当前位置:文档之家› 平面光学元件的加工技术

平面光学元件的加工技术

平面光学元件的加工技术
平面光学元件的加工技术

平面光学元件的加工技术

浙江大学光电系曹天宁

宁波华光精密仪器公司周柳云

光学平面零件包括棱镜、平行平面板、平面反光镜、平晶、光楔、光盘片基、滤光片、波片、倍频器等等。其大小从φ1mm到φ1000mm,材料主要是光学玻璃,有时是光学晶体,为了达到高精度与高效率,采用技术方法很多,有铣磨、精磨、研磨、抛光、分离器抛光、环抛、水中抛光、单点金刚石飞切(SPDFC)、计算机机控制小工具抛修(CCP) 、离子抛光等等。

从机理上考察,可以归纳为三类基本方法

一、范成法形成平面

特点是依靠机床的精确运动形成平面包络面,对机床精度要求高.如用筒状金刚石磨轮铣磨平面,按正弦公式当α=0时,R=∞范成了片面(生产上为了排屑排冷却液方便, α有一个小量,表面微凹)。单点金刚石飞切也是依靠高速旋转的轴与飞刀作直线运动的工作台垂直而范成了平面.工具与工件的加工接触为线接触。

二、轮廓复印法或母板复制法

这种复制法与光栅复制法不一样,在复制过程有磨削研磨、抛光过程。采用精磨模、抛光模(固着磨料抛光模与柏油抛光磨)加工的均属于这一类.工具与工件的接触为面接触。

三、小工具修磨法

计算机控制抛光(CCP)离子束抛光与手修属于这一类,逐点抛修,边检边修,精度可以很高,对局部修正非常方便.工具与工件的接触为点接触。

(一) 、铣磨成型光学平面元件

我国QM30、PM500、XM260研磨机直到NVG-750THD型双轴超精密平面磨床等大型平面铣磨机利用范成法原理高效铣磨出平面,而且可以采用适当的金属夹具,将角度修磨变为平行平面的铣磨.机床磨轮轴与工件的平行度、轴向经向跳动影响棱镜的角度精度.铣磨成型是光学平面元件毛胚加工的主要技术方法之一。

图一就是PM500铣磨平面的范成运动,图二就是改进的QM30铣削平面的范成运动。

图三是大型的NVG-750THD型双轴超精密平面磨床。

图三. 大型双轴超精密平面磨床

(二) 、光学平面的磨削、研磨与抛光

重点在于加工出高精度光学表面面型(N、△N),磨削、研磨与抛光的运动形式很多,但其特点是一样的,光学平面精度的获得不主要依靠机床的精度,而主要依靠母板的精度的传递,应该重点研究与把握三个机理。

1、轮廓复制法

2、母板的产生、保持与修复

3、三块平面的对磨与修正

平面精磨模要用金属平磨来修磨,金属平模就是母板,低速环抛机的校正板是母板,高速环抛机的聚氨酯抛光盘修正好后也成了母板.母板最原始最基本获得的办法是三块平模的对磨与相互修正.研磨(精磨)与抛光过程就是母板的精度的保持、破坏与修复过程.精磨模、聚氨酯抛光模与固体磨料抛光模接近刚体,比较好满足抛光方程要求,所以母板面型保持的时间长,适合高效加工要求。柏油抛光模塑性大,不满足抛光方程要求,柏油模在抛光过程一直处于破坏与修复过程,是古典抛光的特点,效率低,精度高,并且表面粗糙度好。

1、平面的高速精磨与抛光

这是平面的高效的加工的基本方法。例如,在JM030.3、三轴精密精磨抛光机床(φ300)与PLM400平面精磨机(φ500)(图4、图5),采用高速高压、固着磨料精磨模、固着磨料抛光磨与聚氨酯抛光模等,并采用合理的工艺参数(速度、压力、工具大小、摆幅、供液量、液温等),可以达到定时定光圈定表面质量的目的.精磨模与抛光模是工作母板,而合理的工艺参数修工作母板不容易破坏,因而可以较长时间保持面型,维持正常生产。

图四.JM030.3三轴精磨抛光机

2、高速环型抛光法

HPM60、80、100及JP650型环型抛光机的抛光盘直径为600、800、1000及600mm.

工件可以为平面,也可以为棱镜组合光胶镜盘或金属夹具组合棱镜镜盘.由于HPM机型采用变频调速,软启动,软停止,运动平稳,低噪音使用更为方便。

这类机床的工作原理也是母板复制法,要求底盘具有高的平面性,工作盘有时常修正环或分离器,主轴转速高15-85rpm,通常用聚酸脂抛光片加抛光悬浮液抛光.显然修好聚酸脂光盘的平面性是一个关键,可以用平面金属模来修正也可以用金属修正环来修正,这种方法是中等精度的高效加工方法.

图六a.JP560环抛机示意图

图6b.JP560环抛机

图六c.HPM100环型平面研磨抛光机

3、低速环型抛光法

高精度的平面(如平晶或薄型平面)适合用低速环型抛光法。这种方法也是母板复制法,由于工作母板(柏油抛光盘)具有可塑性,是边抛光边修正的,校正板起保持与修正作用,而速度、压力也起保持与修正作用.

⑴低速环抛法的原理

根据Preston抛光方程.对工件平面上任意一点M(x,y)(图六)的抛光量h(x,y)为

h(x,y)=A∫T O P(x,y)V(x,y)dt

式中,P -M(x,y)点的瞬时压强 V(x,y)-M(x,y)点的瞬时速度 T -加工时间

A -与加工过程有关的工艺系数 V -(x,y)作如下分析: 2

1

),

(v

v y x v -=, V 1=R i ω 1, V 2=r i

其瞬时速度中心在M 0时, → V 1(x,y)=0, V 1=ω 1, V 2=(R

0+e),

212

0ωωω-=

e R

当ω1→ω2时,当R 0→∞,产生平动,速度趋于均匀。

当推动平面的着力点接近接触面时,压力也趋于均匀,从而获得了均匀抛光(磨损)的条件。

热变形是精密加工时要关注的问题,由于抛光热使平行平面工件产生厚度方向的温度线性分布,用△t 表示,设工件外经为D ,厚度为d ,工件材料的热膨胀系数为α,则平面变成球面性变形,求面的矢高为h ,则

h=D 2α△t/8d

如工件材料采用微晶玻璃或石英玻璃,则热变形很小。

⑵ 低速环型抛光法的工艺参数及工艺装备

以浙江大学1984年机械部签定通过的RP-1000环型抛光机(图七A ),南京利生光学机械责任有限公司HPM150型环型机是低速环抛机(图七B )为例讨论参数。

图七a 、RP-1000环型抛光机(照片)

图七b HPM150型环型抛光机

① 环型抛光模:抛光模环带宽度通常为抛光模直径的0.33~0.38,抛光模底盘用铝合金制成,在抛光机上通过端面车削后即可制作柏油模,模层厚度10~10mm 之间,抛光胶中通常加入K -17塑料粉,以增加韧性与稳定性,抛光模应加制不通过中心的方格槽,抛光模通过车削或其他方法进行修整。如果采用玻璃或花岗岩作衬底,则模层厚度可以大大减薄。 ② 校正板:可以用熔融石英、微晶玻璃,K4及K9玻璃制作,也有用金属盘贴以玻璃来代替整块玻璃制成校正板。校正板直径通常为抛光模直径的1/2~2/3。

③ 工件夹持器:可以用玻璃分离器,也可以用金属贴以玻璃制成工件夹持器。

④ 转速:主轴速度在精抛时为10~15cm/s 之间,速度精度为1%,这时ω1 与ω2接近。 当然,也可以在校正盘卡轮上加装马达,以驱动校正盘的旋转,使ω2趋近ω1。

⑤ 抛光液:采用点滴式加入氧化铈抛光液,或采用浸没式抛光,后者有利于温度控制,最 好采用离子水,控制PH 值。

⑥ 温度:室内温度为23℃~25℃,最重要的是室内温度梯度(空间)与温度变化(时间)的控制,通常用局部自动温控在±0.05℃内。

⑦ 校正板工件(工件夹持器)装御器:我们设计了一台特殊的推车,高度可以调整, 并带有一组带橡皮圈的滚柱,装御很发方便。

我国几个主要单位的1m环抛机主要工艺参数对照表如表1所示。

⑶K17的作用

K17是塑料的商业牌号,就是聚乙烯醇,呈粉末状,色白。聚乙烯醇没有一定的熔点,加热时软化,拉伸又重新结晶,有着明显的纤维圈。温度高于71±0.2℃时热膨胀系数大,重复加热出现滞后现象,其变形率如图所示。在抛光模中增加韧性,提高切削性能;提高稳定性,低于60℃时,不会变形。抛光的工作温度低于30℃~40℃,高于71℃时易变形。

⑷制胶与制模工艺

180°配胶,140℃保温,100℃加K17(有的单位70~80℃时加K17),40~50℃倒胶制模(底模预热到40~50℃),自然冷却、固化,车平开槽,一般为25X25,宽5,深4,(美国宽4,深6),50℃温水修模,用校正板与工件夹持器修平,有时用工具(刮刀、砂轮)作局部修正。

⑸环型抛光法的优点

①、环型抛光模比圆盘型抛光模的相对速度工均匀,光ω1→ω2时工件与抛光模之间相当于直线匀速运动。

②、用校正板与夹持器代替分离器,仍保持了分离器的作用,当工件尺寸或形状改变时,只要改变夹持器即可,不必加工一个高精度平面的大分离器。

③、允许在不停机、不取下校正板与夹持器的情况下进行检验或调换工作,维持连续抛光,有利于提高效率与温度的平衡,保持抛光模的平面性。

④、抛光模表面各部分依次外露,使之散热容易。

⑤、抛光模露出的空间位置固定,易于实现自动抛光与自动加水。

4、分离器抛光法

在二轴杠杆式抛光机上用分离器抛光法(图七A)实现高精加工平面是比较简便的方法。我们在YM015.2A型二轴机上安装了二个蟹钳式分离器摆架(图七B),主轴1.5~

20rpm,摆2~25rpm(变频无极调速),抛光模铝底模直径为?500,水盆?530,分离器?400,通常D抛=1.25D分.当工件为?150时,一只分离器可以有三个分离孔,同时加工三

块?150平晶。为了操作方便,摆架应有抬起功能,推动分离器的滚轮的着力点应在滚轮的下部。

5、双面抛光法

双面抛光法适用于平行度要求高的薄片,如石英波片、滤光片、平行平面窗等,行

星式双面研磨抛光机使用很广泛,太多引进国外机床,国内风雷机械厂有这类机床产品.

通常上下抛光模用聚氨酯制造,中间工件隔离圈用聚四氟乙烯薄板或有机玻璃板、PVC 板制造,利用工件在分离器孔的位置互换使工件的平行度得到修正,工件的平面性主要是抛光模的轮廓复印,要求高时仍要做微量修正,实际上,在二轴机上采用档圈也可以实现双面抛光,不仅可以加工平行平面,还可以加工小圆柱棒,图九是二轴机双面精磨与抛光示意图。

(三) 、计算机控制抛光与离子抛光

计算机控制抛光(CCP)是利用小抛光头在工件上作局部抛修运动,边检边修,再过几个循环,使平面达到很高的精度,离子抛光与CCP类似,把小抛光头换成离子束就成了离子抛光,离子抛光不仅提高了面形精度,而且改善了表面粗糙度.计算机控制抛光在浙江大学、北京理工大学、长春光机所与成都光学工程中心等均先后开展这项研究工作,后者还从俄罗斯引进了CCP三轴与五轴抛光机,加工出不少高精度平面.离子抛光在国内仍属空白.图十是浙大

CCP实验装置与俄罗斯国立光学研究所的计算机上控制抛光机.

图十a.浙江大学试验装置

图十b.俄罗斯国立光学研究所的计算机控制抛光机

(四) 、单点金刚石飞切光学平面

美国Pam&Pneumo Inc. 生产的MSG-325金刚石车床用飞切方法加工过?170mm KDP晶体高精度平行平面,用作倍频器;用飞切方法香港理工大学、云南光仪厂等单位的Nanoform300也可以实现平面的飞切.

我国为了解决270X270及310X310mmKDP平面加工问题,近年引进了俄国NCM-600立式

飞切平面机床(图十一)

图十一.俄国NCM-600立式飞切平面机床

加工工件直径可达?550mm,其工作原理为单点金刚石飞刀高速旋转,形成一个圆的轨迹,工作的直线运动,使单点包络成一个平面,平面的精度主要取决于机床运动的超精密度.主轴跳动:0.05um,主轴刚性:200N/um,导轨的直线性0.1um/250mm,在这个机床上已经加工出?270KDP平面,透过波面达λ/2(PV)精度,在此基础上我国将开始研制这种机床,技术指标将超过MO-600的水平。

(五) 、棱镜的大批量生产

对于等精度或低精度棱镜的大批量生产通常都是成条加工完成抛光,然后用内圆切割机割开,如棱镜尺寸小时可以用高速排条锯割开,一次可以同时切割多只棱镜.棱镜的精磨抛

光可以用金属夹具上盘,一个夹具可以加工一个面(图十二)或三个面(图十三).

(六)高精度棱镜的加工方法

高精度棱镜的批量生产通常采用组合光胶法.图十四为用长方体与平行平面光胶板组合光胶加工直角屋脊棱镜屋脊角的例子.

五、光学平面的检测

平面的面形检测除用样板看光圈、菲索干涉仪看干涉条纹以外特别推荐下列测量方法1、平面面形快速测量法

在立柱式干涉仪上当主光线向上出射时,工件被检面可以在测环上东魏测量,定位面就是被检面,这样就可以连续测量,不需要重新调整工件位置,如图十五为宁波华光仪器有限公司生产的数字干涉仪上测量平面数字条纹.

图十五a.宁波华光仪器有限公司CQG-II车间数字干涉仪(仪器全貌)

图十五b.宁波华光仪器有限公司CQG-II车间数字干涉仪(测试报告)

2、? 150平面干涉仪的数字化

国内最普通的平面干涉仪是?150平面干涉仪,光路由上而下,这类仪器只要装上适当附件(PZT扫描仪)很容易实现数字化,图十六为浙江大学与上海星庆光仪公司研制成功并用于生产的 (XQ-15).

图十六.?150平面数字干涉仪

3、微小平面的透过玻面畸变测量

?4~?1mm平面的测量可在CQG-II型干涉仪加上4X或8X放大镜就可实现(图十六).

图十六a.微小平面的透过波面畸变测量(测量原理)

4、特大平面的面形测量

可以采用干涉仪的康蒙方法来实现,图十七表示在干涉仪上测量标准凹球面,在凹球面光路中45°方向放入被检平面,干涉条纹所判读误差为被检平面的面形误差,这就是康蒙方法在干涉仪中的应用。

结论

近年来我国的光学平面加工技术、机床及检测设备的发展已趋于完善,能够基本满足生产与科研的需求,超高精度机床、特殊加工机床及其加工技术仍有待进一步研究与发展.

参考文献

1).“平面零件加工工艺”,光学技术手册(下册)P122-144 机械工业出版社1994

2).LOM产品样本

3).南京仪机股份有限公司样本

机械零件加工技术要求汇总

机械零件加工技术要求汇总 零件的轮廓处理: 1、未注形状公差应符合GB1184-80的要求。 2、未注长度尺寸允许偏差±0.5mm。 3、未注圆角半径R5。 4、未注倒角均为C2。 5、锐角倒钝。 6、锐边倒钝,去除毛刺飞边。 零件表面处理: 1、零件加工表面上,不应有划痕、擦伤等损伤零件表面的缺陷。 2、加工的螺纹表面不允许有黑皮、磕碰、乱扣和毛刺等缺陷。 所有需要进行涂装的钢铁制件表面在涂漆前,必须将铁锈、氧化皮、油脂、灰尘、泥土、盐和污物等除去。 3、除锈前,先用有机溶剂、碱液、乳化剂、蒸汽等除去钢铁制件表面的油脂、污垢。 4、经喷丸或手工除锈的待涂表面与涂底漆的时间间隔不得多于6h。 5、铆接件相互接触的表面,在连接前必须涂厚度为30~40μm防锈漆。搭接边缘应用油漆、腻子或粘接剂封闭。由于加工或焊接损坏的底漆,要重新涂装。 零件的热处理: 1、经调质处理,HRC50~55。 2、中碳钢:45 或40Cr 零件进行高频淬火,350~370℃回火,HRC40~45。 3、渗碳深度0.3mm。 4、进行高温时效处理。 精加工后技术要求 1、精加工后的零件摆放时不得直接放在地面上,应采取必要的支撑、保护措施。 2、加工面不允许有锈蛀和影响性能、寿命或外观的磕碰、划伤等缺陷。 3、滚压精加工的表面,滚压后不得有脱皮现象。 4、最终工序热处理后的零件,表面不应有氧化皮。经过精加工的配合面、齿面不应有退火 零件的密封处理: 1、各密封件装配前必须浸透油。 2、组装前严格检查并清除零件加工时残留的锐角、毛刺和异物。保证密封件装入时不被擦伤。 3、粘接后应清除流出的多余粘接剂。

光学零件加工技术

光学零件加工技术 邬建生 二 00 四年元月(整理) 目录 一、统研磨抛光与高速研磨抛光特点 二、准球心法和传统法比较 三、切削工序的要求 四、粗磨工序的要求 五、如何保持粗磨皿表曲率半径的精度 六、修磨皿的技巧 七、影响抛光的因素 八、抛光剂(研磨粉)的影响 九、研磨皮及选择十、传统加工要求十一、计算公式十二、光圈识别与修整措施十三、机床的选择十四、机床的调整十五、超声清洗原理十六、品质异常分析步骤十七、工艺规程的设计 光学零件的加工,分为热加工、冷加工和特种加工,热加工目前多采用于光学零件的坯料备制; 冷加工是以散粒磨料或固着磨料进行锯切、粗磨、精磨、抛光和定心磨边。 特种加工仅改变抛光表面的性能,而不改变光学零件的形状和尺寸,它包括镀膜、刻度、照相和胶合等。冷加工各工序的主要任务是: 粗磨(切削)工序:是使零件具有基本准确的几何形状和尺寸。精磨(粗磨)工序:是使零件加工到规定的尺寸和要求,作好抛光准备。抛光(精磨)工序:是使零件表面光亮并达到要求的光学精度。定心工序:是相对于光轴加工透镜的外圆。 胶合工序:是将不同的光学零件胶合在一起,使其达到光轴重合或按一定方向转折。 球面光学零件现行加工技术三大基本工序为: 1、范成法原理的铣磨(切削)

2、压力转移原理的高速粗磨 3、压力转移原理的高速抛光。 范成法原理的铣磨(切削),虽然加工效率较高,但其影响误差的因素较多,达到较高精度和较粗糙度较困难。压力转移原理的准球心高速粗磨和高速抛光,零件受力较均匀,加工效率也较高,但必须预先准确修整磨(模)具的面形,才能保证零件的面形精度。准确修整面形精度需要操作者的经验和技巧,而且需反复修整。 一、传统研磨与高速研磨特点 1. 传统研磨 传统研磨也叫古典研磨,它是一种历史悠久的加工方法 其主要特点是: (1)采用普通研磨机床或手工操作; (2)要求人员技术水平较高; (3)研磨材料多采用散砂(研磨砂)抛光沥青 (4)抛光剂是用氧化铈或氧化铁; (5)压力用加荷重方法实现虽然这种方法效率低 , 但加工精度较高所以,目前仍被采用。 2. 高速研磨抛光一般是指准球心法(或称弧线摆动法)。其主要特点是: (1)采用高速、高压和更有效的利用抛光模,大大提高了抛光效率 (2 )压力头围绕球心做弧线摆动,工作压力始终指向球心,也是靠球模成型的。 3. 范成法 准球心法对机床的精度要求较低 , 加工方法和传统法相近,易于实现,用的较广;范成法对机床精度及调整要求较高,目前很少采用。 二、准球心法和传统法较 1. 准球心法

球面光学样板的加工工艺

河南工业职业技术学院 Henan Polytechnic Institute 毕业设计 题目球面光学样板的加工工艺系别光电工程系 专业精密机械技术 班级 姓名 学号 指导教师 日期 2013年11月

毕业设计任务书 设计题目: 球面光学样板的加工工艺 设计要求: 1.设计球面样板加工的尺寸和精度要求,并附图例 2.设计出球面样板的制造工艺(包括球体的研制,球面样板的制造),并设计出球体制造的工艺的工序要求,其中要求图文并用。 3.设计出球面样板加工的曲率半径以及其中的误差分析,并附图解释。 4.做出球面样板加工的精度分析并做好精度检验要求。 设计任务: 1.设计球面的标准样板; 2.设计球面样板的制造工艺及设计图示; 3.设计球面样板的曲率半径; 4.样板的精度分析与检验; 5.写出详细毕业设计说明书(10000字以上),要求字迹工整,原理叙述正确,会计算主要元器件的一些参数,并选择元器件。 设计进度要求: 第一周:在图书馆查看书籍,在网上搜索资料,在实践中听取老师的教导,以便于查找各类相关资料,使资料更完整,更精确,有利于论文的撰写。 第二周:使自己对论文的框架有个大概的了解,将收集到的资料进行整理分类,及时与导师进行沟通。将设计的雏形确立起来,论文的文字叙述全部做好。 第三周:根据论文的要求对论文进行排版,绘图,把文字校对等项工作完成。 指导教师(签名):

摘要 球面样板是检验球面光学零件曲率半径和球面面型误差的量具,由于光学系统多由球面组成,而球面的曲率半径测试的特殊性,逐渐发展成这套即比较简单,又容易控制误差的测量工具和检验方法。样板是光学零件制造过程中使用最广泛、最简便的一种精密测量工具,因此,在光学零件生产技术准备阶段,必须先设计和制造一套标准样板和一定数量的工作样板。 球面光学样板的制造与球面零件制造,虽然有许多类似之处,但由于样板是测量工具,要求面形精度比一般透镜高得多,因此,为了保证其高精度,球面徉板往往成对制造。 关键词:粗磨,精磨,抛光,工艺,检测。

典型零件加工工艺

典型零件加工工艺 生产实际中,零件的结构千差万不,但其差不多几何构成不外是外圆、内孔、平面、螺纹、齿面、曲面等。专门少有零件是由单一典型表面所构成,往往是由一些典型表面复合而成,其加工方法较单一典型表面加工复杂,是典型表面加工方法的综合应用。下面介绍轴类零件、箱体类和齿轮零件的典型加工工艺。 第一节轴类零件的加工 一、轴类零件的分类、技术要求 轴是机械加工中常见的典型零件之一。它在机械中要紧用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴能够分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等如图6-1,其中阶梯传动轴应用较广,其加工工艺能较全面地反映轴类零件的加工规律和共性。 按照轴类零件的功用和工作条件,其技术要求要紧在以下方面: ⑴尺寸精度轴类零件的要紧表面常为两类:一类是与轴承的内圈配合的外圆轴颈,即支承轴颈,用于确定轴的位置并支承轴,尺寸精度要求较高,通常为IT 5~IT7;另一类为与各类传动件配合的轴颈,即配合轴颈,其精度稍低,常为IT6~IT9。 ⑵几何形状精度要紧指轴颈表面、外圆锥面、锥孔等重要表面的圆度、圆柱度。其误差一样应限制在尺寸公差范畴内,关于周密轴,需在零件图上另行规定其几何形状精度。

⑶相互位置精度包括内、外表面、重要轴面的同轴度、圆的径向跳动、重要端面对轴心线的垂直度、端面间的平行度等。 ⑷表面粗糙度轴的加工表面都有粗糙度的要求,一样按照加工的可能性和经济性来确定。支承轴颈常为0.2~1.6μm,传动件配合轴颈为0.4~3. 2μm。 ⑸其他热处理、倒角、倒棱及外观修饰等要求。 二、轴类零件的材料、毛坯及热处理 1.轴类零件的材料 ⑴轴类零件材料常用45钢,精度较高的轴可选用40Cr、轴承钢GCr 15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20CrMn Ti、20Mn2B、20Cr等低碳合金钢或38CrMoAl氮化钢。 ⑵轴类毛坯常用圆棒料和锻件;大型轴或结构复杂的轴采纳铸件。毛坯通过加热锻造后,可使金属内部纤维组织沿表面平均分布,获得较高的抗拉、抗弯及抗扭强度。 2.轴类零件的热处理 锻造毛坯在加工前,均需安排正火或退火处理,使钢材内部晶粒细化,排除锻造应力,降低材料硬度,改善切削加工性能。 调质一样安排在粗车之后、半精车之前,以获得良好的物理力学性能。 表面淬火一样安排在精加工之前,如此能够纠正因淬火引起的局部变形。 精度要求高的轴,在局部淬火或粗磨之后,还需进行低温时效处理。 三、轴类零件的安装方式 轴类零件的安装方式要紧有以下三种。 1.采纳两中心孔定位装夹 一样以重要的外圆面作为粗基准定位,加工出中心孔,再以轴两端的中心孔为定位精基准;尽可能做到基准统一、基准重合、互为基准,并实现一次安装加工多个表面。中心孔是工件加工统一的定位基准和检验基准,它自身质量专门重要,其预备工作也相对复杂,常常以支承轴颈定位,车(钻)中心锥孔;再以中心孔定位,精车外圆;以外圆定位,粗磨锥孔;

零件加工工艺

目录 一.零件加工工艺 (2) 1.零件工艺分析 (2) 2.毛坯选择 (2) 3.加工方法 (2) 4.工艺路线 (3) 5.工艺装备 (3) 二.工序90的定位与夹紧方案 (3) 1.定位基准和定位方案 (3) 2.装夹方案 (3) 3.定位误差 (3) 4.夹具图示 (4) 三.数控加工(工序30、40、50、70) (5) 1.加工路线 (5) 2.数控程序 (6) 四.实训总结 (7) 附录机械工艺过程卡片 (8) 机械工序卡片 (9) 车削工序卡片 (10) 车端面工序卡片 (11) 钻孔工序卡片 (12) 磨削工序卡片 (13) 参考文献 (14)

一、零件加工工艺 1.零件工艺分析 该零件的工艺路线的特点是工序集中。 1该零件生产批量为中等批量,尺寸变化不大,因此最好选用自由锻造的圆棒。 2因零件的表面粗糙度有一部分为Ra0.8,其他为1.6,因此精加工后还需要磨削处理。 3零件中的螺纹因为尺寸精度要求不高,可以选择车削经简单复合螺纹车削完成。 4因零件需要钻沉头孔,表面粗糙度为3.2,可采用先经普通麻花钻再由平底钻完成。 2.毛坯选择 根据零件图可知,毛坯制造方式为45钢,退火处理,尺寸长宽为120*40圆棒,毛坯形状与成品相似,加工方便,省工省料。 3.加工方法 (1)选择毛坯; (2)用数控车床按图纸车削工件外形,再车螺纹,再切断;

(3)调头装夹,车端面; (4)用钻床按图纸要求加工; (5)按图纸要求磨削; 注:以上的数控车床加工采用的装夹夹具为三爪卡盘,钻床采用平口虎钳,磨削采用外圆磨削专用夹具。 4.工艺路线 10 选择毛坯 20 热处理 30车削粗加工 40 精加工 50车螺纹 60切断 70车端面 80 钻孔 90磨削 100检验 .5工艺装备 (1)数控车床,45度弯头车刀,90度车刀,断面车刀; (2)普通钻床,Φ20麻花钻Φ22平底钻,; (3)三爪卡盘,平口虎钳,游标卡尺。 二、工序50的定位与夹紧方案 1.定位基准和定位方案 由零件图可知,需要加工的表面为沉头孔,Ra=3.2,加工精度较高,加工难度低,用通用平口虎钳夹住可以达到六点定位的要求,工件各个方向的自由度均得到限制,保证装夹的紧固性,工件各面互为基准,且基准统一。 2.装夹方案 虎钳装夹,装夹时装夹外圆表面需要铜皮包裹,以保证装夹面的表面粗糙度。 3.定位误差 此道工序为外圆柱面支承定位,且工序基准与定位基准重合,可认为基准位

超精密光学元器件制造装备与工艺

超精密光学元器件制造装备与工艺 1、任务概述 超精密光学元器件制造装备与工艺的研究,目的就是为了给国家重大专项所建设的大型激光装置提供合格的大口径、高品质的光学元件,保证工程的圆满按期完成;通过项目的执行,有效推进相关领域的元件检测、脆性材料制造工艺、表面处理等关键技术的进步;通过对知识产权的拥有,来提升民族产业的技术水平和竞争力。所谓的光学元件的超精密加工指的是加工精度达到亚微米或纳米精密的光学加工与制造,这相当于一根人的头发丝的1/20~1/100的精微尺度,如果在1m的天文望远镜主镜上达到这个加工精度,做一个同比例的比喻,相当于一公里长度的铁轨其长度误差只有0.5mm。以至于光学元件的超精密制造技术是一项技术难度非常大,且涉及新进加工、数控、仿真、精密计量等诸多方面的综合技术。 2、战略意义 在我国中长期科技发展规划中,与激光科学工程相关的国家重大专项涵盖了很多重要技术领域,这些领域与上海的2006-2020发展纲要是密切相关的。该专项的实施对于我国未来清洁能源、先进制造、光通讯、国防安全等领域的技术革新和长远发展具有重要的战略意义。 超精密光学元器件对这些大型激光装置来说,就如同砖、瓦、钢筋水泥对建筑高楼大厦一样重要。元器件的制造装备与工艺决定了元

器件的性能和品质,直接影响装置最终的输出性能和输出状态。对于传统光学仪器,如显微镜和望远镜无限制的扩大了人们的视野,是人的眼睛得意“更远、更精、更大”,而光学元件器正是这些光学仪器的器官。因此上海在此时适时布局和规划有关超精密光学元器件的制造与工艺研究具有非常重要的战略意义。 3、国内外现状 无论国内还是国际对于超精密光学元器件制备与工艺技术的驱动均来自于军事、航天、天文及大型民用项目,在美国最大的激光装置是本世纪初刚刚建成的NIF“国家点火工程”其共有光路192路,其中高精度大口径光学元件达7000余片。在国际上类似的装置还有法国的LMJ (Laser Mega Joule)装置。在中国最大的激光装置是建设中的神光III装置。受到大能量和高功率激光驱动装置方面的建设的驱动,各国在大尺寸光学元件的精密加工方面都开展了大量的投入和研究。其中具有代表性的是NIF装置驱动下美国光学加工的发展。据报道,NIF从1995年就开始了对激光材料加工技术技术的筹备和研究,整体工程包含的光学元件总量达到7360片,包括激光玻璃放大片、反射镜、腔镜、窗口、光栅和晶体,其中仅激光玻璃放大片为3072片。这些光学元件的技术指标要求都比常规光学元件的要求要高出许多,NIF的加工指标要求见下表 表错误!文档中没有指定样式的文字。NIF光学元件加工技术指标要求

光学透镜的加工工艺

光学玻璃透镜 1 成型方法 原来的玻璃透镜模压成型法,是将熔融状态的光学玻璃毛坯倒入高于玻璃转化点50℃以上的低温模具中加压成形。这种方法不仅容易发生玻璃粘连在模具的模面上,而且产品还容易产生气孔和冷模痕迹(皱{TodayHot}纹),不易获得理想的形状和面形精度。后来,采用特殊材料精密加工成的压型模具,在无氧化气氛的环境中,将玻璃和模具一起加热升温至玻璃的软化点附近,在玻璃和模具大致处于相同温度条件下,利用模具对玻璃施压。接下来,在保持所施压力的状态下,一边冷却模具,使其温度降至玻璃的转化点以下(玻璃的软化点时的玻璃粘度约为107。6泊,玻璃的转化点时的玻璃粘度约为1013。4泊)。这种将玻璃与模具一起实施等温加压的办法叫等温加压法,是一种比较容易获得高精度,即容易精密地将模具形状表面复制下来的方法。这种玻璃光学零件的制造方法缺点是:加热升温、冷却降温都需要很长的时间,因此生产速度很慢。 为了解决这个问题,于是对此方法进行了卓有成效的改进,即在一个模压装置中使用数个模具,以提高生产效率。然而非球面模具的造价很高,采用多个模具势必造成成本过高。针对这种情况,进一步研究开发出与原来的透镜毛坯成型条件比较相近一点的非等温加压法,借以提高每一个模具的生产速度和模具的使用寿命。另外,还有人正在研究开发把由熔融炉中流出来的玻璃直接精密成型的方法。 玻璃毛坯与模压成型品的质量有直接的关系。按道理,大部分的光学玻璃都可用来模压成成型品。但是,软化点高的玻璃,由于成型温度高,与模具稍微有些反应,致使模具的使用寿命很短。所以,从模具材料容易选择、模具的使用寿命能够延长的观点出发,应开发适合低温(600℃左右)条件下模压成型的玻璃。然而,开发的适合低温模压成型的玻璃必需符合能够廉价地制造毛坯和不含有污染环境的物质(如PbO、As2O3)的要求。对模压成型使用的玻璃毛坯是有要求的: ①压型前毛坯的表面一定要保持十分光滑和清洁; ②②呈适当的几何形状; ③③有所需要的容量。毛坯一般都选用球形、圆饼形或球面形状,采用冷研磨成型或热压成型。 模具材料需要具备如下特征: ①表面无疵病,能够研磨成无气孔、光滑的光学镜面; ②在高温环境条件下具有很高的耐氧化性能,而且结构等不发生变化,表面质量稳定,面形精度和光洁度保持不变; ③不与玻璃起反应、发生粘连现象,脱模性能好; ④在高温条件下具有很高的硬度和强度等。 现在已有不少有关开发模具材料的专利,最有代表性的模具材料是:以超硬合金做基体,表面镀有贵金属合金和氮化钛等薄膜;以碳化硅和超硬合金做基体,表面镀有硬质碳、金刚石状碳等碳系薄膜;以及Cr2O-ZrO2-TiO2系新型陶瓷。 玻璃透镜压型用的模具材料,一般都是硬脆材料,要想把这些模具材料精密加工成模具,必需使用高刚性的、分辨率能达到0.01μm以下的高分辨率超精密计算机数字控制加工机床,用金刚石磨轮进行磨削加工。磨削加工可获得所期盼的形状精度,但然后还需再稍加抛光精加工成光学镜面才行。在进行高精度的非球面加工中,非球面面形的测试与评价技术是非常重要的。对微型透镜压型用模的加工,要求更加严格,必需进一步提高精度和减轻磨削的痕迹。

免费光学零件加工技术

免费光学零件加工技术 目录 一、统研磨抛光与高速研磨抛光特点 二、准球心法和传统法比较 三、切削工序的要求 四、粗磨工序的要求 五、如何保持粗磨皿表曲率半径的精度 六、修磨皿的技巧 七、影响抛光的因素 八、抛光剂(研磨粉)的影响 九、研磨皮及选择 十、传统加工要求 十一、计算公式 十二、光圈识别与修整措施 十三、机床的选择 十四、机床的调整 十五、超声清洗原理 十六、品质异常分析步骤 十七、工艺规程的设计 序言 光学零件的加工,分为热加工、冷加工和特种加工,热加工目前多采用于光学零件的坯料备制; 冷加工是以散粒磨料或固着磨料进行锯切、粗磨、精磨、抛光和定心磨边。 特种加工仅改变抛光表面的性能,而不改变光学零件的形状和尺寸,它包括镀膜、刻度、照相和胶合等。冷加工各工序的主要任务是: 粗磨(切削)工序:是使零件具有基本准确的几何形状和尺寸。 精磨(粗磨)工序:是使零件加工到规定的尺寸和要求,作好抛光准备。 抛光(精磨)工序:是使零件表面光亮并达到要求的光学精度。 定心工序:是相对于光轴加工透镜的外圆。 胶合工序:是将不同的光学零件胶合在一起,使其达到光轴重合或按一定方向转折。 球面光学零件现行加工技术三大基本工序为: 1、范成法原理的铣磨(切削) 2、压力转移原理的高速粗磨 3、压力转移原理的高速抛光。 范成法原理的铣磨(切削),虽然加工效率较高,但其影响误差的因素较多,达到较高精度和较粗糙度较困难。压力转移原理的准球心高速粗磨和高速抛光,零件受力较均匀,加工效率也较高,但必须预先准确修整磨(模)具的面形,才能保证零件的面形精度。准确修整面形精度需要操作者的经验和技巧,而且需反复修整。

零件加工工艺设计.doc

目录 1.零件的加工工艺设计-----------------------1 1.1零件的工艺性审查 1.2基准的选择 2.拟定机械加工工艺路线--------------------3 2.1确定各加工表面的加工方法及路线 3.选择机床设备及工艺设备-----------------7 4.小结--------------------------------------------8 5.参考文献--------------------------------------9

1.零件的加工工艺设计 1.1零件的工艺性审查 1.1.1零件的结构特点 该零件是用三孔形成,中间孔为支力点,常常靠两头的小孔来传递动力作用,其中作为支力点的大孔为Φ90H6,小孔及耳部分别为Φ35H6和Φ25H6。 1.1.2主要技术要求 零件的主要技术要求为:连杆不得有裂纹、夹渣等缺陷。热处理后226~271HBS。 1.2基准的选择 1.2.1毛坯的类型及制造方法 零件材料为45钢,考虑零件形状,应用模锻毛坯。 由于零件是中批量生产,所以设备要充分利用,以减少投资、降低成本。故确定工艺的基本特征:毛坯采用效率高和质量较好的制造方法:拟定成的工艺过程卡和机械加工工序卡片。 1.2.2确定毛坯的制造方法和技术要求。 由于该零件的尺寸不大,而且工件上有许多表面不切削加工,故模锻。 毛坯的技术要求: 1.不得有裂纹、夹渣等缺陷/ 2.锻造拔模斜度不大于7·

3.正火处理226~271HBS 4.喷砂,去毛刺 1.2.3绘制毛坯图 1.2.4基准选择 由于该零件多数尺寸及形位公差以Φ90H6孔及端面为设计基准,因此首先将Φ60H6端面加工好,为后续加工基准。根据粗、精基准选择的原则,确定各加工表面的基准。(1)Φ90H6孔端面:零件外轮廓(粗基准) (2)Φ35H6孔及Φ90H6孔端面(粗加工):Φ90H6孔端面(3)Φ35H6孔及Φ90H6孔端面(精加工):Φ90H6孔端面(4)Φ25H6孔端面:Φ90H6孔端面 (5)三孔:Φ90H6孔端面 2.拟定接写加工工艺路线 该三孔连杆零件加工表面:大头孔、小头孔及耳部端面。根据各加工表面的精度要求和粗糙度要求。

光学零件加工技术课程设计工艺规程编制模板

精品文档 。 1欢迎下载 第十五章 光学零件工艺规程编制 工艺规程的作用: ①工艺规程是光学零件加工的主要技术文件,是组织生产不可缺少的技术依据。 ②合理的工艺规程是保证加工质量、提高生产效率、反映生产过程和工艺水平的综合技术资料。 ③要想编制出合理的工艺规程,必须掌握光学零件的制造特点,考虑现有生产条件,并尽可能采用新工艺。 光学零件加工技术是在不断发展的,对不同生产方式、不同生产规模、不同加工对象来说,工艺规程是有较大区别的,例如:古典法、高速加工法。 §15-1 编制工艺规程的一般原则 光学零件常规加工工艺规程编制的一般原则如下: 一、对光学零件图进行工艺审查 在编制工艺规程时: ① 要熟悉产品图纸的技术条件, ② 熟悉其他原始资料, ③ 进行综合技术分析, ④审查零件图的设计合理性、结构工艺性及经济性。

精品文档 。 2欢迎下载 二、确定加工路线及加工方法 ① 根据生产纲领(大量生产还是小量生产)确定生产类型(小量、成批、大量?), ② 按照生产类型及零件的材料、形状、精度、尺寸要求决定毛坯类型, ③根据生产类型与毛坯类型确定加工路线和加工方法。 三、设计必要的专用样板,或选择通用样板。 主要是标准样板和工作样板。 四、确定加工余量及毛坯尺寸 根据生产类型、加工方法、毛坯类型确定各工序的加工余量。应先从最后一道工序开始确定加工余量,例如,透镜的加工余量应先从定心磨边开始给定直径尺寸,棱镜和平面镜应先从抛光开始给定厚度尺寸,然后再考虑各工序中的相应余量。最后给出总余量和毛坯尺寸。 五、设计及选用工夹具、机床、测量仪器 在确定加工路线和加工余量后,按各工序的要求,设计必要的工、夹具,如透镜的精磨、抛光工、夹具设计,包括粘结膜、贴置模、精磨模、抛光模等的设计。并根据生产条件选用机床和测量仪器。 六、选用必需的光学辅料。 光学零件生产中所使用的光学辅料主要有清洗材料、粘结材

光学冷加工工艺和设备

光学冷加工工艺和设备现状及其发展 张曾扬 ▲历史的回顾 我国光学仪器的加工技术,虽然有较长历史但形成批量生产并具有完整的工艺是在新中国成立后。 光学冷加工工艺在解放前虽然已有所采用,但缺乏完整性。解放后经过光学行业各方面人士及职工的努力,方逐步形成了较完善的加工方法。 五十年代初期,光学行业的设备陈旧,工艺落后。进入第一个五年计划后,加工工艺主要是采用“苏联”的工艺,设备也是由苏联引的和按“苏联”图纸制造的专用设备,二十世纪六十年代初期,国内个别厂家由德国引进了先进设备(如铣磨机和光学对中心磨边机),受到这些设备的启示,国内在六十年代中期开始工艺科研和研制新设备。首先进行的是研究粗磨机机械化和设计粗磨机,由于设备和工艺的改进,加工效率有很大的提高,但是后来受政治形势的影响,光学工艺的革新受到冲击,刚见成效的工艺革新,就此停止。二十世纪七十年代中期,对光学冷加工技术改造和技术革新提出了“四化”目标,即毛坯型料化、粗磨机械化、精磨高速化、定心磨边自动化。经过努力,这些目标全部在二十世纪八十年代初基本实现了。光学工业实现了光学冷加工“四化”,为军转民生产光学仪器奠定了有力基础。二十世纪八十年代针对当时民用光学仪器生产,又提出了光学零件制造的新四化,即抛光高速化,清洗超声化,辅

助工序机械化和辅料商品化。“新四化”,虽然受到了管理体制改变的影响,在研制设备和进行工艺科研的时间和深度不够理想,但全部实现了。 二十世纪八十年代重点是对光学加工机理和工艺因素的研究和探讨,通过科研人员和课题组的努力,均取得了理想的科研成果。在光学零件的定摆磨削和光学零件加工中不同牌号玻璃与不同结合剂的丸片之间的合理匹配都在光学加工方面有了突破,引起光学界的重视。这些科研的成果对光学加工工业起了重要作用,为了我们进一步提高光学加工的科研水平,奠定了雄厚的基础,为新的创新开辟了道路。 二十世纪八十年代是我们光学技术和工艺科研硕果累累的时期。不但在光学加工的基础理论方面,而在加工设备,加工工艺,加工模具,以及辅料等方面都取得了可喜成果。如光学加工机理,光学零件加工工艺因素,光敏胶,PH值稳定剂,光学导电膜,易腐蚀玻璃保护膜;PJM-320平面精磨机,QJM220球面精磨机,QJP-100与QJP-40光学中球面与小球面精磨抛光机;光学零件复制法;光学零件超声清洗代替清擦,光学零件真空吹塑包装以及自聚焦透镜制造等等,真是不胜枚举。这些科研成果,不但通过了部级鉴定,而且均获得子部级奖励或国家发明将。 进入九十年代后,在中国光学行业有了更大的进展,这是由于光学产品出口,光学工艺也随着有了更大的改变和进展。我们采用了几十年的成盘加工工艺受到了冲击,而单件光学加工在光学批量

超精密加工与光学器件制造

光学零件超精密加工 非球面光学零件是一种非常重要的光学零件,常用的有抛物面镜、双曲面镜、椭球面镜等。非球面光学零件可以获得球面光学零件无可比拟的良好的成像质量,在光学系统中能够很好的矫正多种像差,改善成像质量,提高系统鉴别能力,它能以一个或几个非球面零件代替多个球面零件,从而简化仪器结构,降低成本并有效的减轻仪器重量。 非球面光学零件在军用和民用光电产品上的应用也很广泛,如在摄影镜头和取景器、电视摄像管、变焦镜头、电影放影镜头、卫星红外望远镜、录像机镜头、录像和录音光盘读出头、条形码读出头、光纤通信的光纤接头、医疗仪器等中。 1.2国外非球面零件的超精密加工技术的现状 80年代以来,出现了许多种新的非球面超精密加工技术,主要有:计算机数控单点金刚石车削技术、计算机数控磨削技术、计算机数控离子束成形技术、计算机数控超精密抛光技术和非球面复印技术等,这些加工方法,基本上解决了各种非球面镜加工中所存在的问题。前四种方法运用了数控技术,均具有加工精度较高,效率高等特点,适于批量生产。 进行非球面零件加工时,要考虑所加工零件的材料、形状、精度和口径等因素,对于铜、铝等软质材料,可以用单点金刚石切削(SPDT)

的方法进行超精加工,对于玻璃或塑料等,当前主要采用先超精密加工其模具,而后再用成形法生产非球面零件,对于其它一些高硬度的脆性材料,目前主要是通过超精密磨削和超精密研磨、抛光等方法进行加工的,另外,还有非球面零件的特种加工技术如离子束抛光等。 国外许多公司己将超精密车削、磨削、研磨以及抛光加工集成为一体,并且研制出超精密复合加工系统,如RankPneumo公司生产的Nanoform300、Nanoform250、CUPE研制的Nanocentre、日本的AHN60―3D、ULP一100A(H)都具有复合加工功能,这样可以便非球面零件的加工更加灵活。 1.3我国非球面零件超精密加工技术的现状 我国从80年代初才开始超精密加工技术的研究,比国外整整落后了20年。近年来,该项工作开展较好的单位有北京机床研究所、中国航空精密机械研究所、哈尔滨工业大学、中科院长春光机所应用光学重点实验室等。 为更好的开展对此项超精密加工技术的研究,国防科工委于1995年在中国航空精密机械研究所首先建立了国内第一个从事超精密加工技术研究的重点实验室。 2.非球面零件超精密切削加工技术 美国UnionCarbide公司于1972年研制成功了R―θ方式的非球面创成加工机床。这是一台具有位置反馈的双坐标数控车床,可实时

零件加工工艺的编制

零件加工工艺的编制 课程作业 班级:数控1班 姓名: 学号: 前言 机械制造工艺学课程设计,是以切削理论为基础、制造工艺为主线、兼顾工

艺装备知识的机械制造技术基本能力的培养;是综合运用机械制造技术的基本知识、基本理论和基本技能,分析和解决实际工程问题的一个重要教学环节;是对学生运用所掌握的“机械制造技术基础”知识及相关知识的一次全面训练。 机械制造技术基础课程设计,是以机械制造工艺及工艺装备为内容进行的设计。即以所选择的一个中等复杂程度的中小型机械零件为对象,编制其机械加工工艺规程,并对其中某一工序进行机床专用夹具设计。 机械制造工艺学课程设计是作为未来从事机械制造技术工作的一次基本训练。通过课程设计培养学生制定零件机械加工工艺规程和分析工艺问题的能力,以及设计机床夹具的能力。在设计过程中,我熟悉了有关标准和设计资料,学会使用有关手册和数据库。 1、能熟练运用机械制造工艺学课程中的基本理论以及在生产实践中学到的实践知识,正确地解决一个零件在加工中的定位、夹紧以及工艺路线安排、工艺尺寸确定等问题,保证零件的加工质量。 2、提高结构设计能力。学生通过夹具设计的训练,应获得根据被加工零件的加工要求,设计出高效、省力、经济合理而能保证加工质量的夹具的能力。 3、学会使用手册、图表及数据库资料。掌握与本设计有关的各种资料的名称、出处,能够做到熟练运用。 就我个人而言,我希望能通过这次课程设计锻炼自己分析问题、解决问题的能力,为今后所从事的工作打下基础。 由于本人能力有限,设计尚有许多不足之处,可请各位老师给予批评指正。 目录 前言 (1) 零件的工艺分析 (4)

平面光学元件的加工技术

平面光学元件的加工技术 浙江大学光电系曹天宁 宁波华光精密仪器公司周柳云 光学平面零件包括棱镜、平行平面板、平面反光镜、平晶、光楔、光盘片基、滤光片、波片、倍频器等等。其大小从φ1mm到φ1000mm,材料主要是光学玻璃,有时是光学晶体,为了达到高精度与高效率,采用技术方法很多,有铣磨、精磨、研磨、抛光、分离器抛光、环抛、水中抛光、单点金刚石飞切(SPDFC)、计算机机控制小工具抛修(CCP) 、离子抛光等等。 从机理上考察,可以归纳为三类基本方法 一、范成法形成平面 特点是依靠机床的精确运动形成平面包络面,对机床精度要求高.如用筒状金刚石磨轮铣磨平面,按正弦公式当α=0时,R=∞范成了片面(生产上为了排屑排冷却液方便, α有一个小量,表面微凹)。单点金刚石飞切也是依靠高速旋转的轴与飞刀作直线运动的工作台垂直而范成了平面.工具与工件的加工接触为线接触。 二、轮廓复印法或母板复制法 这种复制法与光栅复制法不一样,在复制过程有磨削研磨、抛光过程。采用精磨模、抛光模(固着磨料抛光模与柏油抛光磨)加工的均属于这一类.工具与工件的接触为面接触。 三、小工具修磨法 计算机控制抛光(CCP)离子束抛光与手修属于这一类,逐点抛修,边检边修,精度可以很高,对局部修正非常方便.工具与工件的接触为点接触。 (一) 、铣磨成型光学平面元件 我国QM30、PM500、XM260研磨机直到NVG-750THD型双轴超精密平面磨床等大型平面铣磨机利用范成法原理高效铣磨出平面,而且可以采用适当的金属夹具,将角度修磨变为平行平面的铣磨.机床磨轮轴与工件的平行度、轴向经向跳动影响棱镜的角度精度.铣磨成型是光学平面元件毛胚加工的主要技术方法之一。 图一就是PM500铣磨平面的范成运动,图二就是改进的QM30铣削平面的范成运动。

我国光学加工技术的发展历史

我国光学加工技术的发展历史 发布日期:2008-03-05 我也要投稿!作者:网络阅读:[ 字体选择:大中 小 ] 我国光学仪器的加工技术,虽然有较长历史但形成批量生产并具有完整的工艺是在新中国成立后。光学冷加工工艺在解放前虽然已有所采用,但缺乏完整性。解放后经过光学行业各方面人士及职工的努力,方逐步形成了较完善的加工方法。 五十年代初期,光学行业的设备陈旧,工艺落后。进入第一个五年计划后,加工工艺主要是采用“苏联”的工艺,设备也是由苏联引的和按“苏联”图纸制造的专用设备,二十世纪六十年代初期,国内个别厂家由德国引进了先进设备(如铣磨机和光学对中心磨边机),受到这些设备的启示,国内在六十年代中期开始工艺科研和研制新设备。首先进行的是研究粗磨机机械化和设计粗磨机,由于设备和工艺的改进,加工效率有很大的提高,但是后来受政治形势的影响,光学工艺的革新受到冲击,刚见成效的工艺革新,就此停止。 二十世纪七十年代中期,对光学冷加工技术改造和技术革新提出了“四化”目标,即毛坯型料化、粗磨机械化、精磨高速化、定心磨边自动化。经过努力,这些目标全部在二十世纪八十年代初基本实现了。 光学工业实现了光学冷加工“四化”,为军转民生产光学仪器奠定了有力基础。二十世纪八十年代针对当时民用光学仪器生产,又提出了光学零件制造的新四化,即抛光高速化,清洗超声化,辅助工序机械化和辅料商品化。“新四化”,虽然受到了管理体制改变的影响,在研制设备和进行工艺科研的时间和深度不够理想,但全部实现了。二十世纪八十年代重点是对光学加工机理和工艺因素的研究和探讨,通过科研人员和课题组的努力,均取得了理想的科研成果。在光学零件的定摆磨削和光学零件加工中不同牌号玻璃与不同结合剂的丸片之间的合理匹配都在光学加工方面有了突破,引起光学界的重视。这些科研的成果对光学加工工业起了重要作用,为了我们进一步提高光学加工的科研水平,奠定了雄厚的基础,为新的创新开辟了道路。 二十世纪八十年代是我们光学技术和工艺科研硕果累累的时期。不但在光学加工的基础理论方面,而在加工设备,加工工艺,加工模具,以及辅料等方面都取得了可喜成果。如光学加工机理,光学零件加工工艺因素,光敏胶,PH值稳定剂,光学导电膜,易腐蚀玻璃保护膜;PJM-320平面精磨机,QJM220球面精磨机,QJP-100与QJP-40光学中球面与小球面精磨抛光机;光学零件复制法;光学零件超声清洗代替清擦,光学零件真空吹塑包装以及自聚焦透镜制造等等,真是不胜枚举。这些科研成果,不但通过了部级鉴定,而且均获得子部级奖励或国家发明将。进入九十年代后,在中国光学行业有了更大的进展,这是由于光学产品出口,光学工艺也随着有了更大的改变和进展。我们采用了几十年的成盘加工工艺受到了冲击,而单件光学加工在光学批量生产中占据了统治地位。 本世纪初,我国光学制造业已取得了辉煌的成果,进入了发展的高峰,已形成了很强的生产能力。据有数字统计的资料,我国光学制造能力已超过了五亿件/年,当然这不包括,一些小型民办企业的生产能力。在亚洲也好,在世界上也好,中国光学冷加工的能力应当是名列前茅的,但我们的技术水平却是比较落后。主要是表现在不能大批量生产高精度元器件,大部分企业不能长期稳定生产,不能制造高精度的特种光学零件。造成此种现象的原因:a.执行工艺规程不够b.没有专门工艺研究和工艺设备的研究开发单位c.没有行业法规d.没有软件贸易企业,没有“光学工程”的承包单位。 光学加工设备和光学工艺的发展是分不开的。孔夫子说过“工欲善其事,必先利其器”。

典型零件加工工艺

箱体类零件加工工艺 箱体零件是机器或部件的基础零件,轴、轴承、齿轮等有关零件按规定的技术要求装配到箱体上,连接成部件或机器,使其按规定的要求工作,因此箱体零件的加工质量不仅影响机器的装配精度和运动精度,而且影响机器的工作精度、使用性能和寿命。下面以图1所示齿轮减速箱体零件的加工为例讨论箱体类零件的工艺过程。 图1 某车床主轴箱体简图

箱体类零件的结构特点和技术要求分析 图3所示零件为某车床主轴箱体类零件,属于中批生产,零件的材料为HT200铸铁。一般来说,箱体零件的结构较复杂,内部呈腔形,其加工表面主要是平面和孔。对箱体类零件的技术要求分析,应针对平面和孔的技术要求进行分析。 1.平面的精度要求箱体零件的设计基准一般为平面,本箱体各孔系和平面的设计基准为G面、H面和P面,其中G面和H面还是箱体的装配基准,因此它有较高的平面度和较小表面粗糙度要求。 2.孔系的技术要求箱体上有孔间距和同轴度要求的一系列孔,称为孔系。为保证箱体孔与轴承外圈配合及轴的回转精度,孔的尺寸精度为IT7,孔的几何形状误差控制在尺寸公差范围之内。为保证齿轮啮合精度,孔轴线间的尺寸精度、孔轴线间的平行度、同一轴线上各孔的同轴度误差和孔端面对轴线的垂直度误差,均应有较高的要求。 3.孔与平面间的位置精度箱体上主要孔与箱体安装基面之间应规定平行度要求。本箱体零件主轴孔中心线对装配基面(G、H面)的平行度误差为0.04mm。 4.表面粗糙度重要孔和主要表面的粗糙度会影响连接面的配合性质或接触刚度,本箱体零件主要孔表面粗糙度为0.8μm,装配基面表面粗糙度为1.6μm。 箱体类零件的材料及毛坯 箱体零件的材料常用铸铁,这是因为铸铁容易成形,切削性能好,价格低,且吸振性和耐磨性较好。根据需要可选用HT150~350,常用HT200。在单件小批量生产情况下,为缩短生产周期,可采用钢板焊接结构。某些大负荷的箱体有时采用铸钢件。在特定条件下,可采用铝镁合金或其它铝合金材料。 铸铁毛坯在单件小批生产时,一般采用木模手工造型,毛坯精度较低,余量大;在大批量生产时,通常采用金属模机器造型,毛坯精度较高,加工余量可适当减小。单件小批生产直径大于50mm的孔,成批生产大于30mm的孔,一般都铸出预孔,以减少加工余量。铝合金箱体常用压铸制造,毛坯精度很高,余量很小,一些表面不必经切削加即可使用。 箱体类零件的加工工艺过程 箱体零件的主要加工表面是孔系和装配基准面。如何保证这些表面的加工精度和表面粗糙度,孔系之间及孔与装配基准面之间的距离尺寸精度和相互位置精度,是箱体零件加工的主要工艺问题。 箱体零件的典型加工路线为:平面加工-孔系加工-次要面(紧固孔等)加工。 图1车床主轴箱体零件,其生产类型为中小批生产;材料为HT200;毛坯为铸件。该箱体的加工工艺路线如表1。 表1车床主轴箱体零件的加工工艺过程

超精密机械加工技术发展及应用

超精密机械加工技术发 展及应用 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

超精密机械加工技术发展及应用超精密机械加工技术作为微光学元件的一种制造方法,具有很多其他传统方法所不具有的优点。本文回顾了超精密机械加工技术的发展,展望了其在微光学元件加工中的应用潜力。 1微光学概述 1.1定义与名称 微光学是一门属于多门前沿学科交叉领域的新兴科学。微光学借助于微电子工业技术的最新研究成果,是国际上最前沿研究方向之一,并具有广泛的应用前途。微光学元件(MOC),指面形精度可达亚微米级,表面粗糙度可达纳米级的自由光学曲面及微结构光学元件。自由光学曲面包括有回转轴的回转非球面(如抛物面、渐开面等),和没有任何对称轴的非回转非球面,如Zernike像差方程曲面。微结构是指具有特定功能的微小表面拓扑形状,如凹槽、微透镜阵列等,如图1所示(图1略)的微金字塔结构表面。这些结构决定了对光线的反射,透射或衍射性能,便于光学设计者优化光学系统,减轻重量,缩小体积。典型微光学元件如全息透镜、衍射光学元件(DOE)和梯度折射率透镜等,将这些微光学元件应用在各种光电子仪器中,可以使光电子仪器及其零部件更加小型化、阵列化和集成化。 1.2微光学元件的应用 微光学元件是制造小型光电子系统的关键元件,它具有体积小、质量轻、造价低等优点,并且能够实现普通光学元件难以实现的微小、阵

列、集成、成像和波面转换等新功能。随着系统小型化不断的成为一种趋势,几乎在所有的工程应用领域中,无论是现代国防科学技术领域,还是普通的工业领域的应用前景。军用方面,西方国家在70年代以后研制和生产的军用光电系统,如军用激光装置、热成像装置、微光夜视头盔、红外扫描装置、导弹引导头和各种变焦镜头,均已在不同程度上采用了非球面光学零件。在一般民用光电系统方面,自由非球面零件可以大量地应用到各种光电成像系统中。如飞机中提供飞行信息的显示系统;摄像机的取景器、变焦镜头;红外广角地平仪中的锗透镜;录像、录音用显微物镜读出头;医疗诊断用的间接眼底镜,内窥镜,渐进镜片等。微结构光学元件应用更是广泛,如光纤连接器中的微槽结构,液晶显示屏的微透镜阵列,及用于激光扫描的F-theta镜片,激光头的分光器等,这些微结构光学元件在很多我们日常使用的产品中都有应用,比如手机、掌上电脑、CD和DVD等。 1.3微光学元件加工方法 由于受应用需求的驱动,对微光学元件加工技术的研究也在不断深入,出现了多种现代加工技术,如电子束写技术、激光束写技术、光刻技术、蚀刻技术、LIGA技术,复制技术和镀膜技术等,其中最为成熟的技术是蚀刻技术和LIGA技术。这些技术基本都是从微电子元器件的微细加工技术发展而来,但与电子原件不同,三维成型精度和装配精度对光学元件来说是至关重要的,将会直接影响其性能,因此这些方法各自都有它自身的缺陷和使用的局限性。如由于视场深度的限制,光刻技术仅限于二微结构和小深宽比三维结构的加工;采用牺牲层蚀刻技术,虽然

光学镜片加工工艺

目录 光学冷加工工序----------------------------------------2 玻璃镜片抛光工艺--------------------------------------3 镜片抛光----------------------------------------------4 光学冷加工工艺资料的详细描述--------------------------5 模具机械抛光基本程序(对比)--------------------------7 金刚砂 -----------------------------------------------8 光学清洗工艺-----------------------------------------10 镀膜过程中喷点、潮斑(花斑)的成因及消除方法------------12 光学镜片的超声波清洗技术-----------------------------14 研磨或抛光对光学镜片腐蚀的影响-----------------------17 抛光常见疵病产生原因及克服方法-----------------------23 光学冷却液在光学加工中的作用-------------------------25

光学冷加工工序 第1道:铣磨,是去除镜片表面凹凸不平的气泡和杂质,(约0.05-0.08)起到成型作用. 第2道就是精磨工序,是将铣磨出来的镜片将其的破坏层给消除掉,固定R值. 第3道就是抛光工序,是将精磨镜片在一次抛光,这道工序主要是把外观做的更好。 第4道就是清洗,是将抛光过后的镜片将起表面的抛光粉清洗干净.防止压克. 第5道就是磨边,是将原有镜片外径将其磨削到指定外径。 第6道就是镀膜,是将有需要镀膜镜片表面镀上一层或多层的有色膜或其他膜 第7道就是涂墨,是将有需要镜片防止反光在其外袁涂上一层黑墨. 第8道就是胶合,是将有2个R值相反大小和外径材质一样的镜片用胶将其联合. 特殊工序:多片加工(成盘加工)和小球面加工(20跟轴)线切割 根据不同的生产工艺,工序也会稍有出入,如涂墨和胶合的先后次序。 玻璃镜片抛光工艺 用抛光机和抛光粉或抛光液一起下进行抛光要设定抛光时间,压力等参数. 抛光后要立即进行清洗可浸泡,否则抛光粉会固化在玻璃上,会留有痕迹的. 1.抛光粉的材料 抛光粉通常由氧化铈、氧化铝、氧化硅、氧化铁、氧化锆、氧化铬等组份组成,不同的材料的硬度不同,在水中的化学性质也不同,因此使用场合各不相同。氧化铝和氧化铬的莫氏硬度为9,氧化铈和氧化锆为7,氧化铁更低。氧化铈与硅酸盐玻璃的化学活性较高,硬度也相当,因此广泛用于玻璃的抛光。 为了增加氧化铈的抛光速度,通常在氧化铈抛光粉加入氟以增加磨削率。铈含量较低的混合稀土抛光粉通常掺有3-8的氟;纯氧化铈抛光粉通常不掺氟。 对ZF或F系列的玻璃来说,因为本身硬度较小,而且材料本身的氟含量较高,因此因选用不含氟的抛光粉为好。 2.氧化铈的颗粒度 粒度越大的氧化铈,磨削力越大,越适合于较硬的材料,ZF玻璃应该用偏细的抛光粉。要注意的是,所有的氧化铈的颗粒度都有一个分布问题,平均粒径或中位径D50的大小只决定了抛光速度的快慢,而最大粒径Dmax决定了抛光精度

相关主题
文本预览
相关文档 最新文档