当前位置:文档之家› RNA转录后的加工与修饰

RNA转录后的加工与修饰

RNA转录后的加工与修饰
RNA转录后的加工与修饰

R N A转录后的加工与修

Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

第二节RNA转录后的加工与修饰

不论原核或真核生物的rRNAs都是以更为复杂的初级转录本形式被合成的,然后再加工成为成熟的RNA分子。然而绝大多数原核生物转录和翻译是同时进行的,随着mRNA开始的DNA上合成,核蛋白体即附着在mRNA上并以其为模板进行蛋白质的合成,因此原核细胞的mRNA并无特殊的转录后加工过程,相反,真核生物转录和翻译在时间和空间上是分天的,刚转录出来的mRNA是分子很大的前体,即核内不均一RNA。hnRNA 分子中大约只有10%的部分转变成成熟的mRNA,其余部分将在转录后的加工过程中被降解掉。

(一)mRNA的加工修饰

原核生物中转录生成的mRNA为多顺反子,即几个结构基因,利用共同的启动子和共同终止信号经转录生成一条mRNA,所以此mRNA分子编码几种不同的蛋白质。例如乳糖操纵子上的Z、Y及A基因,转录生成的mRNA可翻译生成三种酶,即半乳糖苷酶,透过酶和乙酰基转移酶。原核生物中没有核模,所以转录与翻译是连续进行的,往往转录还未完成,翻译已经开始了,因此原核生物中转录生成的mRNA没有特殊的转录后加工修饰过程。

真核生物转录生成的mRNA为单顺反子,即一个mRNA分子只为一种蛋白质分子编码。

真核生物mRNA的加工修饰,主要包括对5’端和3’端的修饰以及对中间部分进行剪接。

1.在5’端加帽

成熟的真核生物mRNA,其结构的5’端都有一个m7G-PPNmN结构,该结构被称为甲基鸟苷的帽子。如图17-9所示。鸟苷通过5’-5’焦磷酸键与初级转录物的5’端相连。当鸟苷上第7位碳原子被甲基化形成

m7G-PPNmN时,此时形成的帽子被称为“帽0”,如果附m7G-PPNmN外,这个核糖的第“2”号碳上也甲基化,形成m7G-PPNm,称为“帽1”,如果5’末端N1和N2中的两个核糖均甲基化,成为m7G-PPNmPNm2,称为“帽2”。从真核生物帽子结构形成的复杂可以看出,生物进化程度越高,其帽子结构越复杂。

图17-9 Post-transcriptional modification of mRNa showing the 7-methylguanosine cap and poly-A tail.

真核生物mRNA 5’端帽子结构的重要性在于它是mRNa 做为翻译起始的必要的结构,对核糖体对mRNA的识别提供了信号,这种帽子结构还可能增加mRNA的稳定性,保护mRNa 免遭5’外切核酸酶的攻击。

2.在3’端加尾

大多数的真核mRNA 都有3’端的多聚尾巴(A),多聚(A)尾巴大约为200bp。

多聚(A)屠巴不是由DNA编码的,而是转录后在核内加上去的。受polyA聚合酶催化,该酶能识别,mRNa 的游离3’-OH端,并加上约200个A残基。

近年来已知,在大多数真核基因的3’一端有一个AATAA序列,这个序列是mRNa 3’-端加polyA尾的信号。靠核酸酶在此信号下游10-15碱基外切断磷酸二酯键,在polyA聚合酶催化下,在3’-OH上逐一引入100-200个A碱基。关于polyA尾巴的功能问题尽管经过极其广泛的探索,但还不完全清楚。有人推测polyA可能与mRNA从细胞核转送到细胞质有关,但是相当数量,的没有polyA屠巴的mRNA如组蛋白mRNA,也照样通过核膜进入细胞质。还有人认为这种结构对真核mRNA的翻译效率具有某种作用,并能稳定mRNA结构,保持一定的生物半衰期。

前体(hnRNA)的拼接

原核生物的结构基因是连续编码序列,而真核生物基因往往是断裂基因,即编码一个蛋白质分子的核苷酸序列被多个插入片断所隔开,一个真核生物结构基因中内含子的数量,往往与这个基因的大小有关,例如胰岛素是一个很小的蛋白质,它结构基因只有两个内含子,而有些很大的蛋白质,它的结构基因中可以有几十个内含子。经过复杂的过程后,切去内元,将有编码意义的核苷酸片段(Extron外元也叫外显子)连接起来(图17-10)。

图17-10 Primary polymerase 11transcript of a eukaryote gene showing (a)introns after capping and addition of polyA tail.(b)Excision of introns to form the mature mRNA is called

splicing.

真核生物的结构的基因中具有可表达活性的外显子,也含有无表达活性的内含子,但内含子序列下是无意义的,越来越多的实验证明有许

多基因中的内含子参与基因表达调控,在转录时,外显子及内含子均转录到hnRNA中。在细胞核中hnRNA进行剪接作用,首先在核酸内切酶作用下剪切掉内含子;然后在连接酶作用下,将外显子各部分连接起来,而变为成熟的mRNA,这就是剪接作用,也有少数基因的hnRNA不需进行剪接作用,例如α-干扰素基因,图17-11以卵清蛋白基因为例,介绍一个典型的转录及加工过程。

图17-11 卵清蛋白基因转录及加工过程

图中外显示以1、2、3、4……表示,内含子以A、B、C、D…表示

mRNA的拼接,需要在拼接部位有供拼接识别的保守性强的一致顺序,通过对100多种真核细胞基因的分析,发现外元和内元拼接部位部分碱基顺序有一定的规律(见表17-4)。

表17-4 含有内元的转录产物其拼接处的碱基顺序

基因区域Exon Intron Exon

卵清蛋白内元2UAAG GUGA~~~~~~~ACAGGUUG

卵清蛋白内元3UCAG GUAC~~~~~~~UCAGUCUG

β-珠蛋白内元1GCAG GUUG~~~~~~~UCAGGCUG

β-珠蛋白内元2CAGG GUGA~~~~~~~ACAGUCUC

Igλ内含子1UCAG GUCA~~~~~~~GCAGGGGC SV40病毒早期T

UAAG GUAA~~~~~~~UUAGAUUC 抗原

表中划线的碱基对拼接识别有重要作用,如将兔的β-珠蛋白的拼接部位的GT改为AT后,拼接反应即受到影响。

mRNA前体拼机制

图17-12 The RNA splicing splicing is catalyzed by a

spliceosome formed from the assembly of U1,U2,U5,and sn

RNPs(shown as green circles )plus other components (not shown).After assembly of the spliceosome ,the reaction occures in two speps:in step 1the branch-point A nucleotide in the intron sequence,which is located colse to the 3'splice

site ,attacks the 5'splice site and cleaves it;the cut 5'end of the intron sequence thereby becomes covalently linked to this A nucleotide,forming the branched nucleotide shown in Figure step 2 the 3'-OH end of the first exon sequence,which was

created in the first step,adds to the beginning of the second exon sequence,cleqving the RNA molecule at the 3'splice site;the two exon sequences are thereby joined to each other and the intron sequence is released ad a splicing reactions occur im the nucleus and gengerate mRNa molecules from primary RNA transcripts (mRNA precursor molecules).

mRNA拼接反应需要有核内小分子RNA参与它们与蛋白质形成的复合物称为小核糖核蛋白颗粒,SnRNA分别被命名为U1,U2,U3,U4,U5,和

U6RNA。SnRNA中的U2RNA由与内元右端拼接部位附近的UACUAA顺序高度互补,形成一个环状结构,由特定的酶来识别切除该环状结构,完成拼接过程,如图17-12所示。

图17-13 Mechanim of mRNa that,for clarity,the process is shown in two stages;energy is not required for the process since transesterification reactions are involved.

真核生物 mRNA前体在剪接过程中,还可以形成套索样的结构,在内含子序列中常有一个分支部位的腺苷酸残基,它的2’-OH可以自动攻击内含子5’端与外显子1连接的磷酸二酯键,切开了外噗子1,而腺苷酸原来已有3’,5’--磷酸二酯键相连的两个相邻的核苷酸残基,加上此3’,5’-磷酸二酯键连接后,在腺苷酸处出现了一个套索,已被切下的外显子1的3’-OH攻击内含子3’末端与外显子2之间的3’,5’-磷酸二酯键,键断裂后,内含子以套索的形式被节下来,此时外显子1和外显子2可以连接起来(图17-13)。

不论拼接过程如何,拼接必须极为精确,否则会导致遗传信息传递障碍,合成的蛋白质可能丧失其正常的功能。我国南方广大地区是β-地中海贫血的高发区,这是由于β-珠蛋白链的合成受到部分或完全抑制所引起的一种血红蛋白病。实验表明β-珠蛋白基因元1中核苷酸的点突变改变了正常拼接部位的碱基顺序,结果造成错误部位的拼接。加工成熟的mRNA虽能翻译,但产物不是正常的β-珠蛋白,结果引起血红蛋白级结构和功能的改变。

(二)rRNA转录后加工

原核生物rRNA转录后加工,包括以下几方面:①rRNA前体被大肠杆菌RNaseⅢ,RNaseE等剪切成一定链长的rRNA分子;②rRNA在修饰酶催化下进行碱基修饰;③rRNA与蛋白质结合形成核糖体的大、小亚基(见图17-14)

图17-14 大肠杆菌rRNA前体的加工

真核生物rRNA前体比原核生物大,哺乳动物的初级转录产物为

45s,低等真核生物的rRNA前体为38s,真核生物5sRNA前体独立于其他三种rRNA的基因转录(图17-15)。

图17-15 真核生物rRNA前体的加工

真核生物rRNA前体中含有插入顺序,rRNA前体要形成成熟的rRNA,需要经过拼接反应。例如,四膜虫的rRNA前体的拼接是一种无酶催化的自动拼接过程。四膜虫基因组内,26srRNA编码的区域内有413bp 的插入顺序。该插放序列可以不消耗能量从rRNA前体中被除掉。用SDS 煮沸和用蛋白酶外理等破坏酶活性办法,都不能破坏拼接活性,但反应中Mg2+和鸟嘌呤核苷酸是必在的。用32P-GTP进行追踪实验表明,起始过程是GTP在插入顺序5’端发生亲核反应,同时GMP与5’端切点的切除段形成磷酸二酯键并使原RNA断开。第二步是5’切点的外元3’-OH 与3’切点的外元5’-P共价连接,获得成熟的rRNA,被切除部分最后环化,形成一个环状结构,同时从5’端去掉一个15核苷酸啐片。剩余

部分连接成399核苷酸的环状产物,再经过几步,最后切下一个19个核苷酸的线性内含子序列即L-19,它具有催化活性,上面的剪接作用,是由内含子本身的催化性质决定的(图17-16)。

图17-16 四膜虫rRNA前体的自我剪接

这种rRNA的自身剪接反应给人们一个提示:即RNA分子也有酶的催化活性。这向酶的化学本质是蛋白质这一传统概念提出了挑战。这种有酶催化活性的RNA分子命名为Ribozyme。和各自分别发现RNA具有催化作用,他们的发现对于了解生命进行过程有重要意义。很可能在原始生命中,RNA所催化的断裂一连接反应是最早出现的催化过程。为此,他们共同获得了1989年Nobel化学奖。

从大多数Ribozymw的结构中发现一些特征,例如:锤头状结构的RNA分子有13个保守的核苷酸序列,如果它们中的碱基改变会使这种催化活性失去作用。根据这种特片,科学家们在体外没计并人工合成这种RNA分子,用于抗肿瘤及抗病毒的实验中(图17-17)。

图17-17 锤头结构模式图

(三)tRNA转录后的加工修饰

原核生物和真核生物刚转录生成的tRNA前体一般无生物活性,需要进行①剪切和拼接②碱基修饰③3’-OH连接-ACC结构(图17-18)。

图17-18 tRNA前体的加工

①tRNA前体在tRNA剪切酶的作用下,切成一定在小的tRNA分子。大肠杆菌RNase P可特异剪切tRNA前体的5’旁顺序,因此,该酶被称为tRNA5’成熟酶。除了RNaseP外,tRNA前体的剪切尚需要一个3’-核酸内切酶,这可将tRNA前体3’端的一段核苷酸序列切下来。此外RNaseD是tRNA3’端成熟酶。近年来的研究表明大肠杆菌RNaseP是一种非常特殊的酶分子,它是由RNA和蛋白质组成,最近发现RNAaseP分子中的RNA部分在某些条件下,可以单独地催化tRNA前体的加工成熟,这个发现和四膜虫tRNA能自我拼接被认为是近十年来生化领域内最令人鼓舞的发现之一。说明RNA分子确具有酶的催化活性。经过剪切后的tRNA 分子还要在拼接酶作用下,将成熟tRNA分子所需的片段拼起来。

②成熟的tRNA分子中有许多的稀有碱基,因此tRNA在甲基转移酶催化下,某些嘌呤生成甲基嘌呤如A→mA,G→mA。有些尿嘧啶还原为双氢尿嘧啶。尿嘧啶核苷转变不假尿嘧啶核苷。某些腺苷酸脱氨基为成为次黄嘌呤核苷酸(Ⅰ)

③3’末端加上CCA:在核苷酸转移酶作用下,3’--末端除去个别碱基后,换上tRNA分子统一的CCA-OH末端,完成tRNA分子中的氨基酸臂结构。

转录与后加工

第十四章转录后加工和调节 ********真核生物mRNA前体加工 转录起始于第1个外显子(exon)的第一个核苷酸,转录开始不久转录产物的5′端就被加上7-甲基鸟苷酸帽子(Cap)。转录终止于最后1个外显子3′端下游大约0.5~2.OKb范围内多个可能位点中的1个。核酸内切酶在polyA位点切除多余序列,并在polyA聚合酶的作用下加上长100~250个A。接着,通过RNA剪接(splicing)将内含子(intron)切除,并将外显子连接起来。最后,将成熟的mRNA分子输送到细胞质中。以上过程称为mRNA前体加工(pre-mRNA processing)。 当RNA聚合酶Ⅱ的转录产物刚合成大约30个核苷酸时,其5′端就加上了1个甲基化鸟苷酸(m7G),甲基供体是S—腺苷蛋氨酸。 mRNA 5′端帽子结构的主要功能有;①在蛋白质合成起始中的重要作用类似于原核生物 mRNA的SD 序列,供核糖体小亚基(40S)识别与结合。②保护合成中的转录产物免受核酸外切酶的降解。③在成熟的 mRNA以外,动物所有的mRNA 3′端都有polyA尾。这些A是初始转录产物经过核酸内切 mRNA的polyA尾上游10—35个核苷酸处都含有序列AAUAAA,在切割位点下游大约50个核苷酸以内还存在第二个加尾信号,其序列特征是富含G/U或U。 PolyA位点切割后,多聚腺苷酸化分为两个阶段进行。前12个左右的A的多聚腺苷酸化的速度比较慢,而后面则很快,迅速加到200~250个A。后者需要结合若干含有RNP motif的polyA结合蛋白Ⅱ(PABⅡ)。 ------外显子—内含子交界处存在短共有序列 ,其中,出现机率为100%的只有pre-mRNA内含子5′端的GU和3′端的AG,这就是所谓剪接的GU—AG规则。 ------ 六种富含U的snRNA大量存在于哺乳动物细胞核中,命名为U1~U6,它们参与RNA剪接。这些snRNA和6~10种蛋白因子相结合,形成核内RNP小颗粒 (snRNP)。 --------反式剪接(trans—splicing) 产生于两个不同的RNA分子之间发生的剪接作用,这个过程叫作反式剪接。 高等真核生物的转录单位分为简单和复合两种类型。简单转录单位只有1个polyA位点,其RNA剪 接方式也只有1种,只能产生mRNA 分子,这意味着1 复合转录单位的转录后加工,是高等真核生物基因转录后调节的1种重要途径。 (二)选择性剪接 高等真核生物复合转录单位的。剪接过程中发生了外显子跳跃(exon skip),使得某些外显子在成熟的mRNA分子中不复存在, 除了外显子跳跃以外,有的选择性剪接通过包含或排除终止密码子来控制功能蛋白的表达。 ---------有的复合转录单位含有多个polyA位点,通过选择性调节初始转录产物3′端的切割位点,以改变表达产物C端的氨基酸顺序,产生长短不同的多肽链,这一过程叫作polyA位点选择(polyAsitechoice),或选择性多聚腺苷酸化(alternative polyadenylation)。 ,核仁小RNA(snoRNA,即small nucleolar RNA)可能催化pre—rRNA的切割加工,snoRNA和蛋白因子结合形成snoRNP,再与pre—rRNA结合。 snoRNA的还可能在线粒体DNA复制时参与合成RNA引物,它的功能有助于协调细胞生长(或分裂)与线粒体复制的关系。 真核基因内含子主要分为四种类型:①核内含子②I类内含子(Group I)。⑧Ⅱ类内含子(Group Ⅱ)。④tRNA基因内含子。 I类内含子具有两个共同特点;①自我剪接能力(self-splicing)。②特殊的二级结构,包括9个茎环。 rRNA前体分子中,但这种内含子不如I类内含子普遍。

最新RNA转录与转录后加工

R N A转录与转录后加 工

第7章 RNA转录与转录后加工 1 本章主要内容 1)转录的基本概念 2)大肠杆菌RNA聚合酶及其转录 3)真核生物的RNA聚合酶及其转录 4)RNA的转录后加工和反转录 2 教学目的和要求 通过本章学习,掌握转录的基本概念,原核转录的主要参与者(RNA聚合酶和启动子)以及原核转录的过程(起始、延伸和终止)。 1)掌握真核转录的三种主要RNA聚合酶、所转录的基因类型和参与转录过程各种 因子等。 2)了解不同前体RNA的加工机制。 3)了解反转录的特点 3 重点难点 1) 转录 2) 大肠杆菌RNA聚合酶、原核转录的过程 3) 真核生物的RNA聚合酶、真核转录过程、转录因子 4) RNA的转录后加工、反转录 4 教学方法与手段 讲授与交流互动相结合,采用多媒体教学。 5 授课内容 1) RNA转录概述 2)细菌基因的转录 3)真核生物的转录 4) RNA的转录后加工 5) RNA的反转录 第一节 RNA转录概述

一、信使的发现 ?1955年Brachet用洋葱根尖和变形虫进行实验: –若加入RNA酶,则蛋白质合成就停止; –若再加入来自酵母的RNA,又可合成蛋白质。 这表明什么? ?同年Goldstein和Plaut用同位素标记变形虫RNA前体—— ?发现标记的RNA在核内。 ?标记追踪实验:经过一段时间又发现被标记的RNA在细胞质中, ?这表明什么? ?1956年E. Volkin和 L.Astrachan: ?用同位素脉冲一追踪标记 ?表明T2噬菌体新合成的RNA的碱基比和自身的DNA碱基比相似,而和细菌的碱基比不同。T2感染细菌时注入的是DNA,而在细胞里合成的是RNA。 ?这表明什么? ?最令人信服的证据是Hall.B.D和Spiegeman,S的DNA-RNA的杂交实验: ?将T2噬菌体感染E.coli后产生的RNA分离出来,分别与T2和E.coli的DNA进行分子杂交。 ?结果这种RNA只能和T2的DNA形“杂种”链,而不能和E.coli的DNA进行杂交。 Jacob和Monod预言: (1)这种“ 信使”应是一个多核苷酸; (2)其分子平均不小于5 105bp,足以携带一个基因的遗传信息; (3)它们至少是暂时连在核糖体上; (4)其碱基组成反映了DNA的序列; (5)它们能高速更新。 Jacob和Monod将它定名为: 信使RNA (Messenger RNA) 或mRNA。 二、几个基本概念 ?转录(transcription):是指以DNA为模板,在依赖于DNA的RNA聚和酶催化下,以4

RNA转录后地加工与修饰

第二节RNA转录后的加工与修饰 不论原核或真核生物的rRNAs都是以更为复杂的初级转录本形式被合成的,然后再加工成为成熟的RNA 分子。然而绝大多数原核生物转录和翻译是同时进行的,随着mRNA开始的DNA上合成,核蛋白体即附着在mRNA上并以其为模板进行蛋白质的合成,因此原核细胞的mRNA并无特殊的转录后加工过程,相反,真核生物转录和翻译在时间和空间上是分天的,刚转录出来的mRNA是分子很大的前体,即核不均一RNA。hnRNA 分子约只有10%的部分转变成成熟的mRNA,其余部分将在转录后的加工过程中被降解掉。 (一)mRNA的加工修饰 原核生物中转录生成的mRNA为多顺反子,即几个结构基因,利用共同的启动子和共同终止信号经转录生成一条mRNA,所以此mRNA分子编码几种不同的蛋白质。例如乳糖操纵子上的Z、Y及A基因,转录生成的mRNA可翻译生成三种酶,即半乳糖苷酶,透过酶和乙酰基转移酶。原核生物中没有核模,所以转录与翻译是连续进行的,往往转录还未完成,翻译已经开始了,因此原核生物中转录生成的mRNA没有特殊的转录后加工修饰过程。 真核生物转录生成的mRNA为单顺反子,即一个mRNA分子只为一种蛋白质分子编码。 真核生物mRNA的加工修饰,主要包括对5’端和3’端的修饰以及对中间部分进行剪接。 1.在5’端加帽 成熟的真核生物mRNA,其结构的5’端都有一个m7G-PPNmN结构,该结构被称为甲基鸟苷的帽子。如图17-9所示。鸟苷通过5’-5’焦磷酸键与初级转录物的5’端相连。当鸟苷上第7位碳原子被甲基化形成m7G-PPNmN时,此时形成的帽子被称为“帽0”,如果附m7G-PPNmN外,这个核糖的第“2”号碳上也甲基化,形成m7G-PPNm,称为“帽1”,如果5’末端N1和N2中的两个核糖均甲基化,成为m7G-PPNmPNm2,称为“帽2”。从真核生物帽子结构形成的复杂可以看出,生物进化程度越高,其帽子结构越复杂。 图17-9 Post-transcriptional modification of mRNa showing the 7-methylguanosine cap and poly-A tail.

RNA转录与转录后加工

第7章 RNA转录与转录后加工 1 本章主要内容 1)转录的基本概念 2)大肠杆菌RNA聚合酶及其转录 3)真核生物的RNA聚合酶及其转录 4)RNA的转录后加工和反转录 2 教学目的和要求 通过本章学习,掌握转录的基本概念,原核转录的主要参与者(RNA聚合酶和启动子)以及原核转录的过程(起始、延伸和终止)。 1)掌握真核转录的三种主要RNA聚合酶、所转录的基因类型和参与转录过程各种因 子等。 2)了解不同前体RNA的加工机制。 3)了解反转录的特点 3 重点难点 1) 转录 2) 大肠杆菌RNA聚合酶、原核转录的过程 3) 真核生物的RNA聚合酶、真核转录过程、转录因子 4) RNA的转录后加工、反转录 4 教学方法与手段 讲授与交流互动相结合,采用多媒体教学。 5 授课内容 1) RNA转录概述 2) 细菌基因的转录 3) 真核生物的转录 4) RNA的转录后加工 5) RNA的反转录 第一节 RNA转录概述

一、信使的发现 ?1955年Brachet用洋葱根尖和变形虫进行实验: –若加入RNA酶,则蛋白质合成就停止; –若再加入来自酵母的RNA,又可合成蛋白质。 这表明什么? ?同年Goldstein和Plaut用同位素标记变形虫RNA前体—— ?发现标记的RNA在核内。 ?标记追踪实验:经过一段时间又发现被标记的RNA在细胞质中, ?这表明什么? ?1956年E. Volkin和 L.Astrachan: ?用同位素脉冲一追踪标记 ?表明T2噬菌体新合成的RNA的碱基比和自身的DNA碱基比相似,而和细菌的碱基比不同。T2感染细菌时注入的是DNA,而在细胞里合成的是RNA。 ?这表明什么? ?最令人信服的证据是Hall.B.D和Spiegeman,S的DNA-RNA的杂交实验: ?将T2噬菌体感染E.coli后产生的RNA分离出来,分别与T2和E.coli的DNA进行分子杂交。 ?结果这种RNA只能和T2的DNA形“杂种”链,而不能和E.coli的DNA进行杂交。Jacob和Monod预言: (1)这种“ 信使”应是一个多核苷酸; (2)其分子平均不小于5105bp,足以携带一个基因的遗传信息; (3)它们至少是暂时连在核糖体上; (4)其碱基组成反映了DNA的序列; (5)它们能高速更新。 Jacob和Monod将它定名为: 信使RNA (Messenger RNA) 或mRNA。 二、几个基本概念 ?转录(transcription):是指以DNA为模板,在依赖于DNA的RNA聚和酶催化下,以4种

相关主题
文本预览
相关文档 最新文档