当前位置:文档之家› xcx旋风除尘器设计说明书(李昊林毅费磊胡五钢)

xcx旋风除尘器设计说明书(李昊林毅费磊胡五钢)

xcx旋风除尘器设计说明书(李昊林毅费磊胡五钢)
xcx旋风除尘器设计说明书(李昊林毅费磊胡五钢)

xcx旋风除尘器设计说明书(李昊林毅费磊胡五钢)

XCX旋风除尘器

设计说明书

学院:环境科学与工程学院

专业:环境工程

姓名:李昊(0920169,前期计算)

林毅(0920179,CAD画图)

费磊(0920156,计划书制作)

胡五钢(0920164,后期整理)指导老师:万锐

目录

一.旋风除尘器简介····································

二.XCX旋风除尘器的结构及特点···························

三.XCX旋风除尘器原理及其优点···························

四.选型依据·········································

五.影响XCX旋风除尘器效的因素···························

六.影响XCX旋风除尘器压降的因素·························

七.结论与建议·······································八.参考文献········································

一、旋风除尘器简介

旋风除尘器是利用旋转的含尘气体所产生的离心力,将粉尘从气流中分离出来的一种干式气-固分离装置.旋风除尘器用于工业生产以来,已有百余年历史。该类分离设备机构简单、制造容易、造价和运行费用较低,对于捕集分离5μm以上的较粗颗粒粉尘,净化效率很高所以在矿山、冶金、耐火材料、建筑材料、煤炭、化工及电力工业部门应用极为普遍。但旋风除尘器对于5μm 以下的较细颗粒粉尘(尤其是密度小的细颗粒粉尘)净化效率极低所以旋风分离器通常用于粗颗粒粉尘的净化或用于多级净化时的初步处理

二、XCX旋风除尘器的结构及特点

旋风除尘器也称作旋风分离器,是利用器内旋转的寒碜气体所产生的离心力,将粉尘从气流中分离出来的一种干式气固分

离装置。它主要由排灰管、圆锥体、圆柱体、进气管、

排气管以及顶盖组成。

旋风除尘器具有以下特点:

1.结构简单,器身无运动部件,不需要特殊的附属

设备,占地面积小,制造,安装投资较少。

2.操作维护简便,压力损失中等,动力消耗不大,

运转,维护费用较低。

3.操作弹性较大,性能稳定,不受含尘气体的浓度,

温度限制。对于粉尘的物理性质无特殊的要求同时可根

据化工生产的不同要求,选用不同的材料制作或内衬不

同的耐磨,耐热的材料,以提高使用寿命。

旋风除尘器一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上,近年来经改进后的特制旋风除尘器,其除尘效率可达5%以上。旋风除尘器的缺点是捕集微粒小于5微米的效率不高。

XCX型旋风除尘器其进气口采用了270°蜗壳斜底板的形式,进气口断面较小且为方形,锥体较长。主要由蜗壳、螺旋形斜底板、锥体和设有弧形减阻器的排气管组成。根据处理风量可组合成多管式除尘器,它运行可靠,可以处理高温含尘气体,适合捕集粒径5μm的烟尘。CLT/A型旋风除尘器为基本型旋风除尘器,属螺旋型旋风除尘器。其顶盖板做成下倾15°的螺旋切线形,含尘气体进入除尘器后,沿倾斜顶盖的方向做下旋流动,而不致形成上灰环,可消除引入气流向上流动而形成的小旋涡气流,减少动能消耗,提高除尘效率。它的另一个特点是筒体细长和锥体较长,而且锥体锥角较小,能提高除尘效率,但压力损失也较高。

三、旋风除尘器的工作原理及其优点

1.XCX旋风除尘器工作原理

XCX旋风除尘器是半螺旋线型旁通分离室的气旋型除尘装置含尘气体进入后,气体获得旋转速度同时分成上、下两部分。灰尘在排风管下端,既而旋转气流分界处产生强烈地分离作用。较粗颗粒分离至外壁,在下旋转气流作用下带向除尘排尘口。较细的灰尘颗粒,由上旋转气流带往上部在顶盖的板下面形成强烈灰尘环并发生灰聚集现象,经回风口再进入除器,分离至排尘口。净化后的核心气流,经排风管排至大气。

2.XCX旋风除尘器的优缺点

优点:

(1)XCX旋风除尘器内部没有运动部件,维护方便。

(2)制作、管理十分方便。

(3)处理相同风量的情况下体积小,结构简单,价格便宜。

(4)作为预除尘器使用时,可以立式安装,使用方便。

(5)处理大风量时便于多台并联使用,效率阻力不受影响。

(6)可耐高温,如采用特殊的耐高温材料,还可以耐受更高的温度。

(7)除尘器内设耐磨内衬后,可用以净化含高磨蚀性粉尘的烟气。

(8)可以干法清灰,有利于回收有价值的粉尘。

缺点:

(1)卸灰阀如果漏损会严重影响除尘效率。

(2)磨损严重,特别是处理高浓度或磨损性大的粉尘时,入口处和锥体部位都容易磨坏。

(3)除尘效率不高(对捕集粒径小于5um的微细粉尘和尘粒密度小的粉尘,效率较低),单独使用有时满足不了含尘气体排放浓度的要求。

(4)由于除尘效率随筒体直径增加而降低,因而单个除尘器的处理风量受到一定限制。

四、选型依据

取气体进入速度为V

1=24m/s,可以知道筒体直径D=(Q/v

1

KaKb)1/2=0.78m

设进气口高度为a进气口侧宽为b,由题目易得a=b=0.24*0.78=187.2mm 那么出口管高度s=0.9*0.78=702mm,

出口管直径d=0.5*0.78=390mm,筒体高度h=1.2*0.78=936mm,

总高度H=4.05*0.78=3159mm,排尘口直径B=0.25*0.78=195mm。

取压损参数为3.48,则压力P=(参数*密度*V12)/2=948Pa

选择雷思和利希特的径向混合模型

n=1-(1-0.67D0.14)*(T/283)0.3=0.615

N=1/n+1=0.619

M=(2kQρ(n+1))N/2=5475

=1-exp(-5475dp i0.619)

分割直径dc=(0.6931/5475)1.615=50.7mm

η总=99.53%

五、影响XCX旋风除尘器效率的因素

5.1除尘器结构尺寸对其性能的影响

XCX旋风除尘器的各个部件都有一定的尺寸比例,每一个比例关系的变动,都能影响旋风除尘器的效率和压力损失。其中除尘器

直径、进气口尺寸、排气管直径为主要影响因素。

5.1.1进气口

XCX旋风除尘器的进气口是形成旋转气流的关键部件,是影响除尘效率和压力损失的主要因素。切向进气的进口面积对除尘器

有很大的影响,进气口面积相对于筒体断面小时,进入除尘器的气流

切线速度大,有利于粉尘的分离。

5.1.2圆筒体直径和高度

圆筒体直径是构成XCX旋风除尘器的最基本尺寸。旋转气流的切向速度对粉尘产生的离心力与圆筒体直径成反比,在相同的切线速度

下,筒体直径D越小,气流的旋转半径越小,粒子受到的离心力越大,

尘粒越容易被捕集。因此,应适当选择较小的圆筒体直径,但若筒体

直径选择过小,器壁与排气管太近,粒子又容易逃逸;筒体直径太小

还容易引起堵塞,尤其是对于粘性物料。当处理风量较大时,因筒体

直径小处理含尘风量有限,可采用几台除尘器并联运行的方法解决。

并联运行处理的风量为各除尘器处理风量之和,阻力仅为单个除尘器

在处理它所承担的那部分风量的阻力。但并联使用制造比较复杂,所

需材料也较多,气体易在进口处被阻挡而增大阻力。因此,并联使用

时台数不宜过多。筒体总高度是指除尘器圆筒体和锥筒体两部分高度

之和。增加筒体总高度,可增加气流在除尘器内的旋转圈数,使含尘

气流中的粉尘与气流分离的机会增多,但筒体总高度增加,外旋流中

向心力的径向速度使部分细小粉尘进入内旋流的机会也随之增加,从

而又降低除尘效率。筒体总高度一般以4倍的圆筒体直径为宜,锥筒

体部分,由于其半径不断减小,气流的切向速度不断增加,粉尘到达

外壁的距离也不断减小,除尘效果比圆筒体部分好。因此,在筒体总高度一定的情况下,适当增加锥筒体部分的高度,有利提高除尘效率。一般圆筒体部分的高度为其直径的1.5倍,锥筒体高度为圆筒体直径的2.5倍时,可获得较为理想的除尘效率。

5.1.3排风管

排风管的直径和插入深度对XCX旋风除尘器除尘效率影响较大。排风管直径必须选择一个合适的值,排风管直径减小,可减小内旋流的旋转范围,粉尘不易从排风管排出;有利提高除尘效率,但同时出风口速度增加,阻力损失增大。若增大排风管直径,虽阻力损失可明显减小,但由于排风管与圆筒体管壁太近,易形成内、外旋流“短路”现象,使外旋流中部分未被清除的粉尘直接混入排风管中排出,从而降低除尘效率。一般认为排风管直径为圆筒体直径的0.5~0.6倍为宜。排风管插入过浅,易造成进风口含尘气流直接进入排风管,影响除尘效率;排风管插入过深,易增加气流与管壁的摩擦面,使其阻力损失增大,同时,使排风管与锥筒体底部距离缩短,增加灰尘二次返混排出的机会。排风管插入深度一般以略低于进风口底部的位置为宜。

5.2操作工艺参数

在XCX旋风除尘器尺寸和结构定型的情况下,其除尘效率关键在于运行因素的影响。

5.2.1流速

旋风除尘器是利用离心力来除尘的,离心力愈大,除尘效果愈好。在圆周运动(或曲线运动)中粉尘所受到的离心力为:F=ma

式中:F——离心力,N;

m——粉尘的质量,kg;

a——粉尘的离心加速度,m/s2。

2/R

因为,a=V

T

——尘粒的切向速度,m/s;

式中:V

T

R——气流的旋转半径,m。

2/R

所以,F=mV

T

可见,在旋风除尘器的结构固定(R不变),粉尘相同(m稳定)的情况下,增加旋风除尘器入口的气流速度,旋风除尘器的离心力就愈

大。而旋风除尘器的进口气量为:Q=3 600 AV

T

式中:Q——旋风除尘器的进口气量,m3/h;

A——旋风除尘器的进口截面积,m2。

所以,在结构固定(R不变,A不变)、粉尘相同(m稳定)的情况下,除尘器入口的气流速度与进口气量成正比,而旋风除尘器的进口气量是由引风机的进风量决定的。

可见,提高进风口气流速度,可增大除尘器内气流的切向速度,使粉尘受到的离心力增加,有利提高其除尘效率。但进风口气流速度提高,径向和轴向速度也随之增大,紊流的影响增大。对每一种特定的粉尘旋风除尘器都有一个临界进风口气流速度,当超过这个风速后,紊流的影响比分离作用增加更快,使部分已分离的粉尘重新被带走,影响除尘效果。

5.2.2粉尘的状况

粉尘颗粒大小是影响出口浓度的关键因素。处于XCX旋风除尘器外旋流的粉尘,在径向同时受到两种力的作用,一是由旋转气流的切向速度所产生的离心力,使粉尘受到向外的推移作用;另一个是由旋转气流的径向速度所产生的向心力,使粉尘受到向内的推移作用。在内、外旋流的交界面上,如果切向速度产生的离心力大于径向速度产生的向心力,则粉尘在惯性离心力的推动下向外壁移动,从而被分离出来;如果切向速度产生的离心力小于径向速度产生的向心力,则粉尘在向心力的推动下进入内旋流,最后经排风管排出。如果切向速度产生的离心力等于径向速度产生的向心力,即作用在粉尘颗粒上的外力等于零,从理论上讲,粉尘应在交界面上不停地旋转。实际上由于气流处于紊流状态及各种随机因素的影响,处于这种状态的粉尘有50%的可能进入内旋流,有50%的可能向外壁移动,除尘效率应为50%。此时分离的临界粉尘颗粒称为分割粒径。这时,内、外旋流的交界面

就象一张孔径为分割粒径的筛网,大于分割粒径的粉尘被筛网截留并捕集下来,小于分割粒径的粉尘,则通过筛网从排风管中排出。旋风除尘器捕集下来的粉尘粒径愈小,该除尘器的除尘效率愈高。离心力的大小与粉尘颗粒有关,颗粒愈大,受到离心力愈大。当粉尘的粒径和切向速度愈大,径向速度和排风管的直径愈小时,除尘效果愈好。气体中的灰分浓度也是影响出口浓度的关键因素。粉尘浓度增大时,粉尘易于凝聚,使较小的尘粒凝聚在一起而被捕集,同时,大颗粒向器壁移动过程中也会将小颗粒挟带至器壁或撞击而被分离。但由于除尘器内向下高速旋转的气流使其顶部的压力下降,部分气流也会挟带细小的尘粒沿外壁旋转向上到达顶部后,沿排气管外壁旋转向下由排气管排出,导致旋风除尘器的除尘效率不可能为100%。

根据除尘效率计算公式:η=(1-So/Si)×100%

式中:η——除尘效率;

So——出口处的粉尘流出量,kg/h;

Si——进口处的粉尘流入量,kg/h。

因为旋风除尘器的除尘效率不可能为100%,当进口粉尘流入量增加后,除尘效率虽有提高,排风管排出粉尘的绝对量也会大大增加。所以,要使排放口的粉尘浓度降低,则要降低入口粉尘浓度,可采取多个旋风除尘器串联使用的多级除尘方式,达到减少排放的目的。

六、影响XCX旋风除尘器压降的因素

1.进口管的摩擦损失。

2.气体进入XCX旋风除尘器时,因膨胀或压缩而造成的能量损失。

3.气体在XCX旋风除尘器与器壁的摩擦所引起的能量损失。

4.XCX旋风除尘器内气体因旋转而引起的能量损失。

5.排气管内的摩擦损失,同时旋转运动较直线运动消耗需要更高的能量。

6.排气管内气体旋转时的动能转化成静压能的损失。

七、结论与建议

根据综合XCX旋风除尘器的优缺点提出以下建议以提高除尘效率。

1. 保证排灰口的严密性

XCX旋风除尘器下部的严密性是影响除尘效率的又一个重要因素。含尘气体进人除尘器后,沿外壁自上而下作螺旋形旋转运动,这股向下旋转的气流到达锥体底部后,转而向上,沿轴心向上旋转。旋风除尘器内的压力分布,是轴向各断面的压力变化较小,径向的压力变化较大(主要指静压),这是由气流的轴向速率和径向速率的分布决定的。气流在筒内作圆周运动,外侧的压力高于内侧,而在外壁相近静压最高,轴心处静压最低。即使XCX旋风除尘器在正压下运动,轴心处也为负压,且一直延伸到排灰口处的负压最大,略不严密,就会产生较大的漏风,已沉集下来的粉尘势必被上升气流带出排气管。所以,要使除尘效率达到设计要求,就要保证排灰口的严密性,并在保证排灰口的严密性的情况下,及时清除除尘器锥体底部的粉尘,若不能持续及时地排出,高浓度粉尘就会在底部流转。

2. 设置灰尘隔离室

设置灰尘隔离室,即采用旁路式旋风除尘器,它主要是在平凡旋风除尘器的基础上增加一个螺旋形的旁路分离室,在除尘器顶部形成的上涡旋粉尘环,从旁路分离室引至锥体部分。这样可以使导致除尘效率降低的二次流变为能起粉尘聚集作用的上涡旋气流,提高除尘效率。

3.改进除尘器的结构

旋风除尘器在结构上主要改进如下:①进口管下斜5~10°,使气流在旋转的同时保证了向下的旋转。并且下倾角确保了尘粒反弹时绝对折射朝下。在传统旋风除尘器结构中,由于气流从上部切线标的目的进入除尘器后向下旋转,引起除尘器顶部倒空形成上涡旋气流产生顶部灰环,灰环在气管进口处与已净化废气的上旋气流混淆,而后经排气管排出除尘器;②进口管采用180°的半圈螺旋管代替了传统型的直吹进筒,从而进一步保证了气流的“下旋”,确保尘气高速旋转起来后才进筒;③锥体长度加长并采用20°小锥角,增加了气流在分离器中的逗留时间,有利于小颗粒的沉降完全,且使向下旋转的气体平缓地转变成折转向上的旋转,从而使除尘效率得以提高;④除尘器下设缓冲料斗,有效改善废气在筒体内的流动工况,削减了灰斗的反混现象和下灰环可能产生的二次扬尘。

结束语:

如何提高旋风除尘器除尘效率是当前饲料行业需要解决的一个重要课题。研究和分析影响旋风除尘器除尘效率的因素,是设计、选用、管理和维护旋风除尘器的前提,也是探求提高旋风除尘器除尘效率途径的必由之路。由于旋风除尘器内气流速度及粉尘微粒的运动等都较为复杂,影响其除尘效率的因素较

多,需要我们进行全面分析,综合考虑,寻求最优设计方案和运行管理方法。

八、参考资料

[1] 陈家庆.环保设备原理与设计[M].北京:中国石化出版社,2008:458~468.

[2] 郑铭.环保设备[M].北京:化学工业出版社,2006:203.

[3] 郝吉明.大气污染控制工程[M].北京:高等教育出版社,2002:167~177.

[4] 胡洪营,张旭,黄霞,王伟.环境工程原理[M].北京:高等教育出版社,2005:225~232.

[5] 熊振湖,费学宁,池勇.大气污染防治技术及工程应用[M].北京:机械工业出版

社,2003:78~86.

[6] 郭静,阮宜纶.大气污染控制工程[M].北京: 化学工业出版社,2008:82~83.

[7] 《化工设计全书》

旋风除尘器的设计与计算

一、实习目的 1、进一步了解旋风除尘器的有关计算 2、熟悉用CAD画效果图 3、查阅和整理各方面资料,了解旋风除尘器各方面性能及影响因素; 二、设计题目 设计一台处在常温(20°C),常温下含尘空气的旋风除尘器。已知条件为:处理气量Q=1300m3/h,粉尘密度ρp=1960kg/m3,空气密度ρ=1.29 kg/m,空气粘度μ=1.8x10-5Pa.s,进入的粉尘粒度分布见下表: 设计要求:XLT旋风除尘器,最后实现污染物的达标排放,且除尘效率为85%,压力损失不高于2000Pa。 提交文件:设计说明+旋风除尘器图(CAD制图),图纸输出A4纸。 三、旋风除尘器的工作原理 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 (2)尘粒的运动:

切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2特点 (1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。 (2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。 (3)XLT 旋风除尘器的主要特点 (4)旋风除尘器捕集<5μm 颗粒的效率不高,一般可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。可用于10μm 以上颗粒的去除,符合此题的题设条件。 1.3影响旋风除尘器除尘效率的因素 (1)入口风速 由临界计算式知,入口风速增大,c d 降低,因而除尘效率提高。但是风速过大,压力损失也明显增大 (2)除尘器的结构尺寸 其他条件相同,筒体直径愈小,尘粒所受的离心力愈大,除尘效率愈大。筒体高度对除尘效率影响不明显,适当增大锥体长度,有利于提高除尘效率。减小排气管直径,有利于提高除尘效率。 (3)粉尘粒径和密度 大粒子离心力大,捕集效率高,粒子密度愈小,越难分离,本题中<5m μ的粒子质量频率约25%,所以导致除尘效率变低,以至于达不到除尘标准。 (4)灰斗气密性 若气密性不好,漏入空气,会把已经落入灰斗的粉尘重新带走,降低了除尘效率。 四、设计计算 1旋风除尘器各部分尺寸的确定 1.1形式的选择 根据国家规定的粉尘排放标准、粉尘的性质、允许的阻力和制造条件、经济性合理选择旋风除尘器的形式,选通用型旋风除尘器。 1.2 确定进口风速 设:风速u=20m/s 1.3 确定旋风除尘器的尺寸 (1)进气口面积A 的确定 进气口截面一般为长方形,尺寸为高度H 和宽度B ,根据处理气量Q 和进气速度u 可得 u Q A =

旋风式除尘器的正确使用(精)

旋风式除尘器的正确使用 风式除尘器是依靠含尘气体在除尘器内快速旋转、离心力促使颗粒粉尘与气体分离,因此其结构、原理与其他机械式除尘器截然不同,运行操作和维护管理也显得特别重要。旋风式除尘器的操作包括启动、运行、停车,维护工作主要是常见故障的分析、排除和预防。 关键词 颗粒粉尘旋风除尘运行操作维护管理 1 旋风除尘器的正确操作 1.1启动前的准备工作 1)检查各连接部位是否连接牢固。 2)检查除尘器与烟道,除尘器与灰斗,灰斗与排灰装置、输灰装置等结合部的气密性,消除漏灰、漏气现象。 3)关小挡板阀,启动通风机、无异常现象后逐渐开大挡板阀,以便除尘器通过规定数量的含尘气体。 1.2运行时技术要求 1)注意易磨损部位如外筒内壁的变化。 2)含尘气体温度变化或湿度降低时注意粉尘的附着、堵塞和腐蚀现象。 3)注意压差变化和排出烟色状况。因为磨损和腐蚀会使除尘器穿孔和导致粉尘排放,于是除尘效率下降、排气烟色恶化、压差发生变化。 4)注意除尘器各部位的气密性,检查旋风筒气体流量和集尘浓度的变化。 1.3作业后的技术工作 1)为防止粉尘的附着和腐蚀,除尘作业结束后让除尘器继续运行一段时间,直到除尘器内完全被清洁空气置换后方可停止除尘器运行。 2)消除内筒、外筒和叶片上附着的粉尘,清除灰斗内的粉尘。 3)必要时修补磨损和腐蚀引起的穿孔。

4)检查各部位的气密性,必要时更换密封元件。 5)按照使用说明书的规定对风机进行例行保养。 2 旋风式除尘器的维护 旋风式除尘器运行时应稳定运行参数、防止漏风和关键部位磨损、避免粉尘的堵塞,否则将严重影响除尘效果。 2.1稳定运行参数 旋风式除尘器运行参数主要包括:除尘器入口气流速度,处理气体的温度和含尘气体的入口质量浓度等。 1)入口气流速度。对于尺寸一定的旋风式除尘器,入口气流速度增大不仅处理气量可提高,还可有效地提高分离效率,但压降也随之增大。当入口气流速度提高到某一数值后,分离效率可能随之下降,磨损加剧,除尘器使用寿命缩短,因此入口气流速度应控制在18~23m/s范围内。 2)处理气体的温度。因为气体温度升高,其粘度变大,使粉尘粒子受到的向心力加大,于是分离效率会下降。所以高温条件下运行的除尘器应有较大的入口气流速度和较小的截面流速。 3)含尘气体的入口质量浓度。浓度高时大颗粒粉尘对小颗粒粉尘有明显的携带作用,表现为分离效率提高。 2.2防止漏风 旋风式除尘器一旦漏风将严重影响除尘效果。据估算,除尘器下锥体或卸灰阀处漏风1%时除尘效率将下降5%;漏风5%时除尘效率将下降30%。旋风式除尘器漏风有三种部位:进出口连接法兰处、除尘器本体和卸灰装置。引起漏风的原因如下: 1)连接法兰处的漏风主要是螺栓没有拧紧、垫片厚薄不均匀、法兰面不平整等引起的。 2)除尘器本体漏风的主要原因是磨损,特别是下锥体。据使用经验,当气体含尘质量浓度超过10g/m3时,在不到100天时间里可以磨坏3mm的钢板。 3)卸风装置漏风的主要原因是机械自动式(如重锤式)卸灰阀密封性差。 2.3预防关键部位磨损 影响关键部磨损的因素有负荷、气流速度、粉尘颗粒,磨损的部位有壳体、圆锥体和排尘口等。防止磨损的技术措施包括:

旋风除尘器设计说明

旋风除尘器设计计算说明书 1、旋风除尘器简介 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1 工作原理 (1)气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。 图1 (2)尘粒的运动: 切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2 影响旋风器性能的因素 (2)二次效应-被捕集粒子的重新进入气流 在较小粒径区间,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率; 在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率; 通过环状雾化器将水喷淋在旋风除尘器壁上,能有效地控制二次效应;

临界入口速度。 (2)比例尺寸 在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降; 锥体适当加长,对提高除尘效率有利; 排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e =(0.6~0.8)D ; 特征长度(natural length )-亚历山大公式: 2 1/3e 2.3()=D l d A 排气管的下部至气流下降的最低点的距离 旋风除尘器排出管以下部分的长度应当接近或等于l ,筒体和锥体的总高度以不大于5倍的筒体直径为宜。 (3)运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意。 在不漏风的情况下进行正常排灰 (4) 烟尘的物理性质 气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 (5)操作变量 提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善 ;入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降;效率最高时的入口速度,一般在10~25m/s 围。 2、设计资料 (1)所处理的粉尘为某水泥干燥窑的排烟,主要成分为水泥粉尘; (2)平均烟气量为2300 m 3/h ,最大烟气量为3450 m 3/h (3)烟气日变化系数K 日=1.5 (4)气温293 K,大气压力为101325 Pa (5)烟气颗粒物特征: 粒径围: 5~80m μ 中位径:36.5m μ 主要粒径频数分布: 颗粒物浓度:3000 kg/m 3 空气密度:1.205 kg/m 3 空气粘度:1.81×10-5Pa ﹒s (6)作为后继处理的前处理器,要求颗粒物的总去除效率不低于90%。压力损失不高 于2500Pa. 3、旋风除尘器的选型设计

旋风除尘器课程设计

引言 随着人类社会的发展与进步,人们对生活质量和自身的健康越来越重视,对空气质量也越来越关注。然而人们在生产和生活中,不断的向大气中排放各种各样的污染物质,使大气遭到了严重的污染,有些地域环境质量不断恶化,甚至影响人类生存。在大气污染物中粉尘的污染占重要部分,可吸入颗粒物过多的进入人体,会威胁人们的健康。所以防治粉尘污染、保护大气环境是刻不容缓的重要任务[1]。 除尘器是大气污染控制应用最多的设备,其设计制造是否优良,应用维护是否得当直接影响投资费用、除尘效果、运行作业率。所以掌握除尘器工作机理,精心设计、制造和维护管理除尘器,对搞好环保工作具有重要作用[2]。 工业中目前常用的除尘器可分为:机械式除尘器、电除尘器、袋式除尘器、湿式除尘器等。 机械式除尘器包括重力沉降室、惯性除尘器、旋风除尘器等。重力沉降室是通过重力作用使尘粒从气流中沉降分离的除尘装置,主要用于高效除尘的预除尘装置,除去大于40μm以上的粒子。惯性除尘器是借助尘粒本身的惯性力作用使其与气流分离,主要用于净化密度和粒径较大的金属或矿物性粉尘。旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置,多用作小型燃煤锅炉消烟除尘和多级除尘、预除尘的设备[12]。 本次设计为旋风除尘器设计,设计的目的在于设计出符合要求的能够净化指定环境空气的除尘设备,为环保工作贡献一份力量。设计时力求层次分明、图文结合、内容详细。此设计主要由筒体、锥体、进气管、排气管、排灰口的设计计算以及风机的选择计算等组成,在获得符合条件的性能的同时力求达到加工工艺简单、经济美观、维护方便等特点。

第一章旋风除尘器的除尘机理及性能 旋风除尘器的基本工作原理 1.1.1 旋风除尘器的结构 旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。根据“旋转矩”不变原理,其切向速度不断增加。当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。 1—排气管2—顶盖3—排灰管 4—圆锥体5—圆筒体6—进气管 图1—1 旋风除尘器 1.1.2用途及压力分布 用途: 旋风除尘器适用于各种机械加工,冶金建材,矿山采掘的粉尘粗、中级净化。一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上。机械五金、铸造炉窖、家具木业、机械电子、化工涂料、冶金建材、矿山采掘等粉尘旋风分离、中央集尘净化和原材料回收设备。 旋风除尘器内的压力分布 一般旋风除尘器内的压力分布如图2—2所示。依据对旋风除尘器的工作原理、结构形式、尺寸以及气体的温度、湿度和压力等分析和试验测试,其压力损失的主要影响因素可归纳如下: (1)结构形式的影响

旋风除尘器电除尘器课程设计

旋风除尘器电除尘器课 程设计 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

目录一.设计内容 (3) 1.设计基础资料 (3) 2.设计要求 (3) 二.设计计算 (3) 1.集气罩设计 (3) 2.风量计算 (4) 3.旋风除尘器设计选型 (4) 4.旋风除尘器效率计算 (7) 5.二级除尘器设计选型 (8) 6.管道设计计算 (12) 7.风机和电机的选择 (17) 8.排气烟囱的设计 (18) 三.心得体会与总结 (19) 参考文献 (20) 附图 (21) 题目:水泥厂配料车间粉尘污染治理工程(课程)设计一.设计内容 1. 设计基础资料 ●计量皮带宽度:450mm ●配料皮带宽度:700mm ●皮带转换落差:500mm

●设粉尘收集后,粉尘浓度为2000mg/m3,粉尘的粒径分布如下表. 2. 设计要求 ●排放浓度小于50 mg/m3 ●设计二级除尘系统,第一级为旋风除尘器,第二级为电除尘器或者袋式除尘器. ●计算旋风除尘器的分级除尘效率和除尘系统的总效率. ●选择风机和电机 ●绘制除尘系统平面布置图 ●绘制除尘器本体结构图 ●编制设计说明书 二.设计计算 1.集气罩设计 集气罩的设计原则: ①改善排放粉尘有害物的工艺和环境,尽量减少粉尘排放及危害。 ②集气罩尽量靠近污染源并将其包围起来。 ③决定集气罩的安装位置和排气方向。 ④决定开口周围的环境条件。 ⑤防止集气罩周围的紊流。 ⑥决定控制风速。

本设计采用密闭集气罩,密闭罩设计的注意事项:密闭罩应力求密闭,尽量减少罩上的孔洞和缝隙;密闭罩的设置应不妨碍操作和便于检修;应注意罩内气流的运动特点。 搅拌机上方采用整体密闭集气罩,尺寸φ2000×500(高度)mm 。 传送带上方采用局部密闭集气罩,尺寸1210×1210mm 。 2.风量计算 对于整体集气罩,取断面风速为s 对于局部集气罩,取断面风速为s 总风量 /s 5.748m 0.73260.67826Q 2Q Q 3 21=?+?=+= 3.旋风除尘器的设计选型 1) 设计选型 一级除尘系统采用旋风除尘器,其特点是旋风除尘器没有运动部件,制作、管理十分方便;处理相同风量的情况下体积小,价格便宜;作为预除尘器使用时,可以立式安装,亦可以卧式安装,使用方便;处理大风量是便于多台联合使用,效率阻力不受影响,但是也存在着除尘效率不高,磨损严重的问题。 普通除尘器是由进风管、筒体、锥体和排气管组成。含尘气体进入除尘器后,沿外壁由上而下做旋转运动,同时少量气体沿径向运动到中心区域。当旋转气流的大部分到达锥体底部后,转而向上沿轴心旋转,最后经排出管排出。 旋风除尘器净化气量应与实际需要处理的含尘气体量一致。选择除尘器直径时应尽量小些;旋风除尘器入口风速要保持18—23m/s ;选择除尘器时,要根据工况考虑阻力损失及结构形式,尽可能减少动力消耗减少,便于制造维护;结构密闭要好,确保不漏风。

旋风除尘器工作原理

旋风式除尘器的组成及内部气流 旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。普通旋风除尘器由简体、锥体和进、排气管等组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从液体中分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。大多用来去除0.3μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。选用耐高温、耐磨蚀和服饰的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000℃,压力达500×105Pa的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500~2000Pa。 编辑本段行业标准 AQ 1022-2006 煤矿用袋式除尘器 DL/T 514-2004 电除尘器 JB/T 10341-2002 滤筒式除尘器 JB/T 20108-2007 药用脉冲式布袋除尘器 JB/T 6409-2008 煤气用湿式电除尘器 JB/T 7670-1995 管式电除尘器 JB/T 8533-1997 回转反吹类袋式除尘器 JB/T 9054-2000 离心式除尘器 MT 159-1995 矿用除尘器 JC/T 819-2007 水泥工业用CXBC系列袋式除尘器 JC 837-1998 建材工业用分室反吹风袋式除尘器

旋风除尘器(精)

旋风除尘器是利用气流旋转过程中作用在粉尘上的离心力,使粉尘从含尘气流中分离出来的设备。旋风除尘器的结构原理及优缺点 普通旋风除尘器的结构如图1所示,它是由进口、筒体、锥体、排出管(筒)4部分组成的。含尘气流由除尘器进口沿切线方向进入除尘器后,沿外壁由上向下作旋转运动,这股从上向下旋转的气流称为外旋涡。外旋涡到达锥体底部后,转而向上,沿轴心向上旋转,最后从排出管排出。这股从下向上的气流称为旋涡。向下的外旋涡和向上的旋涡旋转方向是相同的。气流作旋转运动时,粉尘在离心力的作用下甩向外壁,到达外壁的粉尘在下旋气流和重力的共同作用下沿壁面落入灰斗。 图1 旋风除尘器 1—进口 2—筒体 3—锥体 4—排出管 旋风除尘器的优缺点 旋风除尘器的优点有:(1)结构简单,造价低;(2)除尘器中没有运动部件,维护保养方便; (3)可耐400℃高温,如采用特殊的耐高温材料,还可以耐受更高的温度;(4)除尘器敷设耐磨衬后,可用以净化含高磨蚀性粉尘的烟气。其缺点是:(1)对捕集微细粉尘(小于5μm)和尘粒密度小的粉尘(如纤维性粉尘)除尘效率不高;(2)由于除尘效率随筒体直径的增加而降低,因而单个除尘器的处理风量受到一定限制。 影响旋风除尘器性能的主要因素 1.进口速度。旋风除尘器气流的旋转速度,是由进口速度造成的。增加进口速度,能

提高除尘器气流的旋转速度vt,使尘粒所受到的离心力(尘粒所受离心力,式中:m为尘粒质量,kg;vt为尘粒的旋转速度,可近似认为等于该点气流的旋转速度,m/s;r为旋转半径,m)增大,从而提高除尘效率,同时也增大了除尘器的处理风量。但进口速度不宜过大,过大会导致除尘器阻力急剧增加(除尘器阻力与进口速度的平方成正比),耗电量增大,而且,当进口速度增大到一定限度后,除尘效率的增加就非常缓慢,甚至有所下降。这主要是由于除尘器部涡流加剧,破坏了正常的除尘过程造成的。因此,最适宜的进口速度一般应控制在12~20m/s之间。 2.筒体直径和高度。由离心力公式可知,在同样的旋转速度下,简体直径越小(简体直径减小,旋转半径也减小),尘粒受到的离心力越大,除尘效率越高,但处理风量减小。目前常用的旋风除尘器,直径一般不超过800mm。风量较大时,可用几台除尘器并联运行或采用多管旋风除尘器。 增加简体高度,从直观上看可以增加气流在除尘器的旋转圈数,有利于尘粒的分离,使除尘效率提高。但筒体加高后,外旋下降的含尘气流和旋上升的洁净气流之间的紊流混合也要增加,从而使带人洁净气流的尘粒数量增多。故简体不宜太高,一般取筒体高度为2D(D 为筒体直径)左右。 3.锥体高度。在锥体部分,由于断面不断减小,尘粒到达外壁的距离也逐渐减小,气流的旋转速度不断增加,尘粒受到的离心力不断增大,这对尘粒的分离都是有利的。现代的高效旋风除尘器大都是长锥体就是这个原因。目前国的高效旋风除尘器,如ZT型和XCX型也都是采用长锥体,锥体高度为(2.8~2.85)D。 4.除尘器底部的严密性。旋风除尘器无论是在正压下还是在负压下运行,其底部(即排尘口)总是处于负压状态,如果除尘器底部不严密,从外部渗入的空气就会把正在落人灰斗的一部分粉尘带出除尘器,使除尘效率显著下降。所以如何在不漏风的情况下进行正常排尘,是旋风除尘器运行中必须重视的一个问题。 在收尘量不大时,可在除尘器底部设固定灰斗定期排尘;在收尘量较大,要求连续排尘时,可采用锁气器,常用的锁气器有翻板式、压板式和回转式几种。 5.粉尘的性质。尘粒密度越大,粒径越大,离心力越大,除尘效率也就越高。因而旋风除尘器一般不适用于处理细微的纤维性粉尘。对非纤维性粉尘,粒径太小时,效率也不高。用于处理粒径大、密度大的矿物性粉尘效果好。 几种常用的旋风除尘器 旋风除尘器的发展虽然经历了一百多年的历史,但到目前为止,其结构形式方面的研究工作一直都在继续进行,因而出现了许多结构形式,下面介绍常用的几种。 1.多管旋风除尘器。如前所述,旋风除尘器的效率是随着简体直径的减小而增加的,但直径减小,处理风量也减小。当要求处理风量较大时,如将几台旋风除尘器并联起来使用,占地面积太大,管理也不方便,因此就产生了多管组合的结构形式。多管除尘器是把许多小直径(100~250mm)的旋风子并联组合在一个箱体,合用一个进气口、排气口和灰斗。为使风

旋风除尘器设计计算

1.1、工作原理 ⑴气流的运动 普通旋风除尘器是由进气管、筒体、锥体和排气管等组成; 气流沿外壁由上向下旋转运动:外涡旋; 少量气体沿径向运动到中心区域; 旋转气流在锥体底部转而向上沿轴心旋转:内涡旋; 气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度 图1 ⑵尘粒的运动: 切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗; 上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。 1.2、影响旋风器性能的因素 ⑴二次效应-被捕集粒子的重新进入气流 在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率; 在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率; 通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效地控制二次效应;临界入口速度。 ⑵比例尺寸 在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降; 锥体适当加长,对提高除尘效率有利; 排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加, 一般取排出管直径d e= (0.6?0.8) D ;

特征长度(natural length)-亚历山大公式: D21/3 I = 2.3 d e ( ) A 排气管的下部至气流下降的最低点的距离 旋风除尘器排出管以下部分的长度应当接近或等于I,筒体和锥体的总高度以 不大于5倍的筒体直径为宜。 ⑶运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意、。在不漏风的情况下进行正常排灰 ⑷烟尘的物理性质 气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 ⑸操作变量 提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善; 入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降; 效率最高时的入口速度,一般在10-25m/s范围。 2、设计方案的确定 根据含尘浓度、粒度分布、密度等烟气特征及除尘要求、允许的阻力和制造条件等因素选择适宜的处理方式,然后进行计算,核对。如果所选的方式符合标准并且除尘效率高和阻力要求,就证明所选的方案是可行的,否则需要重新选取新的方案设计。直到符合标准为止。 3、工艺设计计算 3.1、选择旋风除尘器的型式 选XLP/B型旁路式旋风除尘器 3.2、选择旋风除尘器的入口风速 一般进口的气速为12 ~25m/s。取进口速度=15m/s。 3.3、计算入口面积A 已知烟气的流量Q=2000m3/h,v=l5m/s 则入口面积A= Q/3600v = 0.037m2 3.4、入口高度a、宽度b的计算 查几种旋风除尘器的主要尺寸比例表得: 入口宽度b=£=0.136m

旋风式除尘器使用说明书

旋风除尘器 使 用 说 明 书

目录 目录 (1) 一、概述 (2) 二、构造和原理 (3) 三、分类说明 (4) 四、设备特点 (5) 五、旋风除尘器的维护方法 (6) 六、排尘口堵塞及预防措施 (7) 七、启动前的准备工作 (8) 八、检修注意事项 (9)

一、概述 旋风除尘器广泛地应用于各个行业除尘系统中,本设计针对旋风除尘器的结构及工作原理,分析影响旋风除尘器压力损失的因素,介绍了旋风除尘器内部流场和除尘机理。针对旋风除尘器除尘效率问题进行了分析,总结了现有改进方案,指出存在的不足,并结合前人的改进思路提出了新的改进方案,以提高旋风除尘器的分离效率,为进一步挖掘旋风除尘器的潜在性能开辟新的思路。 二、旋风除尘器的结构及原理 1旋风除尘器的结构 旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。根据“旋转矩”不变原理,其切向速度不断增加。当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。

1—排气管2—顶盖3—排灰管 4—圆锥体5—圆筒体6—进气管 图2—1 旋风除尘器 2.2 旋风除尘器的性能及其影响因素 2.2.1旋风除尘器的技术性能 (1)处理气体流量Q 处理气体流量Q是通过除尘设备的含尘气体流量,除尘器流量为给定值,一般以体积流量表示。高温气体和不是一个大气压情况时必须把流量换算到标准状态,其体积m3/h或m3/min表示。 (2)压力损失 旋风除尘器的压力损失△p是指含尘气体通过除尘器的阻力,是进出口静压之差,是除尘器的重要性能之一。其值当然越小越好,因风机的功率几乎与它成正比。除尘器的压力损失和管道、风罩等压力损失以及除尘器的气体流量为选择风机的依据。 压力损失包含以下几个方面: ①进气管内摩擦损失; ②气体进入旋风除尘器内,因膨胀或压缩而造成的能量损失; ③与容器壁摩擦所造成能量损失; ④气体因旋转而产生的能量消耗; ⑤排气管内摩擦损失,以及由旋转气体转为直线气体造成的能量损失; ⑥排气管内气体旋转时的动能转换为静压能所造成的损失等。 (3)除尘效率 一般指额定负压的总效率和分级效率,但由于工业设备常常是在

旋风除尘器设计h

韶关学院 《大气污染控制工程》课程设计任务书 化学与环境工程学院 2011级环境工程专业 题目旋风除尘器系统的设计 起止日期:2014年5月21日至2014年5月28日学生姓名:学号: 指导教师:梁凯 教研室主任:年月日审查 系主任:年月日批准

设计题目(题目来自网络) 设计要求:根据设计参数设计出使用的旋风除尘器。

目录 1、前言 (5) 1.1、工作原理 (5) 1.2、影响旋风器性能的因素 (6) 2、旋风除尘器的特点 (7) 3、旋风除尘器型号选择 (7) 4、选择XLP/B型旋风除尘器的理由 (7) 5、工艺设计计算 (7) 5.1、除尘效率 (7) 5.2、压力损失 (7) 5.3、其他部件的尺寸 (7) 6、除尘效率计算及校核 (7) 6.1、除尘效率计算 (7) 6.2、除尘效率校核 (7) 7、课程设计心得 (10)

1、前言 旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。工业上已有100多年的历史。 特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。 优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。 旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种 1.1、工作原理 旋风除尘器是利用旋转气流所产生的离心力将尘粒从合尘气流中分离出来的除尘装置。 旋风除尘器内气流与尘粒的运动概况: 旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上.形成上升的内旋气流,并由除尘器的排气管排出。 自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分散在其中的尘粒也随同被带走。 图1

《旋风除尘器》课程设计要点

引言 引言 随着人类社会的发展与进步,人们对生活质量和自身的健康越来越重视,对空气质量也越来越关注。然而人们在生产和生活中,不断的向大气中排放各种各样的污染物质,使大气遭到了严重的污染,有些地域环境质量不断恶化,甚至影响人类生存。在大气污染物中粉尘的污染占重要部分,可吸入颗粒物过多的进入人体,会威胁人们的健康。所以防治粉尘污染、保护大气环境是刻不容缓的重要任务[1]。 除尘器是大气污染控制应用最多的设备,其设计制造是否优良,应用维护是否得当直接影响投资费用、除尘效果、运行作业率。所以掌握除尘器工作机理,精心设计、制造和维护管理除尘器,对搞好环保工作具有重要作用[2]。 工业中目前常用的除尘器可分为:机械式除尘器、电除尘器、袋式除尘器、湿式除尘器等。 机械式除尘器包括重力沉降室、惯性除尘器、旋风除尘器等。重力沉降室是通过重力作用使尘粒从气流中沉降分离的除尘装置,主要用于高效除尘的预除尘装置,除去大于40μm以上的粒子。惯性除尘器是借助尘粒本身的惯性力作用使其与气流分离,主要用于净化密度和粒径较大的金属或矿物性粉尘。旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置,多用作小型燃煤锅炉消烟除尘和多级除尘、预除尘的设备[12]。 本次设计为旋风除尘器设计,设计的目的在于设计出符合要求的能够净化指定环境空气的除尘设备,为环保工作贡献一份力量。设计时力求层次分明、图文结合、内容详细。此设计主要由筒体、锥体、进气管、排气管、排灰口的设计计算以及风机的选择计算等组成,在获得符合条件的性能的同时力求达到加工工艺简单、经济美观、维护方便等特点。 1

大气课程设计 2 第一章旋风除尘器的除尘机理及性能 1.1 旋风除尘器的基本工作原理 1.1.1 旋风除尘器的结构 旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。根据“旋转矩”不变原理,其切向速度不断增加。当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。 1—排气管2—顶盖3—排灰管 4—圆锥体5—圆筒体6—进气管 图1—1 旋风除尘器 1.1.2用途及压力分布 用途: 旋风除尘器适用于各种机械加工,冶金建材,矿山采掘的粉尘粗、中级净化。一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上。机械五金、铸造炉窖、家具木业、机械电子、化工涂料、冶金建材、矿山采掘等粉尘旋风分离、

旋风除尘工艺流程设计

旋风除尘工艺流程设计 一、旋风除尘器原理 旋风除尘器是利用旋转气流所产生的离心力(由于物体旋转而产生脱离旋转中心的力,离心力是一种惯性的表现,实际是不存在的。为使物体做圆周运动,物体需要受到一个指向圆心的力即向心力。若以此物体为原点建立坐标,看起来就好像有一股与向心力大小相同方

向相反的力,使物体向远离圆周运动圆心的方向运动。(当物体受力不足以提供圆周运动所需向心力时,看起来就好像离心力大于向心力了,物体会做远离圆心的运动,这种现象叫做“离心现象”))将尘粒从合尘气流中分离出来的除尘装置。它具有结构简单,体积较小,不需特殊的附属设备,造价较低。阻力中等,器内无运动部件,操作维修方便等优点。旋风除尘器一般用于捕集5-15微米以上的颗粒、除尘效率可达80%以上,近年来经改进后的特制旋风除尘器、其除尘效率可达95%以上。旋风除尘器的缺点是捕集微粒小于5微米的效率不高。 旋风除尘器内气流与尘粒的运动概况: ①旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上。形成上升的内旋气流,并由除尘器的排气管排出。 ②自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向.上随上升的中心气流一同从排气管排出,分散在其中的尘粒也随同被带走。 二、旋风除尘器工作过程 如图所示,旋风式除尘器由筒体1、锥体2,进气管3、排气管4

旋风除尘器课程设计说明书

环境工程专业 课程设计说明书题目:(SZL4-13锅炉除尘系统设计) 姓名: 班级: 学号: 指导教师: 课程名称:大气污染控制 设计时间:

目录 任务书 (3) 摘要 (5) 除尘系统计算 (6) 一、烟气量、烟尘和二氧化硫浓度计算 (6) 二、除尘器选型 (7) 三、除尘器设计计算 (7) 四、烟囱设计 (8) 五、系统阻力计算 (10) 六、风机的计算与选用 (11) 七、系统中烟气温度的变化 (12) 结论 (12) 参考文献 (12)

颗粒污染物控制课程设计任务书 适用专业 环境工程 一、课程设计题目 某燃煤采暖锅炉房烟气除尘系统的设计 二、课程设计的目的 通过课程设计进一步消化和巩固本课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行除尘系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、CAD 绘制工程图、使用技术资料、编写 设计说明书的能力。 三、设计原始资料 锅炉型号:SZL4—13型,共4台(2.8MW ?4) 设计耗煤量:380Kg/h /台 排烟温度:160℃ 烟气密度(标准状态下):1.34 kg /m 3 空气过剩系数:α=1.4 排烟中飞灰占煤中不可燃成分的比例:16% 烟气在锅炉出口前的阻力:800 Pa 当地大气压力:97.86 Kpa 冬季室外温度:-20℃ 空气中含水(排标准状态下)10g/kg 烟气其它性质按近似空气计算 煤的工业分析值: Y C =68% Y H =4% Y S =1% Y O =5% Y N =1% Y W =6% Y A =15% Y V =13% 按锅炉大气污染物排放标准(GB13271—2001)中二类一时段标准执行。 四、计划安排 1、资料查询0.5天 2、及设计计算(4.5天) 3、说明书编制及绘图(5天) 五、设计内容和要求 1、燃煤锅炉排烟量及烟尘和二氧化硫浓度计算 2、净化系统设计方案的分析确定 3、除尘器的选择和比较 确定除尘器的类型、型号及规格,并确定其主要运行参数。 4、管布置及计算:确定各装置的位置及管道布置 并计算各管段的管径、长度、烟囱高度和出口内径以及系统总阻力 5、风机及电机的选择设计

旋风除尘器设计

学院班级:资环学院 环境工程 09-01班 学号:310913020127 姓名:张思凯 日期:2011-12-16

一、设计题目 设计要求:旋风除尘器+湿法脱硫除尘,最后实现污染物的达标排放,根据自己的设计,计算出最终污染物的排放浓度和年排放量 提交文件:设计+旋风除尘器图(专用纸手绘)

二、旋风除尘器理的工作原理(摘抄) 旋风除尘器是利用旋转气流所产生的离心力将尘粒从合尘气流中分离出来的除尘装置。 旋风除尘器内气流与尘粒的运动概况: 旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上.形成上升的内旋气流,并由除尘器的排气管排出。 自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分散在其中的尘粒也随同被带走 2. 旋风除尘器的特点 (1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。适用于工业炉窑烟气除尘和工业通风除尘;工业气力输送系统气固两相分离与物料气力烘干回收。(2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。(3)旋风除尘器捕集<5μm颗粒的效率不高,一般可以作为高浓度除尘

xcx旋风除尘器设计说明书(李昊林毅费磊胡五钢)

xcx旋风除尘器设计说明书(李昊林毅费磊胡五钢)

XCX旋风除尘器 设计说明书 学院:环境科学与工程学院 专业:环境工程 姓名:李昊(0920169,前期计算) 林毅(0920179,CAD画图) 费磊(0920156,计划书制作) 胡五钢(0920164,后期整理)指导老师:万锐

目录 一.旋风除尘器简介···································· 二.XCX旋风除尘器的结构及特点··························· 三.XCX旋风除尘器原理及其优点··························· 四.选型依据········································· 五.影响XCX旋风除尘器效的因素··························· 六.影响XCX旋风除尘器压降的因素························· 七.结论与建议·······································八.参考文献········································

一、旋风除尘器简介 旋风除尘器是利用旋转的含尘气体所产生的离心力,将粉尘从气流中分离出来的一种干式气-固分离装置.旋风除尘器用于工业生产以来,已有百余年历史。该类分离设备机构简单、制造容易、造价和运行费用较低,对于捕集分离5μm以上的较粗颗粒粉尘,净化效率很高所以在矿山、冶金、耐火材料、建筑材料、煤炭、化工及电力工业部门应用极为普遍。但旋风除尘器对于5μm 以下的较细颗粒粉尘(尤其是密度小的细颗粒粉尘)净化效率极低所以旋风分离器通常用于粗颗粒粉尘的净化或用于多级净化时的初步处理 二、XCX旋风除尘器的结构及特点 旋风除尘器也称作旋风分离器,是利用器内旋转的寒碜气体所产生的离心力,将粉尘从气流中分离出来的一种干式气固分 离装置。它主要由排灰管、圆锥体、圆柱体、进气管、 排气管以及顶盖组成。 旋风除尘器具有以下特点: 1.结构简单,器身无运动部件,不需要特殊的附属 设备,占地面积小,制造,安装投资较少。 2.操作维护简便,压力损失中等,动力消耗不大, 运转,维护费用较低。 3.操作弹性较大,性能稳定,不受含尘气体的浓度, 温度限制。对于粉尘的物理性质无特殊的要求同时可根 据化工生产的不同要求,选用不同的材料制作或内衬不 同的耐磨,耐热的材料,以提高使用寿命。 旋风除尘器一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上,近年来经改进后的特制旋风除尘器,其除尘效率可达5%以上。旋风除尘器的缺点是捕集微粒小于5微米的效率不高。

旋风除尘器设计方案.doc

设计原始资料: 锅炉型号:DLP2-13即,单锅筒纵置式抛煤机炉,蒸发量2t/h,出口蒸汽压力13MPa 设计耗煤量: 360kg/h( 按学号增加 5) Y Y Y Y Y Y Y 设计煤成分: C=60.5% H =3% O=4% N =1% S =1.5% A =18% W=12%; V Y = 15%;属于中硫烟煤 排烟温度: 165℃ 空气过剩系数= 1.4 飞灰率= 21% 烟气在锅炉出口前阻力650Pa 污染物排放按照锅炉大气污染物排放标准中 2 类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m,90°弯头 10 个。 1.燃烧计算 1.1实际耗空气量的计算 在标准状况下,以1Kg应用煤为基准进行计算,结果见表1-1 。 1Kg 该煤完全燃烧时所需要标准状况下的氧气的体积V o为: V o=(50.4+7.5+0.47-1.25)× 22.4=1279.448 L(1-1) 假设空气中氮氧的摩尔数之比为N/O=3.78,则 1Kg 低硫煤完全燃烧时所需要的空气体积 V k为: V k =( 1+3.78 )× 1279.448=6115.953 L (1-2 )实际消耗的空气体积V k为: V k=1.4 V k=1.4×6115.953=8562.333 L ( 1-3 )

表 1-1 1Kg应用煤的相关计算 质量摩尔数燃烧耗氧量生成气体量生成气体体积成分 ( g)(mol )(mol )( mol)( L ) C 605 50.4 50.4 50.4 1128.96 H 30 15 7.5 15 336 O40 1.25————28 N100.36——0.367.84 S 15 0.47 0.47 0.47 10.528 水分120 6.67————149.408 灰分180———————— 1.2产生烟气量的计算 1Kg 该煤完全燃烧后生成的烟气量 V y =149.408+10.528+7.84+336+1128.96+8562.333=10195.069 L =10.195 m3 ( 1-4 )则,在 160℃时的实际烟气体积为V y为: V y=10.195 ×(160+273.15)=16.17 m3 ( 1-5 )273.15 该锅炉一小时产生的烟气流量Q 为:

相关主题
文本预览
相关文档 最新文档