electrodes[3].This avoids the high-tem-perature growth step,and chemical modification of the surface [24]and/or electric fields can be used to control,to some degree, the locations of the deposited tubes.

A schematic of the resulting device geometry is shown in the inset to Fig.5.Source and drain electrodes allow the con-ducting properties of the nanotube to be measured,and a third gate electrode gate is used to control the carrier density on the tube.Typically,the degenerately doped Si substrate is used as the gate.Nearby metal electrodes[3],an oxidized Al electrode under the tube[25],and even an ionic solution around the tube [26]and[27]have also been employed as gates.When the con-ductance of the tube as the gate voltage,and hence the charge per unit length of the tube,is varied is measured,two classes of behavior are seen.For some

tubes,

on

6-k).Most of this variation is due to variations in contact resistance between the electrodes and the tube.As techniques for making improved contacts have been developed,the conductances have steadily improved.The best contacts have been obtained by evaporating Au or Pt over the tube,often followed by a subsequent anneal.A number of groups have seen conductances approaching the

value,

as a function

of

1-,the conductance

is

1

cm.The conductivity of metallic nanotubes can,thus,be equal to,or even exceed,the conduc-tivity of the best metals at room temperature.

These long scattering lengths are in striking contrast to the behavior observed in traditional metals like copper,where scat-tering lengths are typically on the order of tens of nanometers

Fig.3.Differential conductance d I=dV of a metallic SWNT as a function of V ,at different temperatures.The conductance at low V approaches the values for a ballistic SWNT,4e 2=h .At higher V ,the conductance drops dramatically due to optic and zone-boundary phonon scattering.

at room temperature,due to phonon scattering.The main dif-ference is the significantly reduced phase space for scattering by acoustic phonons in a 1-D system.At room temperature,acoustic phonons have much less momentum than the electrons at the Fermi energy.In a traditional metal,phonons backscatter electrons through a series of small angle scattering events that eventually reverse the direction of an electron.This is not pos-sible in a 1-D conductor such as a nanotube,where only for-ward and backward propagation is possible.Note that while the mean-free path is much larger than traditional metals,the conductivity is only comparable to slightly better.This is be-cause the effective density of states in nanotubes is much lower than traditional metals because of the semimetallic nature of graphene.

Optic and zone-boundary phonons have the necessary mo-mentum to backscatter electrons in nanotubes.They are too high in energy

(

.At high source–drain voltages,however,electrons

can emit these phonons and efficiently backscatter.This leads to a dramatic reduction of the conductance at high biases,as was first reported by Yao et al.[31].This can be readily seen in the data of Fig.3.The scattering rate grows linearly

with

for a 1nm diameter tube.This is orders of magnitude

larger than current densities found in present-day interconnects.This large current density can be attributed to the strong cova-lent bonding of the atoms in the tube.Unlike in metals,there are no low energy defects,dislocations,etc.,that can easily lead to the motion of atoms in the conductor.

In addition to phonon scattering,scattering off of static dis-order (defects,etc.)is also possible in metallic tubes.A number of sources of scattering have been identified,including physical bends in the tube [32]and [33]and localized electronic states created at defects along the tube [34].One technique that can give direct information about these scattering centers is scanned gate microscopy (SGM).In this technique,a metallized AFM tip is used as a local gate to probe the conducting properties.Fig.4shows a SGM image of a metallic tube [34].The dark features in the images correspond to locations of defects,

which

Fig.4.Left panel:AFM image of a metallic SWNT.Other panels:Scanned gate microscopy of defects in the SWNT at different AFM tip voltages.The conductance through the SWNT is recorded as a function of the tip position.Resonant scattering at defect sites is indicated by rings of reduced conductance (dark)centered on the

defects.

Fig.5.Conductance G versus gate voltage V

Semiconducting nanotubes are typically p-type

at be-cause of the contacts and also because chemical species,particu-larly oxygen,adsorb on the tube and act as weak p-type dopants.Experiments have shown that changing a tube’s chemical en-vironment can change this doping level—shifting the voltage at which the device turns on by a significant amount [37]and [38].This has spurred interest in nanotubes as chemical sensors.Adsorbate doping can be a problem for reproducible device be-havior,however.In air,a large hysteresis

in

20–50

k

grows linear

with

is the capacitance per unit

length of the

tube,

is the mobility.The capacitance per unit length of the tube can be estimated or obtained from other measurements [3],[4],[46].Using this we can infer the mobility of the

tube,

/V

/V

9

k m is observed,implying a mean-free path of

m,comparable to the mean-free paths in metallic tubes.This result is consistent with the maximum conductances

observed for semiconducting SWNTs

(

m long tubes)and the high mobilities discussed above.

In order to maximize device performance,the tube gate ca-

pacitance

should be maximized.Most experiments to date have used gate oxide thicknesses of hundreds of millimicrons.More recently,researchers have investigated a number of ways to increase the gate coupling,such as using a very thin Al oxide gate [25]or using an electrolyte solution as a gate [26]and [27].The latter is schematically shown in Fig.7(a),with the

resulting

curves at

different

and

then becomes constant in the saturation region.The nanotube exhibits excellent characteristics,with a maximum transconduc-

tance,

V .Normalizing this to the device width of

10-mS/

Fig.7.I–V characteristics at different V V

Ye Science magazine),in reality the accomplishments to date are a far cry from anything that would impress a device engineer or circuit designer.However,there appear to be no fundamental barriers to the development of a technology.The science of nanotubes has come a long way in five years.With the involvement of the engineering community,perhaps the technology of nanotubes will see similar progress in the next five.

A CKNOWLEDGMENT

The authors would like thank their many collaborators at Cornell University,Ithaca,NY,Harvard University,Cambridge, MA,and at the University of California at Berkeley who participated in the work described here.

R EFERENCES

[1]S.Iijima and T.Ichihashi,“Single-shell carbon nanotubes if1-Nm di-

ameter,”Nature,vol.363,pp.603–605,1993.

[2] D.S.Bethune,C.H.Kiang,M.S.Devries,G.Gorman,R.Savoy,J.

Vazquez,and R.Beyers,“Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls,”Nature,vol.363,pp.605–607,1993.

[3]S.J.Tans,M.H.Devoret,H.Dai,A.Thess,R.E.Smalley,L.J.Georliga,

and C.Dekker,“Individual single-wall carbon nanotubes as quantum wires,”Nature,vol.386,pp.474–477,1997.

[4]M.Bockrath,D.H.Cobden,P.L.McEuen,N.G.Chopra,A.Zettl,A.

Thess,and R.E.Smalley,“Single-electron transport in ropes of carbon nanotubes,”Science,vol.275,pp.1922–1925,1997.

[5]S.J.Tans,R.M.Verschueren,and C.Dekker,“Room temperature tran-

sistor based on a single carbon nanotube,”Nature,vol.393,pp.49–52, 1998.

[6]N.Hamada,S.Sawada,and A.Oshiyama,“New one-dimensional

conductors—Graphitic microtubules,”Phys.Rev.Lett.,vol.68,pp.

1579–1581,1992.

[7]R.Saito,M.Fujita,G.Dresselhaus,and M.S.Dresselhaus,“Electronic

structure of chiral graphene tubules,”Appl.Phys.Lett.,vol.60,pp.

2204–2206,1992.

[8]T.W.Odom,H.Jin-Lin,P.Kim,and C.M.Lieber,“Atomic structure

and electronic properties of single-walled carbon nanotubes,”Nature, vol.391,pp.62–64,1998.

[9]J.W.G.Wildoer,L.C.Venema,A.G.Rinzler,R.E.Smalley,and C.

Dekker,“Electronic structure of atomically resolved carbon nanotubes,”

Nature,vol.391,pp.59–62,1998.

[10]S.Datta,Electronic Transport in Mesoscopic Systems.Cambridge,

MA:Cambridge Univ.Press,1995.

[11] C.Dekker,“Carbon nanotubes as molecular quantum wires,”Physics

Today,vol.52,p.22,1999.

[12]J.Nygard,D.H.Cobden,M.Bockrath,P.L.McEuen,and P.E.Lindelof,

“Electrical transport measurements on single-walled carbon nanotubes,”

Appl.Phys.A,Solids Surf.,vol.A69,pp.297–304,1999.

[13]Z.Yao, C.Dekker,and P.Avouris,“Electrical transport through

single-wall carbon nanotubes,”in Topics in Applied Physics,M.S.

Dresselhaus,G.Dresselhaus,and P.Avouris,Eds.Berlin,Germany: Springer-Verlag,2001,vol.80,pp.147–171.

[14]N.R.Franklin and H.Dai,“An enhanced CVD approach to extensive

nanotube networks with directionality,”Adv.Mater.,vol.12,pp.

890–894,2000.

[15] A.Thess,R.Lee,P.Nikolaev,H.Dai,P.Petit,J.Robert,X.Chunhui,

L.Young Hee,K.Seong Gon,A.G.Rinzler,D.T.Colbert,G.E.

Scuseria,D.Tombnek,J.E.Fischer,and R.E.Smalley,“Crystalline ropes of metallic carbon nanotubes,”Science,vol.273,pp.483–487, 1996.

[16]J.Liu,A.G.Rinzler,H.Dai,J.H.Hafner,R.K.Bradley,P.J.Boul,A.

Lu,T.Iverson,K.Shelimov,C.B.Huffman,F.Rodriguez-Macias,Y.-S.

Shon,T.R.Lee,D.T.Colbert,and R.E.Smalley,“Fullerene pipes,”

Science,vol.280,pp.1253–1256,1998.

[17]J.Chen,M.A.Hamon,H.Hu,Y.Chen,A.M.Rao,P.C.Eklund,and

R.C.Haddon,“Solution properties of single-walled carbon nanotubes,”

Science,vol.282,pp.95–98,1998.

[18] E.T.Mickelson,C.B.Huffman,A.G.Rinzler,R.E.Smalley,R.H.

Hauge,and J.L.Margrave,“Fluorination of single-wall carbon nan-otubes,”Chem.Phys.Lett.,vol.296,pp.188–194,1998.

[19]J.Chen,A.M.Rao,S.Lyuksyutov,M.E.Itkis,M.A.Hamon,H.Hu,R.

W.Cohn,P.C.Eklund,D.T.Dolbert,R.E.Smalley,and R.C.Haddon,“Dissolution of full-length single-walled carbon nanotubes,”J.Phys.

Chem.B,vol.105,pp.2525–2528,2001.

[20]S.Niyogi,H.Hu,M.A.Hamon,P.Bhowmik,B.Zhao,S.M.Rozenzhak,

J.Chen,M.E.Itkis,M.S.Meier,and R.C.Haddon,“Chromatographic purification of soluble single-walled carbon nanotubes(s-SWNT’s),”J.

Amer.Chem.Soc.,vol.123,pp.733–734,2001.

[21]J.Kong,H.T.Soh,A.Cassell,C.F.Quate,and H.Dai,“Synthesis of

single single-walled carbon nanotubes on patterned silicon wafers,”Na-ture,vol.395,p.878,1998.

[22]Y.Li,W.Kim,Y.Zhang,M.Rolandi, D.Wang,and H.Dai,

“Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,”J.Phys.Chem.B,vol.105,p.11424, 2001.

[23] C.L.Cheung,A.Kurtz,H.Park,and C.M.Lieber,“Diameter controlled

synthesis of carbon nanotubes,”J.Phys.Chem.B,vol.105,2002,to be published.

[24]J.Liu,M.J.Casavant,M.Cox,D.A.Walters,P.Boul,L.Wei,A.J.

Rimberg,K.A.Smith,D.T.Colbert,and R.E.Smalley,“Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates,”Chem.Phys.Lett.,vol.303,pp.125–129, 1999.

[25] A.Bachtold,P.Hadley,T.Nakanishi,and C.Dekker,“Logic circuits

with carbon nanotube transistors,”Science,vol.294,pp.1317–1320, 2001.

[26]M.Kruger,M.R.Buitelaar,T.Nussbaumer,C.Schonenberger,and L.

Forro,“Electrochemical carbon nanotube field-effect transistor,”Appl.

Phys.Lett.,vol.78,pp.1291–1293,2001.

[27]S.Rosenblatt,Y.Yaish,J.Park,J.Gore,and P.L.McEuen,“High per-

formance electrolyte gates carbon nanotube transistors,”.

[28]L.Wenjie,M.Bockrath,D.Bozovic,J.H.Hafner,M.Tinkham,and P.

Hongkun,“Fabry–Perot interference in a nanotube electron waveguide,”

Nature,vol.411,pp.665–669,2001.

[29]J.Kong,E.Yenilmez,T.W.Tombler,W.Kim,H.Dai,https://www.doczj.com/doc/4d15339554.html,ughlin,

L.Liu,C.S.Jayanthi,and S.Y.Wu,“Quantum interference and ballistic transmission in nanotube electron waveguides,”Phys.Rev.Lett.,vol.87, pp.106801/1–106891/4,2001.

[30] A.Bachtold,M.S.Fuhrer,S.Plyasunov,M.Forero,E.H.Z.Anderson,

Z.A.Zettl,and P.L.McEuen,“Scanned probe microscopy of electronic transport in carbon nanotubes,”Phys.Rev.Lett.,vol.84,pp.6082–6085, 2000.

[31]Z.Yao,C.L.Kane,and C.Dekker,“High-field electrical transport in

single-wall carbon nanotubes,”Phys.Rev.Lett.,vol.84,pp.2941–2944, 2000.[32]H.W.C.Postma,M.de Jonge,and C.Dekker,“Electrical transport

through carbon nanotube junctions created by mechanical manipula-tion,”Phys.Rev.B,Condens.Matter,vol.62,pp.R10653–R10656, 2000.

[33] D.Bozovic,M.Bockrath,J.H.Hafner,C.M.Lieber,P.Hongkun,and

M.Tinkham,“Electronic properties of mechanically induced kinks in single-walled carbon nanotubes,”Appl.Phys.Lett.,vol.78,pp.

3693–3695,2001.

[34]M.Bockrath,L.Wenjie,D.Bozovic,J.H.Hafner,C.M.Lieber,M.

Tinkham,and P.Hongkun,“Resonant electron scattering by defects in single-walled carbon nanotubes,”Science,vol.291,pp.283–285,2001.

[35]J.Park and P.L.McEuen,“Formation of a p-type quantum dot at the end

of an n-type carbon nanotube,”Appl.Phys.Lett.,vol.79,pp.1363–1365, 2001.

[36] A.Javey,M.Shim,and H.Dai,“Electrical properties and devices of

large-diameter single-walled carbon nanotubes,”Appl.Phys.Lett.,vol.

80,p.1064,2002.

[37]J.Kong,N.R.Franklin,C.Zhou,M.G.Chapline,S.Peng,K.Cho,and

H.Dai,“Nanotube molecular wires as chemical sensors,”Science,vol.

287,p.622,2000.

[38]V.Derycke,R.Martel,J.Appenzeller,and P.Avouris,“Carbon nanotube

inter-and intramolecular logic gates,”Nano Lett.,vol.1,pp.453–456, 2001.

[39]R.J.Chen,N.R.Franklin,K.Jing,C.Jien,T.W.Tombler,Z.Yuegang,

and D.Hongjie,“Molecular photodesorption from single-walled carbon nanotubes,”Appl.Phys.Lett.,vol.79,pp.2258–2260,2001.

[40]R.Martel,V.Derycke,https://www.doczj.com/doc/4d15339554.html,voie,J.Appenzeller,K.K.Chan,J.Ter-

soff,and P.Avouris,“Ambipolar electrical transport in semiconducting single-wall carbon nanotubes,”Phys.Rev.Lett.,vol.87,p.256805,2001.

[41]M.Bockrath,J.Hone,A.Zettl,P.L.McEuen,A.G.Rinzler,and

R. E.Smalley,“Chemical doping of individual semiconducting carbon-nanotube ropes,”Phys.Rev.B,Condens.Matter,vol.61,pp.

R10606–R10608,2000.

[42]J.Kong,C.Zhou,E.Yenilmez,and H.Dai,“Alkaline metal-doped

n-type semiconducting nanotubes as quantum dots,”Appl.Phys.Lett., vol.77,pp.3977–3979,2000.

[43] C.Zhou,J.Kong,E.Yenilmez,and H.Dai,“Modulated chemical

doping of individual carbon nanotubes,”Science,vol.290,pp.

1552–1555,2000.

[44]J.Kong,J.Cao,and H.Dai,“Chemical profiling of single nanotubes:

Intramolecular p–n–p junctions and on-tube single-electron transistors,”

Appl.Phys.Lett.,vol.80,p.73,2002.

[45]J.Kong and H.Dai,“Full and modulated chemical gating of individual

carbon nanotubes by organic amine compounds,”J.Phys.Chem.B,vol.

105,p.2890,2001.

[46] D.H.Cobden,M.Bockrath,P.L.McEuen,A.G.Rinzler,and R.E.

Smalley,“Spin splitting and even–odd effects in carbon nanotubes,”

Phys.Rev.Lett.,vol.81,pp.681–684,1998.

[47]R.Martel,T.Schmidt,H.R.Shea,T.Hertel,and P.Avouris,“Single-and

multi-wall carbon nanotube field-effect transistors,”Appl.Phys.Lett., vol.73,pp.2447–2479,1998.

[48]P.L.McEuen,M.Bockrath,D.H.Cobden,Y.-G.Yoon,and S,G.Louie,

“Disorder,pseudospins,and backscattering in carbon nanotubes,”Phys.

Rev.Lett.,vol.83,p.5098,1999.

[49] A.Bachtold,M.S.Fuhrer,S.Plyasunov,M.Forero,E.H.Anderson,

A.Zettl,and P.I.McEuen,“Scanned probe microscopy of electronic

transport in carbon nanotubes,”Phys.Rev.Lett.,vol.84,pp.6082–6085, 2000.

[50]Z.Yao,H.W.C.Postma,L.Balents,and C.Dekker,“Carbon nanotube

intramolecular junctions,”Nature,vol.402,p.273,1999.

[51]J.Lefebvre,R.D.Antonov,M.Radosavljevic,J.F.Lynch,M.Lla-

guno,and A.T.Johnson,“Single-wall carbon nanotube based devices,”

Carbon,vol.38,pp.1745–1749,2000.

[52]M.S.Fuhrer,J.Nyg?rd,L.Shih,M.Forero,Y.-G.Yoon,M.S.C.Maz-

zoni,H.J.Choi,J.Ihm,S.G.Louie,Z.A.Zettl,and P.L.McEuen,“Crossed nanotube junctions,”Science,vol.288,pp.494–497,2000.

[53]T.Rueckes,K.Kim,E.Joselevich,G.Y.Tseng,C.L.Cheung,and C.

M.Lieber,“Carbon nanotube-based nonvolatile random access memory for molecular computing,”Science,vol.289,pp.94–97,2000.

[54]T.W.Tombler,Z.Chongwu,L.Alxseyev,K.Jing,D.Hongjie,L.Lei,

C.S.Jayanthi,T.Meijie,and W.Shi-Yu,“Reversible electromechanical

characteristics of carbon nanotubes under local-probe manipulation,”

Nature,vol.405,pp.769–772,2000.

[55]Y.Zhang,A.Chang,J.Cao,Q.Wang,W.Kim,Y.Li,N.Morris,

E.Yenilmez,J.Kong,and H.Dai,“Electric-field-directed growth of

aligned single-walled carbon nanotubes,”Appl.Phys.Lett.,vol.79,pp.

3155–3157,2001.

Paul L.McEuen was born in Norman,OK,in1963.

He received the B.S.degree in engineering physics

from the University of Oklahoma in1985and the

Ph.D.degree in applied physics from Yale University,

New Haven,CT,in1991.

He was a Postdoctoral Researcher at the Massa-

chusetts Institute of Technology,Cambridge,before

joining the University of California at Berkeley in

1992,where he was an Assistant Professor and later

Associate Professor of physics and a researcher at

LBNL.In2001,he joined the faculty of Cornell Uni-

versity,Ithaca,NY,as a Professor of physics.His research examines the sci-

ence and technology of nanostructures,and has included studies of nanotubes,

quantum dots,and single molecules.He also develops advanced measurement

techniques to probe nanometer-scale

systems.

Michael S.Fuhrer received the B.S.degree in

physics from the University of Texas at Austin

in1990and the Ph.D.degree in physics from the

University of California at Berkeley in1998.

Since2000,he has been an Assistant Professor

of physics at the University of Maryland,College

Park.His research interests lie in the electronic

and electromechanical properties of nanostructures,

including carbon nanotubes,nanowires,and new

two-dimensional

nanostructures.

Hongkun Park was born in Seoul,Korea,in1967.

He received the B.S.degree in chemistry from Seoul

National University,Seoul,Korea,in1990and the

Ph.D.degree in physical chemistry from Stanford

University,Stanford,CA,in1996.

Since1999,he has been with the Department of

Chemistry and Chemical Biology at Harvard Univer-

sity,Cambridge,MA,as an Assistant Professor.His

research interests lie in the physics and chemistry

of nanostructured materials,specifically:1)to

study electrical properties of individual molecules,

clusters,carbon nanotubes,and their arrays and2)to develop synthetic schemes

for transition–metal–oxide nanostructures and to study their electronic and

magnetic properties.

指纹考勤机使用操作步骤

指纹考勤机使用操作步骤 对于新购机用户,可按此操作步骤来操作使用该机器。 本操作步骤将按照采集指纹、设置排班、报表查询、系统管理四个部分进行介绍。 一、采集指纹 新购机用户需要学习如何采集指纹,指纹采集完成后即可正常使用考勤机。 1.把考勤机通电,打开机器,使机器处于正常工作状态。 2.在考勤机操作面板上按主菜单[MENU] – [用户管理] – [用户登记] – [指纹登记],屏幕提示“新登记?” ,按[OK]键,这个时候要输入员工的工号,输入后按[OK]确认,此时屏幕提示:“请放手指”。 3.放手指时要注意,被采集者身体相对考勤机要站正。把从指尖开始2/3位置指肚非常饱满的平放在采集器玻璃片上,不要滑动手指,轻轻用力按压,听到“嘀”的一声移开手指,同样进行第2次第3次按压,按压3次为采集了一枚完整的指纹。 4.3次按压完成后,按[OK] 保存。此时屏幕提示:…新登记??我们可按[ESC] 键,进行备份登记,每个员工可以采集至少2枚指纹,以备其中一个有磨损破裂时使用。 5.备份完成后,按[OK] 保存,此时屏幕提示:“继续备份吗?”如果要继续进行备份请按[OK],要结束备份请按[ESC] ,并进行下一个员工的指纹登记。 6.指纹登记完成后,即可使用所登记的手指进行指纹考勤。依照采集指纹时的按压方法进行即可。按压后,屏幕显示员工的工号,并伴随有机器语音提示“谢谢”。如果按压不成功,则有语音提示“请重按手指”,此时请重新按压手指或更换另一手指按压。 7.在上面第6步操作中,我们只看到了员工的工号,没看到姓名,实际上是可以显示员工的姓名的。请进行以下步骤。 8.在计算机上安装考勤管理系统。放入安装光盘,按屏幕提示进行安装即可,注意要把程序安装路径更改为D盘。 9.把考勤机和计算机进行连接。考勤机和计算机的通讯方式有RS232、RS485、TCP/IP、USB数据线4种直连方式。 10.打开考勤管理系统,选种设备名称及相应的连接方式,点[连接设备]按钮。见下图: 连接成功后,右下放状态栏有提示;且设备名称前的图标为亮彩色显示。 11.点[从设备下载人员信息] 按钮,将弹出窗口,并点[下载]即可。下载完成后请关闭该窗口。 12.点[人员维护] 按钮,则弹出人员维护窗口,如下图: 在上图窗口中,输入员工的姓名信息,并保存。员工姓名输入完毕后请关闭该窗口。 13.点[上传人员信息到设备] 按钮。在弹出的窗口中,按[上传] 即可。此一步是把刚才输入的员工姓名上传到考勤中,上传完毕,按压指纹考勤时即可同时显示员工的工号和姓名了。 至此,指纹的采集工作已经完成。可以把考勤机安放在指定位置进行考勤使用了。接下来我们要讲一下有关部门的设置和员工的调动。

同方系统还原卡(BIOS)MAX版说明书

目录 1同方系统还原卡MAX版安装流程图 (2) 2 同方系统还原卡MAX版及操作系统的安装 (3) 2.1安装前的准备 (3) 2.2安装发送端 (4) 2.3网络拷贝 (15) 2.4硬盘复制 (20) 3 自动维护 (22) 4 系统设定 (25) 4.1密码设定 (25) 4.2参数设定 (26) 4.3分区信息 (28) 4.4工具 (28) 4.5重新分区 (29) 4.6更版 (29) 4.7移除 (29) 4.8版本信息 (29) 5 同方易教使用方法 (30) 5.1.系统安装要求 (30) 5.2.软件安装 (31) 5.3.同方易教控制端说明 (32) 5.4.软件分发功能 (39) 6 自动分配IP操作流程 (47)

附录一热键提示 (50) 附录二硬盘大传小功能 (51) 附录三LINUX系统安装说明 (51) 附录四网域登录使用方式 (56) 附录五常见问题解答 (59)

1同方系统还原卡MAX版安装流程图

2 同方系统还原卡MAX版及操作系统的安装 首先非常感谢您使用同方产品。同方系统还原卡MAX版能大批量地完成整个计算机机房系统及软件的安装或更新。先将一台安装好同方系统还原卡MAX版系统、操作系统及应用软件的计算机设定为发送端,其余所有的计算机利用同方系统还原卡MAX版附带的SNCOPY网络联机拷贝盘设定为接收端,通过网络将发送端的硬盘数据同时复制到所有的计算机中,并自动修改所有计算机的IP地址等网络设置,完成整个计算机机房系统的安装和更新。 2.1 安装前的准备 安装本系统前,请您确认以下相关事项: 1、请进入您计算机CMOS管理界面 1)将CMOS中的病毒警告关闭。 2)将CMOS中显卡以外的映射地址设为Disable。 3)将CMOS中的Network/LAN引导选项,设为Enabled 或设定为网络优先启动(该项没有,可以不设定)。 4)如CMOS中有Fast Boot的选项,请将此项设定为 Disable(该项没有,可以不设定)。 2、如需安装Windows NT Workstation,需安装NT补丁程 序Service Pack3以上版本。 3、如需安装两个以上的操作系统,请注意:DOS和Windows NT4.0 Workstation系统只能安装在硬盘物理容量前2GB 以内。 4、本系统不支持Microsoft操作系统的Server版本。

中控考勤机详细操作说明书

中控考勤机说明书 1考勤机的使用 1.1登记指纹 1.2考勤机功能介绍(通讯,参数设置,系统信息,U盘管理) 2考勤软件的使用 2.1 软件的安装 2.2 软件使用 2.2.1 增加设备 2.2.2 从设备下载人员信息 2.2.3 修改人员信息(改名字,调动部门等) 2.2.4 上传人员信息到设备 2.2.5 下载考勤数据 2.2.6 时间段设置 2.2.7 班次管理 2.2.8 人员排班 2.2.9 统计报表 页脚内容1

一考勤机快速使用 1.1登记指纹(分彩屏跟黑白屏) 从设备上采集指纹: (1)彩屏:长按M/OK键--“用户管理”点OK--“新增用户”点OK--选择工号,- 往下翻在“指纹登记”上点OK,同一个手指按三次,完成后再点击OK键,再放上另一个手指按三次--往下翻到完成上点OK。(如果要再登记指纹可在‘用户管理‘点OK--’管理用户‘点M/OK---点M/OK选择’---- 查找用户‘—输入工号点OK—点M/OK选择“编辑用户”然后选择登记指纹,登记完成后---往下翻到完成上点M/OK。 (2)黑白屏录指纹的跟彩屏类似就不再说了。录备用指纹的话跟彩屏有点区别:按M/OK—用户登记—指纹登记—提示新登记—按ESC键—跳出备份登记—输入工号—登记指纹。。 1.2机器的功能介绍 (1)通讯设置—设置通讯方式有RS232/485通讯,TCP/IP,USB通讯 (2)系统设置—参数设置(包含提示声音,键盘声音,时间设置算法切换(高端机器如iclock360, S20等)--数据维护(删除考勤机上的记录数据【记录要定时去删除】,清除管理权限【管理员破解】,清除全部数据----恢复设置(恢复出厂设置【不会删除考勤机上的数据只是恢复机器出厂的通讯设置等】; (3)系统信息—可以查看设备的人员登记数跟指纹数及考勤记录数-------设备信息可以查看设备的序列号、算法版本、MAC地址、出厂时间等。 (4)U盘功能(包含下载跟上传的功能) <1>(1)把U盘插到考勤机上--长按M/OK键进入菜单--选择U盘管理--下载数据--下载用户数据--下载完成后退出然后把U盘拿下来插到电脑上。 页脚内容2

指纹考勤机如何连接考勤机软件

指纹考勤机如何连接考勤机软件? 指纹考勤机怎么和电脑连接安装,你首先要弄清楚指纹考勤机本身有什么通讯接口,一般指纹考勤机连接有以下接口:USB线,RS232/485(串口),TCP/IP(RJ45口)等几种; 那么电脑软件中也相应的有以上三种通讯方式。买串口或USB口指纹考勤机,里面一般都自带有RS232线和USB线; 1、如果你的考勤机是USB口的,把USB线分别插 入考勤机和电脑USB口,打开软件,选择USB连接方式,就可以成功; 2、以此类推,如果是串口或网线接口,设置一下相关参数,打开软件,选择串口或网线接口连接方式,就可以连接成功了。 指纹考勤机怎么导出打卡记录? 前提是你已经安装好了软件,软件中有人员资料 1、因为H10是用USB线下载数据的,所以首先你要在考勤软件中“设备维护”那里把考勤机与软件的“通讯方式”设置为USB下载后,然后保存。 2、再把考勤机通电,把USB线插入考勤机中和电脑USB接口,再选择“我的设备列表”中“U SB连接方式”,再点连接设备,稍等几秒后,设备连接成功,同时设备名称的圆圈会变成彩色,同时右下角系统会提示连接成功字样。这时,考勤机与电脑软件连接成功了。 3、连接成功后,点“从设备下载记录数据”,这时考勤机里的数据就会通过数据线上传到软件中,同时有下载多少条记录的提示,这时,你点“出勤记录”就可以看见你刚才下载的所有人员记录数据。 打卡机考勤管理系怎么用? 1、你首先把部门资料、人事资料,这些资料全部弄好(包括员工编号、姓名、卡号、部门、就职日期等等) 2、再把公司上班下班的作息时间定义好,考勤规则班次设置好,人员班次分配好 3、以上弄好后,员工上下班打卡,从打卡考勤机导出来的考勤数据记录,进行数据统计,统计完成后,你就可以看考勤明细表,考勤日报表、考勤汇总表、考勤异常表,加班统计表,请假汇总表等。

小哨兵还原卡图文说明

小哨兵还原卡图文说明 [版权宣告] 小哨兵科技有限责任公司有权随时更改本手册的内容,恕不另行通知。除非另外注明,否则本手册范例中所使用的公司、人名,以及数据都是虚构的。没有小哨兵科技有限责任公司的许可,您不得为任何目的而使用任何形式或方法(包括电子的或机械的),复制或传送本手册的任何部分。 小哨兵科技有限责任公司对于其应用程序、商标、版权或文件中所涵盖的其他知识产权拥有或正在申请专利中。除非取得小哨兵科技有限责任公司的任何书面授权合约,否则不得擅用本手册中的这些专利、商标、版权或其他知识产权。 本手册为通用手册,产品规格如有变更,恕不另行通知。 版权所有?2002小哨兵科技有限责任公司

[用户须知] 本手册同时可适用于小哨兵网吧专用卡,详情请见附录部分。 本手册适用于7.0及以上版本。

目录 第一章产品简介........................................ 错误!未定义书签。第二章主要功能特点................................ 错误!未定义书签。第三章系统需求…………………………………………………第四章安装指南…………………………………………. 4.1安装前的准备工作.......................................................................... 4.2驱动程序的安装.............................................................................. 4.3还原卡的安装.................................................................................. 第五章使用指南............................................................................ 5.1数据恢复.......................................................................................... 5.2参数设置.......................................................................................... 5.3设置管理员口令 ............................................................................. 5.4备份CMOS数据………………………………………………… 5.5更新硬盘数据…………………………………………………… 5.6软盘升级………………………………………………………….

清华同方还原卡

使用清华同方还原卡的计算机,若需重装系统。 处理: 1)开启计算机后,在出现硬盘保护卡启动界面时,按“F10”进入“系统设定”选项,不需要密码,直接“回车”进入; 2)进入设定后选择到“分区信息”项目,将第一行硬盘分区的“自动复原”属性选中,向上选为“从不复原”,即取消了对硬盘第一分区“C”盘的保护,按“ESC”选择保存并退出重启,此时可以安装各类软件,驱动,优化系统等。 另一种方法:进入bios,清华同方BIOS的通用口令:thtfpc 依次进入--INTEGRA TED PERIPHERALS---ONBOARD DEVICE ----ONBOARD LAN:CONTROLLER 此项设为ENABLED(集成网卡生效) ----ONBOARD LAN:BOOT ROM 此项设为DISABLED(取消还原功能)。 远程教育培训资料之——清华同方系统还原卡的操作 远教2008-03-15 16:39 阅读2909 评论4 字号:大中小 (一)、功能及用途 同方系统还原卡能大批量地完成整个电脑机房系统的安装或更新。 先将一台已安装好同方系统还原卡、操作系统及应用软件的电脑设为发送端,其余所有的电脑设为接收端,通过网络利用网络拷贝工具将发送端的硬盘数据同时复制到所有的电脑中,并自动分配修改所有电脑的IP地址等网络设置,完成整个电脑机房系统的安装或更新。 总结起来也就是二大功能:硬盘维护和网络同传 (二)、还原卡的性质 我们使用的清华同方的还原卡是软还原卡 也有一部分还原卡是硬件的还原卡 如:2003 年以前的还原卡大部分是硬件的还原卡 与常见的还原软件(如还原精灵)相比有许多相似之处但也有其自身的特点 (三)、还原卡所处位置 还原卡不是装在硬盘中,而是装在CMOS芯片中的,但有一种情况除了在CMOS中装一次外,还要在操作系统中装一次,那就是网络同传需要自动分配IP的时候(后边有详细介绍)(cmos中的安装相当于安装了硬件设备,而操作系统中的安装相当于安装了管理硬件的软件——驱动) (四)、还原卡安装前的准备 将所有电脑的CMOS中的病毒警告关闭 请将CMOS中的引导选项设置为Network/LAN选项。 将网线、集线器与计算机全部连接 发送端计算机与接收端计算机的硬件配置必须完全相同 (五)、安装还原卡 1、从学生用机中选择一台计算机,开机,出现"第一次安装"界面。 2、将随机的还原卡光盘放进光驱。 3、选择“本机安装”,有三个选项:

指纹考勤机使用的基本操作方法

指纹考勤机使用的基本操作方法: 一、人事考勤管理软件系统操作流程: 1、部门定义(输入部门资料) 2、员工录入(建人事档案)---数据下发 3、作息时间定义--考勤规则定义---考勤规则分配 4、请假登记、外出登记、调休登记等 5、员工按照公司上下时间打卡 6、采集数据 7、考勤统计 8、查看考勤明细表、汇总表、日报表及其它报表 二、指纹机安装说明 指纹考勤机硬件安装比较简单,安装时,要配一个220V的电源插座,以便给指纹考勤机供电。 三、指纹考勤机软件操作方法 1、软件使用操作方法流程 a、在―部门表‖那里输入公司所有部门名称 b、在―人员维护‖那里,选择部门,输入每一个人的资料。输入资料时,登记号码那里的号码前面不能添加0 c、在―时间段维护‖ 那里定义好公司上下班的作息时间,在―班次管理‖那里设置好所有人员上班班次,再在―人员排班‖那里把每个人进行排班或进行临时排班 d、员工按上班时间打卡 e、把考勤软件连接指纹考勤机,下载考勤打卡数据,进行统计分析,就可以查看每个月的明细表和汇总表了 四、指纹考勤机操作方法 1.把考勤机通电,打开机器,使机器处于正常工作状态。 2.在考勤机操作面板上按主菜单[MENU] – [用户管理] – [用户登记] – [指纹登记],屏幕提示―新登记?‖ ,按[OK]键,这个时候要输入员工的工号,输入后按[OK]确认,此时屏幕提示:―请放手指‖。 3.放手指时要注意,被采集者身体相对考勤机要站正。把从指尖开始2/3位置指肚非常饱满的平放在采集器玻璃片上,不要滑动手指,轻轻用力按压,听到―嘀‖的一声移开手指,同样进行第2次第3次按压,按压3次为采集了一枚完整的指纹。 4.3次按压完成后,按[OK] 保存。此时屏幕提示:?新登记?‘我们可按[ESC] 键,进行备份登记,每个员工可以采集至少2枚指纹,以备其中一个有磨损破裂时使用。 5.备份完成后,按[OK] 保存,此时屏幕提示:―继续备份吗?‖如果要继续进行备份请按[OK],要结束备份请按[ESC] ,并进行下一个员工的指纹登记。 6.指纹登记完成后,即可使用所登记的手指进行指纹考勤。依照采集指纹时的按压方法进行即可。按压后,屏幕显示员工的工号,并伴随有机器语音提示―谢谢‖。如果按压不成功,

各种还原卡的热键及问题处理

1开机,待出现的表格刚一结束,马上按住Ctrl+F10,出现输入密码选项,输入密码(默认为manager),进入还原卡管理界面,选择“移除还原卡”,确定,然后按提示操作即可。 2启动时按HOME键激活还原卡设置程序卸载就可以了 硬盘保护克星使用说明 使用说明: 1、本软件用于破解市面上绝大多数各种类型的硬盘保护卡、系统还原卡, 还原精灵等,破解速度极快。 2、本软件可运行在所有的Windows平台,包括Windows 95/98/ME/2000/xp/2003等。 3、本软件也可运行在纯DOS环境和Windows 3.x下。 4、启动软件后,请正确选择要操作的硬盘和操作方式,再点“确定”,等待 几秒后,重新启动机器即可。 5、如选择“仅破解保护卡”,重启机器后,绝大多数硬盘保护卡将失去作用, 您可以对硬盘保护卡重新设置所有设置,包括密码。 6、如选择“快速格式化硬盘”,不管机器中是否插有硬盘保护卡, 均可用于对硬盘清除所有分区信息,使硬盘快速完全恢复出厂设置。 7、如选择“完全格式化硬盘”,此方式与“快速格式化硬盘”方式类似, 但所需时间很长,除非“快速”方式无效,才采用这种方式,一般不需要使用。8、因软件采用了特殊方法读写硬盘,所以在软件使用过程有可能出现程序失去响应、系统蓝屏、死机等情况,属于正常现象,只需重启机器即可。 9、系统中如装有GRUB、LILO、等启动管理软件请勿使用本软件。 联想硬盘保护卡的密码 默认的是000000 但是要是改了以后就不一定了 这个东西很特别你要是想进到安装软件模式的话那么你必须有准备就是你以前没有进到安装模式下的C:里的东西全部都没有就算是数据恢复也很难找回来的 所以希望慎重最好是把里面的东西倍份出来以后再做这样的操作 于破解还原卡(通用)请大家先看看后面的(可以穿透还原卡和还原软件的代码) 方法一: 开机时(也就是在你曾经进入cmos的时刻),同时按住ctrl+home,这样你就进入了还原卡的密码输入窗口,只要输入正确的密码即可获得admin,以后随你怎样设置. 关于是密码的问题:一般还原卡都有默认密码的,默认密码怎么找,很简单,到网上搜索QQ:9750406 关键词"还原卡"就行了,找到你用的那个牌子的还原卡,进入站点,在一个比较偏僻的角落一般可以找到默认密码的. 而一般机房管理员是不会修改其默认密码的,比如俺学校的 台湾远志牌的还原卡的默认密码是12345678, 小哨兵的是manager, 机房管理员一个也没改,好爽!!!!!!!!!! 不过我可没破坏任何东东,一旦惹怒了俺,嘿嘿....俺也不会破坏的, 恶意破坏计算机就是对自己的不尊重!!!! 如果管理员把密码改了呢?那就拿出宝刀---

香港朗文英语教材Longman

香港朗文英语教材Longman Welcome to English Teaching Plans for Chapter 6 Look at Me Part E 执教者华南师大附小肖靓 课型:任务课 教学内容分析: 本节课是Chapter 6的E部分内容,学生在A、B、C、D部分学了身体部位单词、描述人形体的形容词和有关于介绍自己身体特征的句型,如:I am …. I have …. He/She is …. He/She has …. 等,另外,学生还学了如何介绍他人及can, can’t 的用法,如:This/That is …. He/She can/can’t …. 本节课最重要 的是让学生学习如何连贯地用所学英语去介绍和描述自己的同学、朋友或家人,在这过程中能够运用英语句型: This is …. He/She is …. He/She has …. He/She can …. 进行表达。 教学对象分析: 学生从一年级就开始学习英语,每周6节英语课,能够书写英语字母、单词及简单的句子,能够认读较多的英语句子,有一定的口语基础,英语基础知识较为扎实。通过三个月在校的英语学习,他们对英语学习有着浓厚的兴趣,并已初步形成了良好的英语学习习惯,学生很喜欢上英语课,大部分孩子敢说英语、能说英语。孩子对单词的认读和课文的演读没有多大的问题,但由于英语知识的不断加深,特别是出现让孩子连贯表达一些英语句子时,学生表现起来会有点吃力。因此,在教学过程中,我通过给予学生大量的信息输入,将学习重点和难点较好地化解于活动教学、游戏教学和情景教学中,让学生自发地多开口说练英语。本课主要任务在于创造更多的机会让学生学习新知识和运用语言。 教学策略: 1、通过运用歌曲、游戏、情景、媒体和活动等教学方式让学生主动获取信 息。 2、结合课堂活动和游戏,促进老师与学生、学生与学生之间的交流。 3、让学生在“任务”活动中学习英语并用英语进行交流。 Objectives: Language Skill:Be able to understand and to use the sentence structures: “Who is …? ““That is ….”“He/She is ….”“He/She has ….”“He/She can ….” Language Knowledge:To know and to use the adjectives and the names of body parts and the sentence structures: “Who is …? ““That is ….” “He/She is ….”“He/She has ….”“He/She can ….” Affect and Attitude:Like to speak English and to communicate with others. Get to know their friends more by describing their appearance and ability. Learning Strategies: 1. Train the pupils to think, observe, imagine and cooperate

指纹考勤机中控x10操作指南

长按M/OK键进入菜单。选择“部门设置”,按OK键进入 长按M/OK键进入菜单。选择“用户管理”→“新增用户”(按OK键进入):登记完用户按OK键保存。 长按M/OK键进入菜单,选择“排班设置”→“考勤规则”(按OK键进入): 排班方式可选择按部门排班和按个人排班,对未排班部门或个人使用默认班次。 长按M/OK键进入菜单,选择“排班设置”→“班次管理”(按OK键进入): 班次1为09:00—18:00一天考勤2次; 班次2为09:00—12:00;13:00—18:00一天考 勤4次。其它班次可自行设置。 按▲/▼键移动光标到要设置的项,使用T9输入法输 入班次名称,按数字键输入上下班时间。 长按M/OK键进入菜单,选择“排班设置”→“排班”(按OK键进入): 当考勤规则中选择按部门排班时: 按▼键选择要编辑的部门,再按选择班次,按OK键保存退出 按OK键 当考勤规则中选择按个人排班时: 自助考勤终端入门指南 版本:4.0 工号:按数字键输入工号(最长9位)后,按▼ 姓名:使用T9输入姓名后,按▼ 指纹:按“OK”键后进入指纹登记界面,将同一 手指按压指纹采集器三次,按▼ 密码:输入1-8位数字密码,可不设置 部门:按键从列表中选择部门,按▼ 权限:按选择权限,可登记管理员 二、登记用户 三、设置考勤规则(如果使用默认规则,则不需要设置) 四、设置班次(如果使用默认班次,则不需要设置) 五、给员工排班(如果使用默认规则,则不需要设置) 按▲/▼键移动光标到要设置的项。如果是输 入框,按数字键输入要设置的值;如果是滚动框, 按/键切换要设置的值,设置完毕后直接按 “OK”键即可保存设置并返回上一界面,按“ESC” 取消设置并返回上一界面。 一、设置部门(如果使用默认部门,则不需要设置) 设备默认的6个部门可按OK键进去修 改。 按数字键“3”进入新增部门界面,用 T9输入法(详情参见第4页说明)输入部门 名称后,按OK键保存。

指纹考勤机安装设置及使用说明常见问题及解答

指纹考勤机安装设置及使用说明常见问题及解答 (由深圳市全易通科技有限公司提供) 很多使用者对于指纹考勤机的安装设置及使用说明不是很了解,有时在工作中经常遇到各种难题,不知道如何操作设置指纹考勤机,全易通列出以下关于指纹考勤机常见问题及解答,以供大家参考,让大家在使用指纹考勤机的过程中能轻松地管理好指纹考勤机。 一、问:如何使用考勤机的使用寿命更长呢? 答:全易通考勤机温馨提示你: 任何产品都需要保养,考勤机也是一样的。好的维护保养才能让考勤机寿命更长,怎么让考勤机寿命长一点?要有以下理念: 1、选择适合自己公司的考勤机,考勤机有感应卡考勤机、指纹考勤机。当然感应卡考勤机的寿命要比指纹考勤机的长,因为感应卡考勤机是射频的,非接触式的。指纹机是接触式的,有磨损 2、不要放在太阳下曝晒,太阳曝晒会损坏考勤机的液晶屏,使考勤机外壳老化得快 3、最好是给考勤机“穿衣”,安装在保护罩内,可以防尘。起保护作用。 4、不能恶意破坏考勤机,不能用重物敲击考勤机 5、不要在考勤机上外接其它不名可能损坏考勤机的设备。 更多详细了解,请登录全易通考勤机官网了解一下 二、问:指纹考勤机如何连接考勤机软件? 答:全易通指纹考勤机提示你: 指纹考勤机怎么和电脑连接安装,你首先要弄清楚指纹考勤机本身有什么通讯接口,一般指纹考勤机连接有以下接口:USB线,RS232/485(串口)TCP/IP(RJ45口)等几种 那么电脑软件中也相应的有以上三种通讯方式。买串口或USB口指纹考勤机,里面一般都自带有RS232线和USB线1、如果你的考勤机是USB口的,把USB线分别插入考勤机和电脑USB口,打开软件,选择USB连接方式,就可以成功 2、以此类推,如果是串口或网线接口,设置一下相关参数,打开软件,选择串口或网线接口连接方式,就可以连接成功了 更多详细了解,请登录全易通考勤机官网了解一下 三、问:考勤机连接不上是什么原因? 答:全易通指纹考勤机提示你: 考勤机下载不了新的考勤信息?一个最主要原因,就是考勤机与电脑之间的线路有问题。以下其它的原因也不可忽视 1、考勤软件中通讯方式设置有可能更改 2、如果是通过RS485方式连接的,有可能是RS485转换器坏了,也有可能是电脑串口有问题 3、如果是通过TCP/IP连接,有可能是公司交换机或路由器有问题,启动一下公司的交换机或路由器有问题,再连接一下,就可以了(这个情况我们客户发生过) 4、如果是USB线或RS232线连接,可能是USB线或RS232有问题

清华同方系统还原卡的操作

远程教育培训资料之——清华同方系统还原卡的操作?同方系统还原卡能大批量地完成整个电脑机房系统的安装或更新。 先将一台已安装好同方系统还原卡、操作系统及应用软件的电脑设为发送端,其余所有的电脑设为接收端,通过网络利用网络拷贝工具将发送端的硬盘数据同时复制到所有的电脑中,并自动分配修改所有电脑的IP地址等网络设置,完成整个电脑机房系统的安装或更新。 总结起来也就是二大功能:硬盘维护和网络同传?(二)、还原卡的性质?我们使用的清华同方的还原卡是软还原卡?也有一部分还原卡是硬件的还原卡?如:2003 年以前的还原卡大部分是硬件的还原卡?与常见的还原软件(如还原精灵)相比有许多相似之处但也有其自身的特点?(三)、还原卡所处位置?还原卡不是装在硬盘中,而是装在CMOS芯片中的,但有一种情况除了在CMOS中装一次外,还要在操作系统中装一次,那就是网络同传需要自动分配IP的时候(后边有详细介绍) (cmos中的安装相当于安装了硬件设备,而操作系统中的安装相当于安装了管理硬件的软件——驱动) (四)、还原卡安装前的准备?将所有电脑的CMOS中的病毒警告关闭?请将CMOS中的引导选项设置为Network/LAN选项。?将网线、集线器与计算机全部连接?发送端计算机与接收端计算机的硬件配置必须完全相同 (五)、安装还原卡

1、从学生用机中选择一台计算机,开机,出现"第一次安装"界面。? 2、将随机的还原卡光盘放进光驱。? 3、选择“本机安装”,有三个选项:?a\简易安装:请确保原分区的工具为FDISK。使用此种安装方式将会保留硬盘所有原有的分区及分区内所有的资料数据。完成简易安装后计算机将会重新启动,启动后会停留在开机菜单上,此时该项方式安装完成。(这种方式不会破坏硬盘的任何数据) b\自订安装:此中安装方式是用于安装多个操作系统或变更原硬盘分区状况时最常用的一种安装方式。完成自订安装后计算机将会重新启动。(这种方式会破坏硬盘的所有数据,适用于全新安装)?c\网络安装:自动将该台计算机设置成接收端,等待发射端的数据传送。(这种方式不使用光盘安装)?(六)、自订安装”,设置分区的各种参数?"属性"说明:?立即复原型引导盘(A)?用于引导、安装操作系统,,可瞬间复原分区数据。?备份复原型引导盘(B) 用于引导、安装操作系统,需占用与该分区同样大小的硬盘空间备份该分区数据,以供复原时使用,并且复原时间较长。 一般引导盘(C)?用于引导、安装操作系统,此种引导盘不具备复原功能。?共用资料盘(S) 资料盘,该分区可被分区格式兼容的引导盘共享。?专属资料盘(P)?资料盘,该分区只能被与其名称相同且分区格式相兼容的引导盘识别使用。例如:如果引导盘的名称叫做"Win2K",那么它的专属资料盘的名称也必须叫做"Win2K";如果引导盘的名称叫

香港朗文小学英语教材课文补充

Book 2B Chapter 5 Graded Worksheets 5.1a 1 go to church 2 go to Brownies 3 go to Cub Scouts 4 have craft / art lessons 5 study with my tutor 6 visit my grandma / grandmother 7 have computer lessons Book 2B Chapter 5 Graded Worksheets 5.2a 1 Tuesday Visit Grandma in the afternoon 2 Thursday Have a computer lesson in the evening 3 Sunday Go to church in the morning 4 Saturday Go to Brownies in the morning 5 Wednesday Go horse riding in the afternoon 6 Friday Have a craft lesson in the evening 7 Monday Study with Miss Chow in the evening Book 2B Chapter 5 Graded Worksheets 5.2b 1 Tuesday Visit Grandma in the afternoon 2 Thursday Have a computer lesson in the evening 3 Sunday Go to church in the morning 4 Saturday Go to Brownies in the morning 5 Wednesday Go horse riding in the afternoon 6 Friday Have a craft lesson in the evening 7 Monday Study with Miss Chow in the evening Book 2B Chapter 5 Graded Worksheets 5.3a 1 What do you do on Mondays? I have craft lessons in the morning. 2 What does Sam do on Tuesdays? He goes to Cub Scouts in the afternoon. 3 What does your grandma do on Wednesdays? She has computer lessons in the evening. 4 What does your sister do on Thursdays? She goes to Brownies in the afternoon. 5 What do you do on Sundays? I go to church in the morning. Book 2B Chapter 5 Graded Worksheets 5.3b 1 What do you do on Mondays? I have craft lessons in the morning. 2 What does Sam do on Tuesdays? He goes to Cub Scouts in the afternoon. 3 What does your grandma do on Wednesdays? She has computer lessons in the evening. 4 What does your sister do on Thursdays? She goes to Brownies in the afternoon. 5 What do you do on Sundays? I go to church in the morning. Book 2B Chapter 5 Graded Worksheets 5.1b 1 go to church 2 go to Brownies 3 go to Cub Scouts 4 have craft / art lessons 5 study with my tutor 6 visit my grandma / grandmother 7 have computer lessons (Accept any reasonable answers.)

中控iface 302人脸指纹考勤机操作手册(管理员版)

中控iface 302人脸指纹考勤机操作手册(管理员版)1、考勤机主界面:如图,按左上角“MENU”可进入管理员身份验证界面 2、管理员身份验证界面:通过人脸识别或指纹识别验证管理员的合法性

3、管理员菜单界面:红框部分为HR人员使用的功能 4、用户管理界面:可查询、新增、修改、删除人员信息(工号、姓名、指纹、密码、人脸、用户权限、照片)

新增用户界面:为避免考勤机与考勤系统工号重复,不建议直接在考勤机上新增用户。 编辑用户界面:如需更换指纹及人脸信息,可在该界面操作。

U盘管理界面:从考勤机下载数据到U盘,从U盘上传数据到考勤机 注意事项:新增或修改考勤机用户及时间后请按“保存”,完成所有考勤机配置后退出到考勤机主界面(左上角“菜单”“返回”),以免其它人员非法修改考勤机数据。 总部员工报到,人员信息录入方式: 员工报到——总部HR分配工号录入考勤系统——总部HR在考勤系统中“上传人员信息到设备”——总部HR搜索考勤机中新入职员工工号——员工到考勤机上录指纹、人脸、照相——总部HR“连接设备”—“从设备下载人员信息” 项目员工到总部报到,人员信息录入方式: 员工报到——总部HR分配工号录入考勤系统——总部HR在考勤系统中“上传人员信息到设备”——总部HR搜索考勤机中新入职员工工号——员工到考勤机上录指纹、人脸、照相——总部HR在考勤系统中“从设备下载人员信息”,然后“USB闪盘管理”——“用户数据导出至U盘”——总部HR将U盘中的以下文件压缩后发email至项目HR——项目HR解压缩文件到U盘根目录,并在考勤机上插入U盘,然后“上传用户数据”。 项目员工到项目报到,人员信息录入方式: 员工报到——总部HR分配工号录入考勤系统——总部HR在考勤系统中“USB闪盘管理”——“用户数据导出至U盘”——总部HR将U盘中的以下文件压缩后发email至项目HR——项目HR解压缩文件到U盘根目录,并在考勤机上插入U盘,然后“上传用户数据”——项目HR搜索考勤机中新入职员工工号——员工到考勤机上录指纹、人脸、照相——项目HR“下载用户数据”至U盘,并将U盘中的以下文件压缩后发email至总部HR——总部HR解压缩文件到U盘根目录,并在电脑上插入U盘,“USB闪盘管理”“导入用户数据至电脑”。

联想电脑带还原卡系统安装开局

联想电脑主板自带还原卡机器安装开局指导 一、还原卡的激活 联想电脑还原卡基本程序主要是存放在硬盘的隐藏分区上,在计算机回电后出现联想厂商LOGO后按下键盘上方“F4”功能键后即可激活还原卡安装程序,如果还原卡底层驱动已安装则启动还原卡的网络功能模式。 提示:因为还原卡功能以及安装程序是写在硬盘的隐藏分区上,如果硬盘隐藏分区被删除还原卡功能将失去,可能还会造成整个硬盘数据的丢失,所在再使用硬盘分区工具对硬盘分区以及使用杀毒软件和安全卫士软件对硬盘分区表做操作时都有可能造成还原卡的失效而引起数据丢失。失去还原功能的硬盘只能带回联想维修站处理,且数据无法恢复。 二、还原卡底层安装 还原卡程序启动后会出现一个还原卡底层驱动安装的选择界面如图1,请仔细阅读此处的操作说明,此说明包含了后续操作的基本方法,会对选择不同,说明内都有详细的提示。 1、快速安装图1

快速安装主要是已经设置好分区并安装好操作系统后对已做数据做保留处理时使用。 2、选择安装 选择安装可以重新划分硬盘,所以会删除硬盘上所有的原有数据,新安装机器与多系统安装都建议使用选择安装,先使用还原卡自带的硬盘分割工具划分硬盘后再安装操作系统。 3、网络安装 网络安装是通过网络安装的客户端程序,使用网络安装后本次将进入网络接收模式,网络安装有可能删除原有硬盘的所有数据。 本文主要介绍选择安装方法。 三、硬盘分割 进入选择安装后,出现分割硬盘界面,如图2,此时列出目前机器上使用的硬盘情况,以及可能正在使用的分区情况,如需重新划分硬盘请选择“重新分区”进入下一步,此时原硬盘上所有数据删除,此时出现分割硬盘的分区情况界面,如图3,此界面可以对硬盘分区做相应配置。 图2

香港朗文版小学英语教材各册目录 (1)

香港朗文版小学英语教材各册目录(武汉深圳广州等外国语学校专用教材) 香港朗文版小学英语1A Chapter 1 Starting school Chapter 2 Nice to meet you! Chapter 3 My toys Chapter 4 My pencil case Chapter 5 We can do it! Chapter 6 Look at me! 香港朗文版小学英语1B Chapter 1 Choosing a pet Chapter 2 Our pet friends Chapter 3 Wild animals Chapter 4 More about animals Chapter 5 Happy moments Chapter 6 A fashion show

香港朗文版小学英语2A Chapter 1 Coming to school Chapter 2 About me Chapter 3 People who help me Chapter 4 People at work Chapter 5 Signs we see Chapter 6 Places in the park 香港朗文版小学英语2B Chapter 1 Buying snacks Chapter 2 Our favourite food Chapter 3 My day Chapter 4 Helping at home Chapter 5 Sports we like Chapter 6 Activities we like 香港朗文版小学英语3A Chapter 1 Weather and seasons

指纹考勤机使用的基本操作方法

一、人事考勤管理软件系统操作流程: 、部门定义(输入部门资料) 、员工录入(建人事档案)数据下发 、作息时间定义考勤规则定义考勤规则分配 、请假登记、外出登记、调休登记等 、员工按照公司上下时间打卡 、采集数据 、考勤统计 、查看考勤明细表、汇总表、日报表及其它报表 二、指纹机安装说明 指纹考勤机硬件安装比较简单,安装时,要配一个地电源插座,以便给指纹考勤机供电. 三、指纹考勤机软件操作方法 、软件使用操作方法流程 、在“部门表”那里输入公司所有部门名称 、在“人员维护”那里,选择部门,输入每一个人地资料.输入资料时,登记号码那里地号码前面不能添加 、在“时间段维护” 那里定义好公司上下班地作息时间,在“班次管理”那里设置好所有人员上班班次,再在“人员排班”那里把每个人进行排班或进行临时排班资料个人收集整理,勿做商业用途 、员工按上班时间打卡 、把考勤软件连接指纹考勤机,下载考勤打卡数据,进行统计分析,就可以查看每个月地明细表和汇总表了 四、指纹考勤机操作方法 .把考勤机通电,打开机器,使机器处于正常工作状态. .在考勤机操作面板上按主菜单[] – [用户管理] – [用户登记] – [指纹登记],屏幕提示“新登记?” ,按[]键,这个时候要输入员工地工号,输入后按[]确认,此时屏幕提示:“请放手指”.资料个人收集整理,勿做商业用途 .放手指时要注意,被采集者身体相对考勤机要站正.把从指尖开始位置指肚非常饱满地平放在采集器玻璃片上,不要滑动手指,轻轻用力按压,听到“嘀”地一声移开手指,同样进行第次第次按压,按压次为采集了一枚完整地指纹. 资料个人收集整理,勿做商业用途.次按压完成后,按[] 保存.此时屏幕提示:‘新登记?’我们可按[] 键,进行备份登记,每个员工可以采集至少枚指纹,以备其中一个有磨损破裂时使用. 资料个人收集整理,勿做商业用途 .备份完成后,按[] 保存,此时屏幕提示:“继续备份吗?”如果要继续进行备份请按[],要结束备份请按[] ,并进行下一个员工地指纹登记. 资料个人收集整理,勿做商业用途.指纹登记完成后,即可使用所登记地手指进行指纹考勤.依照采集指纹时地按压方法进行即可.按压后,屏幕显示员工地工号,并伴随有机器语音提示“谢谢”.如果按压不成功,则有语音提示“请重按手指”,此时请重新按压手指或更换另一手指按压. 资料个人收集整理,勿做商业用途 .在上面第步操作中,我们只看到了员工地工号,没看到姓名,实际上是可以显示员工地姓名地.请进行以下步骤. 资料个人收集整理,勿做商业用途 .在计算机上安装考勤管理系统.放入安装光盘,按屏幕提示进行安装即可,注意要把程序安装路径更改为盘. 资料个人收集整理,勿做商业用途 .把考勤机和计算机进行连接.考勤机和计算机地通讯方式有、、、数据线种直连方式. 资

相关主题
文本预览
相关文档 最新文档