当前位置:文档之家› 实验十九霍尔效应-电导率的测定

实验十九霍尔效应-电导率的测定

实验十九霍尔效应-电导率的测定
实验十九霍尔效应-电导率的测定

实验十九 霍尔效应-电导率的测定

一、实验目的

1. 掌握霍尔效应产生的原理。

2. 了解变温霍尔效应测试系统的使用方法。

3. 掌握测量材料电阻率的基本原理和方法。

二、实验原理

1. 霍尔效应

霍尔效应是指在外加磁场下,处于导电状态的材料中的载流子由于受洛伦兹力的作用运动发生偏转,在垂直于磁场方向的材料的两端积聚异种电荷的现象。并且当外加磁场一定,电流不变以及温度恒定的情况下,材料在平行磁场两端积聚电荷数达到稳定,因此产生一个恒定电压V H , 称为霍尔电压,该值大小由下式表述:

t IBR V H H /= (1)

式中:V H 单位为V ,t 为样品厚度,单位为m ;I 为通过样品的电流,单位为A ; B 为磁通密度,单位为wb/m 2;R H 为霍尔系数,与材料的性质有关,单位m 2/C 。

2. 材料的电阻率

材料的电阻率是表征材料导电能力的重要参数,它与材料的几何形状以及材料中所加电流和电压无关。标准样品(直六面体)的电阻率由下式表示:

)(m IL

twV ?Ω=ρσ (2) 其中V σ为电导电压,单位为V ,t 为样品厚度,单位为m ,w 为样品宽度,单位为m ,L 为样品电位引线之间的距离,单位为m ,I 为通过样品的电流,单位为A 。

三、实验仪器设备及流程

1.

CVM-200霍尔效应仪。 2.

TC-201温控仪。 3.

SV-12变温恒温仪。 4. 可换向永磁磁铁。

5. 实验样品:

1) 美国Lakeshore公司HGT-2100高灵敏霍尔探头,工作电流10mA,室温下灵敏度为

55-140mV/kG;

2) 碲镉汞单晶,厚1.11mm,最大电流50mA。

四、实验操作步骤

1.磁场标定

系统中的S1为已在室温下标定过的霍尔探头,在室温下用开关选择样品S1,并使恒温器位于可换向永磁磁铁中心,恒温器真空抽口垂直于商标面。开机后快速将横流源输出调到mA,此时CVM-200表的微伏表电压读数即为磁场的特斯拉数。霍尔探头最大电流为10mA。

2.室温下霍尔测量

将19芯电缆与恒温器连接好,样品电缆选择碲镉汞单晶样品S2,调整样品电流到50.00mA,开机预热半小时。测量时,降恒温器放置在磁场正中心,按下开关V H ,测霍尔电压V H1,如果电压较小,改到200mV或20mV档;按电流换向开关,测V H2;将黑色的永磁磁体转180°后再测V H3;电流换向,测V H4;将恒温器水平左移,使样品处的磁场为0,按V M开关,测V M1;按电流换向开关,测V M2。按V N开关,测V N1;按电流换向开关,测V N2。

3.变温测量

取出恒温器中心杆,注入液氮(依测量点的多少决定加液氮量),具体注意事项请参见SV-12低温恒温器使用说明书。如不想从80K低温测起,可先将控温设定在270K,再加液氮并及时插入中心杆,进行较高温度的控温实验。控温时顺时针转动中心杆至最低位置,再回旋约180°~720°即可通过控温仪设定控温了。等温度控制稳定后。重复测量过程2,测得此温度点的各项霍尔参数。改变测定温度,测另一温度点的霍尔参数。

中心杆旋高则冷量增大,适于快速降温及较低温度的实验。控温精度与PID参数有关,请适当调整中心杆高度,以提高不同温区的控温精度。

4.安全注意事项

(1) 经常检查并保证仪器电接地正常。

(2) 湿手不能触及过冷表面、液氮漏斗,防止皮肤冻粘在深冷表面上,造成严重冻伤!灌液氮时应戴棉手套。如果发生冻伤,请立即用大量自来水冲洗,并按烫伤处理伤口。(3) 实验完毕,一定要拧松、提起中心杆,防止热膨胀胀坏恒温器。

五、数据处理

1. 霍尔系数和载流子浓度

霍尔电压的方向与电流方向,磁场方向和载流子类型有关。本系统所提供的碲镉汞单晶在室温下为n 型载流子导电,在液氮温度为p 型载流子导电。请于实验前用指南针确定电磁铁磁极性与电流方向的关系,供实验判断载流子类型用。

进行霍尔测量时,由于存在热电势、电阻压降等副效应,故要在不同电流方向和磁场方向下进行4次霍尔电压测量,得到四个值:V H1、V H2、V H3、V H4。最后霍尔电压取这四个值绝对值的平均值:

)(4

14321H H H H H V V V V V +++=

(3) 然后通过式(1)计算霍尔系数。 对于单一载流子导电的情况,载流子浓度为:

)(6.11019

m R n H

?Ω= (4) 2. 电阻率

本仪器中两块样品均为范德堡样品,由于样品的几何形状不同于标准样品(图1),其电阻率的表示方法不同于式(2):

)(2

ln 4)(2ln 22121N N M M op mn on mp V V V V If t R R f t +++π=+π=ρ?? (5) 其中I 为通过样品的电流(假设在测量过程中使用了同样的样品电流),f 为形状因子,对对称样品引线分布:f ≈1。

图 1 霍尔测量的样品焊线定义

3.霍尔迁移率

霍尔迁移率可表示为:

R(6)

=

ρ

μ/

H

对于混合导电的情况,按照上式计算出来的结果无明确的物理意义,既不代表电子迁移率,也不代表空穴迁移率。

六、分析讨论题

1.如何确定霍尔电场的方向?

2.霍尔系数是如何定义的?在什麽物质中(导体还是半导体)—霍尔系数强烈地依赖于温度?

3.分析实验结果,找出霍尔效应与温度的变化规律。

分析实验结果,判断在不同温度下载流子类型。

范德堡测试方法与变温霍尔效应

范德堡测试方法与变温霍尔效应 摘要:本实验采用范德堡测试方法,测量样品霍耳系数及电导率随温度的变化,可以确定一些主要特性参数——禁带宽度,杂质电离能,电导率,载流子浓度,材料的纯度及迁移率,从而进一步探讨导电类型,导电机理及散射机制。 关键词:霍尔效应、范德堡测试法、霍尔系数、电导率 引言:对通电导体或半导体施加一与电流方向相垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,此即为霍耳效应。利用霍尔效应测量霍耳系数及电导率是分析半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,是半导体材料研制工作中必不可少的一种常备测试方法。 一、原理部分: (一)、半导体内的载流子 根据半导体导电理论,半导体内载流子的产生有两种不同的机制:本征激发和杂质电离。 1、本征激发 在一定的温度下,由于原子的热运动,价键中的电子获得足够的能量,摆脱共价键的束缚,成为可以自由运动的电子。这时在原来的共价键上就留下了一个电子空位,邻键上的电子随时可以跳过来填充这个空位,从而使空位转移到邻键上去,因此空位也是可以移动的。 这种可以自由移动的空位被称为空穴。半导体不 仅靠自由电子导电,而且也靠这种空穴导电。半 导体有两种载流子,即电子和空穴。 从能带来看,构成共价键的电子也就是填充 价带的电子,电子摆脱共价键而形成一对电子和 空穴的过程,就是一个电子从价带到导带的量子 跃迁过程,如图1 所示。 纯净的半导体中费米能级位置和载流子浓 度只是由材料本身的本征性质决定的,这种半导 体称本征半导体。本征半导体中,在电子—空穴 对的产生过程中,每产生一个电子,同时也产生 一个空穴,所以,电子和空穴浓度保持相等, n表示,称为本征载流图1 本征激发示意图 这个共同的浓度用 i 子浓度。这种由半导体本身提供,不受外来掺杂影响的载流子产生过程通常叫做本征激发。 2.、杂质电离 绝大部分的重要半导体材料都含有一定量的浅杂质,它们在常温下的导电性能,主要由浅杂质决定。浅杂质分为两种类型,一种是能够接收价带中激发的电子变为负离子,称为受主杂质。由受主杂质电离提供空穴导电的半导体叫做P 型半导体如图2(a)所示。还有一种可以向半导体提供一个自由电子而本身成为正离子,称为施主杂质。这种由施主杂质电离提供电子导电的半导体叫做n 型半导体,如图2(b)所示。

霍尔效应实验

霍尔效应实验 【实验目的】 1.了解霍尔效应实验原理。 2.测量霍尔电流与霍尔电压之间的关系。 3.测量励磁电流与霍尔电压之间的关系。 4.学会用“对称测量法”消除负效应的影响。 【实验仪器】 QS-H霍尔效应组合仪(电磁铁、霍尔样品、样品架、换向开关和接线柱),小磁针,测试仪。 【实验原理】 1.通过霍尔效应测量磁场 霍尔效应装置如图1和图2所示。将一个半导体薄片放在垂直于它的磁场中(B的方向沿z轴方向),当沿y方向的电极、上施加电流I时,薄片内定向移动的载流子(设平均速率为u)受到洛伦兹力F B的作用。 (1)

图1 实验装置图(霍尔元件部分) 图2 电磁铁气隙中的磁场 无论载流子是负电荷还是正电荷,F B的方向均沿着x方向,在洛伦兹力的作用下,载流子发生偏移,产生电荷积累,从而在薄片、两侧产生一个电位差,,形成一个电场E。电场使载流子又受到一个与方向相反的电场力, (2)

其中b为薄片宽度,F E随着电荷累积而增大,当达到稳定状态时=,即 (3) 这时在、两侧建立的电场称为霍尔电场,相应的电压称为霍尔电压,电极、称为霍尔电极。 另一方面,设载流子浓度为n,薄片厚度为d,则电流强度I与u 的关系为: (4) 由(3)和(4)可得到 (5) 令则 (6) 称为霍尔系数,它体现了材料的霍尔效应大小。根据霍尔效应制作的元件称为霍尔元件。 在应用中,(6)常以如下形式出现: (7) 式中称为霍尔元件灵敏度,I称为控制电流。 由式(7)可见,若I、已知,只要测出霍尔电压,即可算出磁场B的大小;并且若知载流子类型(n型半导体多数载流子为电子,P型半导体多数载流子为空穴),则由的正负可测出磁场方向,反之,若已知磁场方向,则可判断载流子类型。

霍尔效应实验报告

霍耳效应实验报告 学号:200702050940 实验人:张学林 同组人: 杨天海 实验目的: 1、 观察霍耳效应; 2、 了解应用霍耳效应进行简单的相关测量的方法 实验内容: 1、确定样品导电类型; 2、测算霍耳系数、载流子浓度、霍耳灵敏度; 3、测算长螺线管轴线上的磁场分布。 实验原理: 一、关于霍耳效应 如图一所示。当电流通过一块导体或半导体制 成的薄片时,载流子会发生漂移。 而将这种通有电流的薄片置于磁场中,并使薄 片平面垂直于磁场方向。根据图一中的电流方向,并结合右手定则,我们可以看到:(1)无论导体中的载流子带正电荷还是负电荷,其受力均为F m 方向;(2)载流子均会沿X 轴方向运动,并最终靠在A 端。于是:(1)当载流子为正电荷时薄板A 端带正电荷,导致板A 端电势高于B 端;(2)当载流子为负电荷时薄板A 端带负电荷,导致板B 端电势高于A 端。 这就是霍耳效应。 二、关于霍耳效应性质的研究 如图一,关于霍耳效应的相关参量已如图所 示。 其中载流子所受的磁场力 m F qvB = (1) 载流子所受的电场力 e F qE = (2) 当其所受磁场力与电场力受力平衡时: (a B (b z y x (图一)

有关系, e m F F = (3) 且有, H H U E a vBa == (4) 我们又知道,(I v n nqab = 为载流子浓度) (5) 于是,由(1)~(3)可知 H IB E nqab = (6) 再结合(4)式可得 1 ()H IB U IB nqb nqb = = (7) 令 1 H R nq = (8) 为霍耳系数,并代入(7)式可得 H H B U R I b = (9) 那么,霍耳系数又可表示为 H H U b R IB = (10) 即, 1 H H U b R IB nq = = (11) 三、关于霍耳效应的应用 1、利用霍耳效应确定导体的类型 由(11)式可得,导体横向电势差与导体中载流子类型有关:当H U 为正时载流子为电子,导体为P 型半导体;反之,载流子为空穴,导体为N 型半导体。 2、利用霍耳效应计算霍耳系数 根据(9)式,可以固定B 、b ,改变I 得到U H ,多测几组U —I 值。然后根据几组U —I 值在直角坐标系中描 点,可根据拟合出来的直线的斜率求出霍耳系数。 3、 霍耳灵敏度的计算 若将(7)式中的括号以内的项定义为霍耳灵敏度,即令1 n H K R b nqb ==。于是,(二、2)中的霍耳系数计算出来,霍耳灵敏度也就计算出来了。 4、利用霍耳效应计算载流子浓度 由(7)、(11)式可得1H n R q = 。

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

变温霍尔效应

学号:PB07203143 姓名:王一飞院(系):物理系 变温霍尔效应 【实验目的】 1、通过该实验,学习利用变温霍尔效应测量半导体薄膜的多种电学性质的方法。 2、掌握霍尔系数、霍尔迁移率和电导率的测量方法,了解它们随温度的变化规律。 3、测定样品的导电类型和载流子浓度,并计算出禁带宽度和杂质电离能等。 【实验原理】 1、半导体的能带结构和载流子浓度 本征半导体中本征载流子(电子和空穴)总是成对出现的,它们的浓度相同,本征载流 子浓度仅取决于材料的性质(如材料种类和禁带宽度)及外界的温度。 若所掺杂质的价态大于基质的价态,即施主杂质,称为 n 型半导体;若所掺杂质的价态小 于基质的价态,即受主杂质,称为 p 型半导体。 当导带中的电子和价带中的空穴相遇后,电子重新填充原子中的空位,导致相应的电子 和空穴消失,这过程叫做电子和空穴的复合。在这一过程中,电子从高能态的导带回到低能态的价带,多余的能量以热辐射的形式(无辐射复合)或光辐射的形式(辐射复合)放出。 当温度在几十K左右时,只有很少受主电离,空穴浓度P远小于受主浓度,曲线基本上为 直线,由斜率可得到受主电离能Ei。 当温度升高到杂质全电离饱和区,载流子浓度与温度无关 当在本征激发的高温区,由曲线的斜率可求出禁带宽度Eg 2、电导率和迁移率 半导体中同时有两种载流子导电时,在过渡区及本征激发区电导率可写为: [p型半导体] 设p s 为杂质全部电离产生的空穴饱和浓度,p = p s + n 则 3、霍尔效应及其测量 如右图,霍尔系数 在考虑霍尔效用时,由于载流子沿y方向发生偏转,

造成在x方向定向运动的速度出现统计分布。 考虑载流子迁移率μ = v /E时,应采用速度的统计平均结果vH 稳态时,y 方向的电场力与罗伦兹力相抵消,故有 对p型半导体,当温度处在较低的杂质电离区时 在温度逐渐升高的过程中,电子由价带激发到导带的过程加剧,出现两种载流子导电机制。 温度进一步升高,更多的电子从价带激发到导带,使,故有。随后R H 将会 达到其极值R HM 。 3、范得堡法测量电阻率和霍耳效应 原理图如右图,在样品侧边制作四个电极,依次在一对相邻 的电极用来通入电流,另一对电极之间测量电位差。 电阻率 由于两霍尔电极位置不对称引起的,叫失排电压。 设B、D电极之间电压Vo,在 B、C电极间电压Vm,在理想范德堡样品中。电流线分布在磁场前后是不变的,因而加磁场后等位面的改变使B、D间电压改变(Vm-Vo)完全是由于霍尔效应引起的, 即电压改变量就是霍尔电压V H 。 4、霍尔效应测量中的副效应及其消除方法 在测量霍耳系数时,由于存在一系列电磁和热磁副效应,使得数字电压表测出的电位差V AB 并不 等于样品的霍耳电位差V H ,而是包括了由各种副效应引起的附加电位差与V H 之和。这些副效应主要 有以下几种。 ①由于电极A与B不能真正制作在同一等位面上,所以即使在没有加磁场B的情况下,A、B间也有一个电位差,其正负与电流I的方向有关。 ②由于载流子漂移速度有一定的分布范围,当它们在磁场作用下发生偏转时,速度快的高能粒子最早在y方向形成积累,于是在y方向两霍尔电极之间出现温度差,产生温差电压V E 。这就叫艾廷豪 森效应。不难看出,VE的极性总是与V H 一致,与B和I方向有关。 ③在沿x方向给样品加电流时,两个端电极与样品的接触电阻不同,产生的焦耳热不同,将造成沿电流方向的温差,有温度梯度就会有载流子的热扩散流。在横向磁场作用下,同样也要发生偏转,积累,产生附加的霍尔电压VN。这种效应叫能斯脱效应。VN的极性只随磁场方向改变。 ④上述热扩散速度也有个分布,从艾廷豪森效应的分析不难看出,热扩散的载流子在横向磁场作 用下向y方向积累的结果使霍尔电极间有温差电压VR。这叫里纪—勒杜克效应。V R 的极性只随磁场方向改变。

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

霍尔效应实验方法

实验: 霍尔效应与应用设计 [教学目标] 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 [实验仪器] 1.TH -H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。 2.TH -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 [教学重点] 1. 霍尔效应基本原理; 2. 测量半导体材料的霍尔系数的实验方法; 3. “对称测量法”消除副效应所产生的系统误差的实验方法。 [教学难点] 1. 霍尔效应基本原理及霍尔电压结论的电磁学解释与推导; 2. 各种副效应来源、性质及消除或减小的实验方法; 3. 用最小二乘法处理相关数据得出结论。 [教学过程] (一)讲授内容: (1)霍尔效应的发现: 1879,霍尔在研究关于载流导体在磁场中的受力性质时发现: “电流通过金属,在磁场作用下产生横向电动势” 。这种效应被称为霍尔效应。 结论:d B I ne V S H ?=1 (2)霍尔效应的解释: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载

流子所受的横电场力H e eE f =与洛仑兹力evB f m =相等时,样品两侧电荷的积累就达到平衡, B e eE H v = (1) bd ne I S v = (2) 由 (1)、(2)两式可得: d B I R d B I ne b E V S H S H H =?= ?=1 (3) 比例系数ne R H 1=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, (3) 霍尔效应在理论研究方面的进展 1、量子霍尔效应(Quantum Hall Effect) 1980年,德国物理学家冯?克利青观察到在超强磁场(18T )和极低 温(1.5K )条件下,霍尔电压 UH 与B 之间的关系不再是线性的,出现一 系列量子化平台。 量子霍尔电阻 获1985年诺贝尔物理学奖! 2、分数量子霍尔效应 1、1982年,美国AT&T 贝尔实验室的崔琦和 斯特默发现:“极纯的半导体材料在超低温(0.5K) 和超强磁场(25T)下,一种以分数形态出现的量子电 阻平台”。 2、1983 年,同实验室的劳克林提出准粒子理 论模型,解释这一现象。 获1998年诺贝尔物理学奖 i e h I U R H H H 1 2?==3,2,1=i

霍尔效应实验数据及曲线

表1 测绘Vh-Is实验曲线数据记录表(Im=0.500A) Is(mA)V1(Mv)V2(Mv)V3(Mv)V4(Mv) Vh=(|V1|+|V2|+|V3|+|V4|)/4 +B,+Is-B,+Is-B,-Is+B,-Is 0.50.64-0.370.37-0.630.5025 1 1.28-0.740.75-1.271 1.5 1.91-1.11 1.12-1.9 1.53 2 2.53-1.48 1.49-2.52 2.005 2.5 3.16-1.86 1.87-3.15 2.51 3 3.79-2.2 4 2.25-3.77 3.0125 3.5 4.42-2.61 2.62-4.39 3.51 4 5.03-2.99 3.01-5.01 4.01 Vh-Is实验曲线 表2 测绘Vh-Im实验曲线数据记录表 Im(mA)V1(Mv)V2(Mv)V3(Mv)V4(Mv) Vh=(|V1|+|V2|+|V3|+|V4|)/4 +B,+Is-B,+Is-B,-Is+B,-Is

0.1 1.380.16-0.15-1.360.7625 0.2 1.980.44-0.43-1.96 1.2025 0.3 2.59 1.04-1.03-2.57 1.8075 0.4 3.18 1.64-1.63-3.16 2.4025 0.5 3.79 2.25-2.23-3.77 3.01 表3 测绘Vh-X实验曲线数据记录表 X V1(Mv)V2(Mv)V3(Mv)V4(Mv)Vh=(|V1|+|V2|+|V3|+|V4|)/4 Vh 0 2.12-0.570.59-2.09 1.3425 1 2.92-1.37 1.39-2.89 2.1425 2 3.38-1.82 1.85-3.35 2.6 3 3.58-2.03 2.06-3.56 2.8075 4 3.68-2.12 2.06-3.6 5 2.8775 5 3.73-2.17 2.2-3.7 2.95 6 3.76-2.2 2.23-3.73 2.98 8 3.77-2.21 2.24-3.74 2.99

低温实验讲义_霍尔效应测量汇编

实验8—1变温霍尔效应 引言 1879年,霍尔(E.H.Hall)在研究通有电流的导体在磁场中受力的情况时,发现在垂直于磁场和电流的方向上产生了电动势,这个电磁效应称为“霍尔效应”。在半导体材料中,霍尔效应比在金属中大几个数量级,引起人们对它的深入研究。霍尔效应的研究在半导体理论的发展中起了重要的推动作用。直到现在,霍尔效应的测量仍是研究半导体性质的重要实验方法。 利用霍尔效应,可以确定半导体的导电类型和载流子浓度,利用霍尔系数和电导率的联合测量,可以用来研究半导体的导电机构(本征导电和杂质导电)和散射机构(晶格散射和杂质散射),进一步确定半导体的迁移率、禁带宽度、杂质电离能等基本参数。测量霍尔系数随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度特性。 根据霍尔效应原理制成的霍尔器件,可用于磁场和功率测量,也可制成开关元件,在自动控制和信息处理等方面有着广泛的应用。 实验目的 1.了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导及其副效应的产生和消除。 2.掌握霍尔系数和电导率的测量方法。通过测量数据处理判别样品的导电类型,计算室温 下所测半导体材料的霍尔系数、电导率、载流子浓度和霍尔迁移率。 3.掌握动态法测量霍尔系数(R H)及电导率(σ)随温度的变化,作出R H~1/T,σ~1/T曲 线,了解霍尔系数和电导率与温度的关系。 4.了解霍尔器件的应用,理解半导体的导电机制。 实验原理 1.半导体内的载流子 根据半导体导电理论,半导体内载流子的产生有两种不同的机构:本征激发和杂质电离。 (1)本征激发 半导体材料内共价键上的电子有可能受热激发后跃迁到导带上成为可迁移的电子,在原共价键上却留下一个电子缺位—空穴,这个空穴很容易受到邻键上的电子跳过来填补而转移到邻键上。因此,半导体内存在参与导电的两种载流子:电子和空穴。这种不受外来杂质的影响由半导体本身靠热激发产生电子—空穴的过程,称为本征激发。显然,导带上每产生一个电子,价带上必然留下一个空穴。因此,由本征激发的电子浓度n和空穴浓度p应相等,并统称为本征浓度n i,由经典的玻尔兹曼统计可得 n i=n=p=(N c N v)1/2exp(-E g/2k B T)=K’T3/2 exp(-E g/2k B T) 式中N c,N v分别为导带、价带有效状态密度,K’为常数,T为温度,E g为禁带宽度,k B为玻尔兹曼常数。 (2)杂质电离 在纯净的第IV族元素半导体材料中,掺入微量III或V族元素杂质,称为半导体掺杂。掺杂后的半导体在室温下的导电性能主要由浅杂质决定。 如果在硅材料中掺入微量III族元素(如硼或铝等),这些第III族原子在晶体中取代部

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

大学物理实验报告系列之霍尔效应-大物霍尔效应实验报告Word版

【实验名称】霍尔效应 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除付效应的影响,测量试样的VH—IS;和VH—IM 曲线。 3.确定试样的导电类型、载流子浓度以及迁移率。 【实验仪器】 霍尔效应实验仪 【实验原理】霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。 对于图1(a)所示的N型半导体试样,若在X方向通以电流1s,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力 F B = e v B (1) 则在Y方向即试样A、A'电极两侧就开始聚积异号电荷而产生相应的附加电场一霍尔电场。电场的指向取决于试样的导电类型。对N型试样,霍尔电场逆Y方向,P型试样则沿Y方向,有: Is (X)、 B (Z) E H (Y) <0 (N型) E H (Y) >0 (P型) 显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H eE与 洛仑兹力eVB相等时,样品两侧电荷的积累就达到平衡,故有 H eE= B v e(2) 其中 H E为霍尔电场,v是载流子在电流方向上的平均漂移速度。 设试样的宽为b,厚度为d,载流子浓度为n,则 bd v ne Is=(3)由(2)、(3)两式可得 d B I R d B I ne b E V S H S H H = = = 1 (4) 即霍尔电压 H V(A、A'电极之间的电压)与IsB乘积成正比与试样厚度成反比。 比例系数 ne R H 1 =称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, 整理为word格式

变温霍尔效应.

变温霍尔效应 如果在电流的垂直方向加以磁场,则在同电流和磁场都垂直的方向上,将建立起一个电场,这种现象称为霍耳效应。霍尔效应是1879年霍耳在研究导体在磁场中受力的性质时发现的,对分析和研究半导体材料的电输运性质具有十分重要的意义。目前,霍耳效应不仅用来确定半导体材料的性质,利用霍耳效应制备的霍耳器件在科学研究、工业生产上都有着广泛的应用。 通过变温霍尔效应测量可以确定材料的导电类型、载流子浓度与温度的关系、霍耳迁移率和电导迁移率与温度的关系、材料的禁带宽度、施主或受主杂质以及复合中心的电离能等。 一 实验目的 1.了解和学习低温实验中的低温温度控制和温度测量的基本原理与方法; 2.掌握利用霍尔效应测量材料的电输运性质的原理和实验方法; 3.验证P型导电到N 型导电的转变。 二 实验原理 1. 半导体的能带结构和载流子浓度 没有人工掺杂的半导体称为本征半导体,本征半导体中的原子按照晶格有规则的排列,产生周期性势场。在这一周期势场的作用下,电子的能级展宽成准连续的能带。束缚在原子周围化学键上的电子能量较低,它们所形成的能级构成价带;脱离原子束缚后在晶体中自由运动的电子能量较高,构成导带,导带和价带之间存在的能带隙称为禁带。当绝对温度为0 k时,电子全被束缚在原子上,导带能级上没有电子,而价带中的能级全被电子填满(所以价带也称为满带);随着温度升高,部分电子由于热运动脱离原子束缚,成为具有导带能量的电子,它在半导体中可以自由运动,产生导电性能,这就是电子导电;而电子脱离原子束缚后,在原来所在的原子上留下一个带正电荷的电子的缺位,通常称为空穴,它所占据的能级就是原来电子在价带中所占据的能级。因为邻近原子上的电子随时可以来填补这个缺位,使这个缺位转移到相邻原子上去,形成空穴的自由运动,产生空穴导电。半导体的导电性质就是由导带中带负电荷的电子和价带中带正电荷的空穴的运动所形成的。这两种粒子统称载流子。本征半导体中的载流子称为本征载流子,它主要是由于从外界吸收热量后,将电子从价带激发到导带,其结果是导带中增加了一个电子而在价带出现了一个空穴,这一过程成为本征激发。所以,本征载流子(电子和空穴)总是成对出现的,它们的浓度相同,本征载流子浓度仅取决于材料的性质(如材料种类和禁带宽度)及外界的温度。 为了改变半导体的性质,常常进行人工掺杂。不同的掺杂将会改变半导体中电子或空穴的浓度。若所掺杂质的价态大于基质的价态,在和基质原子键合时就会多余出电子,这种电子很容易在外界能量(热、电、光能等)的作用下脱离原子的束缚成为自由运动的电子(导带电子),所以它的能级处在禁带中靠近导带底的位置(施主能级),这种杂质称为施主杂质。施主杂质中的电子进入导带的过程称为电离过程,离化后的施主杂质形成正电中心,它所放出的电子进入导带,使导带中的电子浓度远大于价带中空穴的浓度,因此,掺施主杂质的半导体呈现电子导电的性质,称为n型半导体。施主电离过程是施主能级上的电子跃迁到导带并在导带中形成电子的过程,跃迁所需的能量就是施主电离能;反之,若所掺杂质的价态小于基质的价态,这种杂质是受主杂质,它的能级处在禁带中靠近价带顶的位置(受主能级),受主杂质很容易被离化,离化时从价带中吸引电子,变为负电中心,使价带中出现空穴,呈空穴导电性质,这样的半导体为p型半导体。受主电离时所需的能量就是受主电离能。

实验报告--霍尔效应原理及其应用

成都信息工程学院 物理实验报告 姓名: 专业: 班级: 学号: 实验日期: 2006-09-03一段 实验教室: 5206 指导教师: 一、实验名称: 霍尔效应原理及其应用 二、实验目的: 1、了解霍尔效应产生原理; 2、测量霍尔元件的H s V I -、H m V I -曲线,了解霍尔电压H V 与霍尔元件工作电流s I 、直 螺线管的励磁电流 m I 间的关系; 3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度B 及分布; 4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号) 四、实验原理: 1、霍尔效应现象及物理解释 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 B f 作用而引起的偏转。 当带电 粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。

半导体样品,若在x方向通以电流s I ,在z方向加磁场B u r ,则在y方向即样品A、A′电 极两侧就开始聚积异号电荷而产生相应的电场H E ,电场的指向取决于样品的导电类型。显然, 当载流子所受的横向电场力 E B f f <时电荷不断聚积,电场不断加强,直到E B f f =样品两侧电 荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) H V 。 设 H E 为霍尔电场,v 是载流子在电流方向上的平均漂移速度; 样品的宽度为b ,厚度为d , 载流子浓度为n ,则有: s I nevbd = (1-1) 因为 E H f eE =,B f evB =,又根据E B f f =,则 1s s H H H I B I B V E b R ne d d =?= ?= (1-2) 其中 1/()H R ne =称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出H V 、B 以及知道s I 和d ,可按下式计算3(/)H R m c : H H s V d R I B = (1-3) B I U K S H H /= (1—4) H K 为霍尔元件灵敏度。根据RH 可进一步确定以下参数。 (1)由 H V 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 s I 和B 的方向(即测量中的+s I ,+B ),若测得的H V <0(即A′的电位低于A的电位), 则样品属N型,反之为P型。

霍尔效应实验报告

南昌大学物理实验报告 课程名称:普通物理实验(2) 实验名称:霍尔效应 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1、了解霍尔效应法测磁感应强度S I 的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法; 二、 实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻 器、双路直流稳压电源、双刀双掷开关、连接导线15根。 三、 实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场H E . 如果H E <0,则说明载流子为电子,则为n 型试样;如果H E >0,则说明载流子为空穴,即为p 型试样。 显然霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场

力e H E 与洛仑磁力B v e 相等,样品两侧电荷的积累就达到动态平衡,故有: e H E =-B v e 其中E H 为霍尔电场,v 是载流子在电流方向上的平均速度。若试样的宽度为b ,厚度为d ,载流子浓度为n ,则 bd v ne I = 由上面两式可得: d B I R d B I ne b E V S H S H H == =1 (3) 即霍尔电压H V (上下两端之间的电压)与B I S 乘积成正比与试样厚度d 成反比。比列系数ne R H 1 = 称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要测出H V 以及知道S I 、B 和d 可按下式计算H R : 410?= B I d V R S H H 2、霍尔系数H R 与其他参量间的关系 根据H R 可进一步确定以下参量: (1)由H R 的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电压为负,H R 为负,样品属于n 型;反之则为p 型。 (2)由H R 求载流子浓度n.即e R n H 1 = 这个关系式是假定所有载流子都具有相同的漂移速度得到的。 (3)结合电导率的测量,求载流子的迁移率μ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = 即μ=σH R ,测出σ值即可求μ。 3、霍尔效应与材料性能的关系

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学得迅速发展,霍尔系数与电导率得测量已成为研究半导体材料得主要方法之一。本文主要通过实验测量半导体材料得霍尔系数与电导率可以判断材料得导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中得载流体,如果电流方向与磁场垂直,则在垂直于电流与磁场得方向会产生一附加得横向电场,称为霍尔效应。 如今,霍尔效应不但就是测定半导体材料电学参数得主要手段,而且随着电子技术得发展,利用该效应制成得霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制与信息处理等方面. 【实验目得】 1.通过实验掌握霍尔效应基本原理,了解霍尔元件得基本结构; 2.学会测量半导体材料得霍尔系数、电导率、迁移率等参数得实验方法与技术; 3.学会用“对称测量法"消除副效应所产生得系统误差得实验方法。 4.学习利用霍尔效应测量磁感应强度B及磁场分布. 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲就是运动得带电粒子在磁场中受洛仑兹力作用而引起得偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流与磁场得方向上产生正负电荷得聚积,从而形成附加得横向电场。如图1所示.当载流子所受得横电场力与洛仑兹力相等时,样品两侧电荷得积累就达到平衡,故有

? 其中EH 称为霍尔电场,就是载流子在电流方向上得平均漂移速度。设试样得宽度为b,厚度为d,载流子浓度为n ,则 ? ? ? 比例系数R H=1/n e称为霍尔系数. 1. 由RH 得符号(或霍尔电压得正负)判断样品得导电类型。 2. 由R H求载流子浓度n ,即 (4) 3. 结合电导率得测量,求载流子得迁移率. 电导率σ与载流子浓度n 以及迁移率之间有如下关系 (5) 即,测出值即可求。 电导率可以通过在零磁场下,测量B 、C 电极间得电位差为VBC ,由下式求得。 (6) 二、实验中得副效应及其消除方法: 在产生霍尔效应得同时,因伴随着多种副效应,以致实验测得得霍尔电极A 、A′之间得电压为V H 与各副效应电压得叠加值,因此必须设法消除。 (1)不等势电压降V 0 图1、 霍尔效应原理示意图,a)为N 型(电子) b)为P 型(孔穴)

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b ,厚度为d ,载流子浓度为n ,则 图1. 霍尔效应原理示意图,a )为N 型(电子) b )为P 型(孔穴) f e f m v -e E H A / A B C I S V mA B a +e E H f e f m v I S B b l d b

变温霍尔效应调研报告

学号:PB07203143 姓名:王一飞院(系): 物理系 变温霍尔效应调研报告 1、霍尔测量控温系统的构成 可换向永磁磁铁、变温恒温器、控温仪、电输运性质测试仪、连接电缆和装在恒温器内冷指上的霍尔探头、样品组成。 变温恒温器可换向永磁铁控温仪CVM-200表 2、PID工作原理 在实验中,通常需要把某些物理量(如温度、压力、流量、液位等)维持在指定的数值上。当这些物理量偏离所希望的给定值时,即产生偏差。PID控制仪根据测量信号与给定值的偏差进行比例(P)、积分(I)、微分(D)运算,从而输出某个适当的控制信号给执行机构,促使测量值恢复到给定值,达到自动控制的效果。 PID控制参数及输出组态 N S S

符号名称内容取值范围地址P比例带0.1~5.050H i积分时间0000~100051H d微分时间0000~100052H CP控制周期0.2~6秒53H Sen手、自动输出方式 选择 时可手动 输出 54H d-r正反作用选择为反, 为正 55H oUtL控制输出下限0.0~100.056H oUtH控制输出上限0.0~100.057H d-r —PID控制正、反作用选择 选择pos表示正作用:温度高于设定值时才有电功率输出; 选择neg表示反作用:温度偏低时才输出加热功率。 OutL —输出限幅下限设定(对漏热大的系统提供维持加热功率) Outh —输出限幅上限设定(限制最大输出) Sen —手动/自动控制输出选择。当该参数设置为 时,不能手动输出;当该参数设置为时,允许手动控

制输出。 比例运算是指输出控制量与偏差的比例关系。仪表比例参数 P 设定值越大,控制的灵敏度越低,设定值越小,控制的灵敏度越高,例如仪表的比例参数 P设定为4%,表示测量值偏离给定值4%时,输出控制量变化100%。 积分运算的目的是消除静差。只要偏差存在,积分作用将控制量向使偏差消除的方向移动。积分时间是表示积分作用强度的单位。仪表设定的积分时间越短,积分作用越强。例如仪表的积分时间设定为240秒时,表示对固定的偏差,积分作用的输出量达到和比例作用相同的输出量需要240秒。比例作用和积分作用是对控制结果的修正动作,响应较慢。 微分作用是为了消除其缺点而补充的。微分作用根据偏差产生的速度对输出量进行修正,对变化越快的变化给予越大的修正,使控制过程尽快回到原来的控制状态,微分时间是表示微分作用强度的单位,仪表设定的微分时间越长,则以微分作用进行的修正越强。 3、实验中霍尔电极的制作 1、四级创新实验中,我用银胶将去皮导线粘在样品(薄膜)的四 角成功测得了Co掺杂ZnO基半导体的变温霍尔效应。 2、去年在曾长淦老师实验室曾先镀金,然后采用四角镀铟按压方 式成功做成电极。

相关主题
文本预览
相关文档 最新文档