当前位置:文档之家› 数列求和之公式法

数列求和之公式法

数列求和之公式法
数列求和之公式法

数列求和之公式法

公式法适用于已知数列是等差或等比时使用。

等差数列前n 公式: S n =n (a 1+a n )2=na 1+n (n -1)d 2=d 2n 2+(a 1-d 2

)n ; 等比数列前n 公式: S n =na 1,q =1a 1(1-q n )1-q =a 1-a n q 1-q =a 11-q -a 11-q q n ,q 11ìí???

(以下前n 个自然数的和、平方和、立方和公式可依据学生情况要求学生了解和掌握

)1(211+==∑=n n k S n

k n ,)12)(1(6112++==∑=n n n k S n k n ,213)]1(21[+==∑=n n k S n k n ) 思路:已知数列是等差等比数列和其中两项求和,由已知条件推断数列是何种数列然后求和,含有负数项的等差数列求和及其对应绝对值数列的求和。难度递进。与上节求数列通项相结合,起到复习巩固的作用。

[例1]已知数列 {a n }中,已知 a 1=2,a 4=16

(Ⅰ)若该数列为等差数列,求数列

{a n }的前n 项和; (Ⅱ)若该数列为等比数列,求数列 {a n }的前n 项和。

[例2]已知log 3x =

-1log 23, (1)求x +x 2+x 3+×××+x n +×××的前项和;

(2)求x+3x+5x+...+(2n+1)x 的前n 项和。

n

(1)求 S n 的最小值,并求出

S n 取最小值时的值; (2)求

.

【变式训练】 1、已知数列 {a n }中,已知35a =,7125a = (Ⅰ)若该数列为等差数列,求数列

{a n }的前n 项和; (Ⅱ)若该数列为等比数列,求数列 {a n }的前n 项和。

2、已知log 3x =

-1log 23, (1)求32121x x x x x ---++++++...的前项和;

(2)求-5x-4-3x-2x-x-0+x+2x+...的前n 项和。

n n

(1)求S

n 的最小值,并求出S

n

取最小值时的值;

(2)求. 【过关练习】

1、已知数列{a

n }中,已知

2

4

a=,

4

8

a=

(Ⅰ)若该数列为等差数列,求数列{a

n

}的前n项和;

(Ⅱ)若该数列为等比数列,求数列{a

n

}的前n项和。

2、等比数列{a

n }中,已知a

1

=2,a

4

=16

(Ⅰ)求数列{a

n

}的通项公式及前n项和;

(Ⅱ)若a

3,a

5

分别为等差数列{b

n

}的第3项和第5项,试求数列{b

n

}的通项公式及前n

项和S

n 。

n

3. 数列 a n {}中,a 1=13,前 n 项和S n 满足S n +1-S n =(13)n +1(n ?N *), (I )求数列 a n {}

的通项公式a n 以及前 n 项和S n ; (II )若S 1,t (S 1+S 2),3(S 2+S 3)成等差数列,求实数t 的值.

4. 已知数列{}n a 是等差数列,设其前n 项和为n S ,若59a =,525S = (Ⅰ)求数列{}n a 的通项公式n a ; (Ⅱ)设3n a n b =,求数列{}n b 的前n 项和n T .

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

(完整版)放缩法典型例题

放缩法典型例题 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴.3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

二级等差数列求和公式及推导

二级等差数列求和公式就是后一项减前一项是等差数列,怎样求原数列的和? 二级等差数列求和公式 就是后一项减前一项是等差数列,怎样求原数列的和? a2-a1=k a3-a2=k+d a4-a3=k+2d …… an-a(n-1)=k+(n-2)d 相加

an-a1=(n-1)k+[1+2+……+(n-2)]d=(n-1)k+(n-2)(n-1)d/2 所以an=a1+(n-1)k+(n-2)(n-1) d/2 二阶等差数列怎样求和 a1=1 an-a(n-1)=2n-1 Sn=? a1 = 1 a2 - a1 = 2*2 -1

a3 - a2 = 2*3 -1 a4 - a3 = 2*4 -1 …… an - a(n-1) = 2*n - 1 以上等式相加后,得到通项公式 an = 1 + 2(2+3+4+……+n) - 1-1-1- …… -1 =2(1+2+3+……+n) - n =n(n+1) - n =n^2

检验: a2 - a1 = 4 - 1 = 2*2 - 1 a3 - a2 = 9 - 4 = 2*3 - 1 a4 - a3 = 16 -9 = 2*4 - 1 成立 下面求 Sn = 1^2 + 2^2 + 3^2 + …… + n^2 (n+1)^3 - n^3 = (n^3 + 3n^2 + 3n + 1) - n^3 = 3*n^2 + 3n + 1 利用上面这个式子有:

2^3 - 1^3 = 3*1^2 + 3*1 + 1 3^3 - 2^3 = 3*2^2 + 3*2 + 1 4^3 - 3^3 = 3*3^2 + 3*3 + 1 5^3 - 4^3 = 3*4^2 + 3*4 + 1 …… (n+1)^3 - n^3 = 3*n^2 + 3n + 1

等比数列求和教案

课题:等比数列的前n项和(一课时) 教材:浙江省职业学校文化课教材《数学》下册 (人民教育出版社) 一、教材分析 ●教学内容 《等比数列的前n项和》是中职数学人教版(基础模块)(下)第六章《数列》第四节的内容。是数列这一章中的一个重要内容, 就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.就内容的人文价值来看,等比数列的前n项和公式的探究与推导需要学生观察、归纳、猜想、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体. 二、学情分析 ●知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用. ●认知水平与能力:高二学生具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有所不同,这对学生 q 这一特殊情况,学生也往往容易忽略,尤的思维是一个突破,另外,对于1 其是在后面使用的过程中容易出错. 三、目标分析 依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标: 1.教学目标

●知识与技能目标 理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题. ●过程与方法目标 通过对公式的研究过程,提高学生的建模意识及探究问题、培养学生观察、 分析的能力和协作、竞争意识。 ●情感、态度与价值目标 通过学生自主对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于 探索、敢于创新,磨练思维品质,培养学生主动探索的求知精神和团结协作精神, 感受数学的美。 2.教学重点、难点 ●重点:等比数列前n项和公式的推导及公式的简单应用. ●难点:错位相减法的生成和等比数列前n项和公式的运用. 突破难点的手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点, 激发他们的兴趣,鼓励学生大胆猜想、积极探索,并及时给予肯定;二抓知识的 切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予 适当的提示和指导. 四、教学模式与教法、学法 根据学生的认知特点,本着学生为主体教师为主导的原则采用多元教学法,让学生至于情景中。学生动手操作实践分组讨论探究,而教师重在启发,引导。基于教学平台和数学软件让学生可观,可感,可交流的环境中轻松的学习。 五、教学过程

数列求和方法分类及经典例题

数列求和方法总结 一、公式法 ()()111122 n n a a n n n .na d +-==+等差型 S ()111111n n na q a q q q =??=-?≠?-? ,2.等比型 S , →3.分式型/阶乘型 裂项相消法 () 1111111n n n n n a a a d a a ++??=- ???? ,其中为等差; ( 12n a d = ,其中为等差; ()()() ()113=+1+1+1n n n!n !n!.n !n!n !-?=- , ()()()( )1111153759 11121121231233n n . .,n N n *???++++∈+++++++KK KK K KK 例1:求下列各数列的前项和S ,,, 二、等差等比混合型 (){}=n n n a b kn b q ??+?→ 1.等差等比 错位相减法 n n S 例2:求下列各数列的前项和 ()()112n n .a n =+? ()()12312n n .a n ??=-? ??? ()()()3312n n .a n =-+?-

{}111122n n k n b a q a q ±+++→ 2.等差等比 分组求和 n n S 例3:求下列各数列的前项和 ()1111123248 .,,,KK ()2211121333333 n n .,,,,+++KK → 3.奇偶项不同 分组求和 n n S 例4:求下列各数列的前项和 ()()()1115913143n n .n -=-+-++--K 相邻异号 例:S ()11211n n n .a ,a a ,S -=+= 和为常数 例:求()122314=+2n n n .a ,a ,a a ,S -== 差为常数 例:求()12+11142=63n n n n n .a a ,a a ,a S ??== ??? 比为常数 例:,求及 三、倒叙相加/相乘型 n n S 例5:求下列各数列的前项和 ()11110142n x n .f (x ),S f ()f ()f ()f ()n n -= =++++ 已知求;()211121220121201220112 x .f (x ),f ()f ()f ()f ()f ()f ()x =+++++++KK KK 已知求;()1312.n n n n n ++ 在和之间插入个正数,使这个数成等比数列,求插入个数之积; ()1412.n n n n n ++ 在和之间插入个正数,使这个数成等差数列,求插入个数之和; 22112n n n n n n n +++??== ??? T ,S

数列求和公式证明

1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边 数学归纳法可以证 也可以如下做比较有技巧性 n^2=n(n+1)-n 1^2+2^2+3^2+......+n^2 =1*2-1+2*3-2+....+n(n+1)-n =1*2+2*3+...+n(n+1)-(1+2+...+n) 由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3 所以1*2+2*3+...+n(n+1) =[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3 [前后消项] =[n(n+1)(n+2)]/3 所以1^2+2^2+3^2+......+n^2 =[n(n+1)(n+2)]/3-[n(n+1)]/2 =n(n+1)[(n+2)/3-1/2] =n(n+1)[(2n+1)/6] =n(n+1)(2n+1)/6 2)1×2+2×3+3×4+...+n×(n+1)=? 设n为奇数, 1*2+2*3+3*4+...+n(n+1)= =(1*2+2*3)+(3*4+4*5)+...+n(n+1) =2(2^2+4^2+6^2+...(n-1)^2)+n(n+1) =8(1^2+2^2+3^2+...+[(n-1)/2]^2)+n(n+1) =8*[(n-1)/2][(n+1)/2]n/6+n(n+1) =n(n+1)(n+2)/3 设n为偶数, 请你自己证明一下! 所以, 1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3 设an=n×(n+1)=n^2+n Sn=1×2+2×3+3×4+...+n×(n+1) =(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n) =n(n+1)(2n+1)/6+n(n+1)/2 =n(n+1)(n+2)/3

数列求和汇总例题与答案)

数列求和汇总答案 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 例1、已知3 log 1log 23-=x ,求???++???+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得n n x x x x S +???+++=32(利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 练习:求22222222123456...99100-+-+-+--+的和。 解:2222222212345699100-+-+-+--+ 由等差数列的求和公式得 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. 例2求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=……………………….②(设制错位) ①-②得n n n x n x x x x x S x )12(222221)1(1432--+???+++++=--(错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----?+=-- ∴2 1)1()1()12()12(x x x n x n S n n n -+++--=+ 练习:求数列??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1}的通项之积 设n n n S 2 226242232+???+++=…………………………………①

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

(完整版)数列求和经典题型总结

三、数列求和 数列求和的方法. (1)公式法:①等差数列的前n 项求和公式 n S =__________________=_______________________. ② 等 比 数 列 的 前 n 项 和 求 和 公 式 ? ? ?≠===)1(___________________)1(__________q q S n (2)....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. (3)n n n C a b =?,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错 位相减法”. (4)1 n n n C a b = ?,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. (5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和。适用于形如()()n f a n n 1-=的类型。举例如下: ()()() 5050 12979899100129798991002 22222=++???++++=-+???+-+-= n S 常见的裂项公式: (1) 111)1(1+-=+n n n n ;(2) =+-) 12)(12(1 n n ____________________;(3)1 1++n n =__________________ 题型一 数列求解通项公式 1. 若数列{a n }的前n 项的和1232 +-=n n S n ,则{a n }的通项公式是n a =_________________。 2. 数列}{n a 中,已知对任意的正整数n ,1321-=+???++n n a a a ,则22221n a a a +???++等 于_____________。 3. 数列中,如果数列是等差数列,则________________。 4. 已知数列{a n }中,a 1=1且 3 1 111+=+n n a a ,则=10a ____________。 5. 已知数列{a n }满足)2(1 1≥-= -n a n n a n n ,则n a =_____________.。 6. 已知数列{a n }满足)2(11≥++=-n n a a n n ,则n a =_____________.。 {}n a 352,1,a a ==1 { }1 n a +11a =

等差数列求和及练习题(整理)

等差数列求和 引例:计算1+2+3+4+……+97+98+99+100 一、有关概念: 像1、2、3、4、5、6、7、8、9、……这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,……,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。这个固定的数就叫做“公差”。 二、有关公式: 和=(首项+末项)×项数÷2 末项=首项+公差×(项数-1) 公差=(末项-首项)÷(项数-1) 项数=(末项-首项)÷公差+1 三、典型例题: 例1、聪明脑筋转转转: 判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。 判断首项末项公差项数 (1)1、2、4、8、16、32. ()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()() 例2、已知等差数列1,8,15,…,78.共12项,和是多少?(博易P27例2)

(看ppt,推出公式) 例3、计算1+3+5+7+……+35+37+39 练习2:计算下列各题 (1)6+10+14+18+22+26+30 (3)1+3+5+7+……+95+97+99 (2)3+15+27+39+51+63 (4)2+4+6+8+……+96+98+100 (3)已知一列数4,6,8,10,…,64,共有31个数,这个数列的和是多少? 例5、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。这堆圆木共有多少根?(博易P27例3)(看ppt) 练习3: 丹丹学英语单词,第一天学了6个单词,以后每一天都比前一天多学会一个,最后一天学会了26个。丹丹在这些天中共学会了多少个单词? 等差数列求和练习题 一、判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项 及公差写出来,如果不是请打“×”。 判断首项末项公差 1. 2、4、6、8、10、12、14、16.()()()() 2. 1、3、6、8、9、11、12、14. ()()()() 3. 5、10、15、20、25、30、35. ()()()() 4. 3、6、8、9、12、16、20、26.()()()() 二、请计算下列各题。 (1)3+6+9+12+15+18+21+24+27+30+33 (2)4+8+12+16+20+24+28+32+36+40 (3)求3、6、9、12、15、18、21、这个数列各项相加的和。 (4)2+4+6+8+……+198+200 ★(5)求出所有三位数的和。 (其他作业:练习册B 1题、4题、6题)

数列求和与求通项方法汇总与经典例题

15 数列求通项问题 数列求通项方法一:累加法,解决形如型数列通项问题)(1n f a a n n =-+. 例.设数列}{a n 的前n 项和为S n ,}{a n }满足a 1=1,a n +1﹣a n =n d ,n ∈N *.若n d =3n ,求数列}{a n 的通项公式; 解:(1)若a n +1﹣a n =d n =3n ,则a 2﹣a 1=3, a 3﹣a 2=32,a 4﹣a 3=33,……a n ﹣a n ﹣1=3n ﹣1, 累加得:a n ﹣a 1==,又由a 1=1,∴a n =. 数列求和方法二:构造法,解决形如型或接近于等差或d pa n n +=+1a .等比数列型 例.已知数列{a n }满足a 1=1且a n +1=2a n +1,求a n ; 解:∵a n +1=2a n +1,∴a n +1+1=2a n +2=2(a n +1),又a 1+1=2≠0,所以, ∴数列{a n +1}是等比数列,公比q =2,首项为2.则, ∴; 例 数列{a n }中,a 1=1,a n +1=2a n +n ﹣1.求数列{a n }的通项公式. 解:根据题意,a n +1=2a n +n ﹣1,则a n +1+n +1=2a n +n ﹣1+n +1=2a n +2n =2(a n +n ) 所以,所以数列{a n +n }为等比数列. 数列{a n +n }为以2为公比的等比数列,又a 1=1,所以a 1+1=2. 所以,所以. 例.设S n 是数列{a n }的前n 项和,且a 1=﹣1,a n +1=S n ?S n +1,求{a n }的通项公式. 解:因为a n +1=S n +1﹣S n ,所以S n +1﹣S n =S n ?S n +1. 两边同除以S n ?S n +1得﹣=﹣1.因为a 1=﹣1,所以=﹣1. 因此数列{ }是首项为﹣1,公差为﹣1的等差数列. 得=﹣1+(n ﹣1)(﹣1)=﹣n ,S n =﹣.

高中数学必修5《等差数列求和公式》教学设计

《等差数列求和公式》教学设计 知识与技能目标:掌握等差数列前n 项和公式,能较熟练应用等差数列前n 项和公式求和。 过程与方法目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 情感、态度与价值观目标:体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。教学重点与难点:等差数列前n 项和公式是重点。获得等差数列前n 项和公式推导的思路是难点。 教学策略:用游戏的方法调动学生的积极性教学用具:flash ,ppt课堂系统部分:整节课分为三个阶段: 问题呈现阶段探究发现阶段公式应用阶段 问题呈现1:有10袋金币,在这10袋中有一袋金币是假的,已知,真金币的重量是2两/个, 而假币的重量是1两/个。 问:只给一个电子秤,而且只能秤一次,找出哪一袋金币是假的? S = 10 + 9 + + 2 + 1 2S =11+11+ +11+11问题1:1+2+ +8+9+10=? S =1+2+ +9+102S =11?10=110110S ==552动画演示: 由刚刚的计算我们已经知道,从10袋里面拿出 的金币数共55个,如果这10袋都是真币,那么 电子秤显示的数据应该是: (两) 55?2= 110 而实际显示的的数字是:102(两) 可见比全是真币时少了8两 又因为,每个假币比真币轻1两 所以,可知在电子秤上有8个假币 那么,第8袋全是假币。 设计说明:

这道题的设计新颖之处在于摆脱了以往以高斯算法引出的模式,用一道智力题,激发学生的学习兴趣。 动画的演示更能较直观地表现出本题的思维方式 承上启下,探讨高斯算法. 问题呈现2: 泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国 皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大 理石砌建而成的主体建筑叫人心醉神迷,成为世界七 大奇迹之一。陵寝以宝石镶饰,图案之细致令人叫绝。 传说陵寝中有一个三角形图案,以相同大小的圆宝 石镶饰而成,共有100层(见左图),奢靡之程度, 可见一斑。 你知道这个图案一共花了多少宝石吗? 2:图案中,第1层到第21层一共有多少颗宝石? 也就是联想到“首尾配对”摆出几何图形, , 如何将图与高斯的逆序相加结合起来, 让 , 将两个三角形拼成平行四边形. (1+21) ?21s = 212 设计说明: ?源于历史,富有人文气息. ?图中算数,激发学习兴趣. 这一个问题旨在让学生初步形成数形结合的思想, 这是在高中数学学习中非常重要的思想方法. 借助图形理解逆序相加, 也为后面公式的推导打下基础. 探究发现: 问题3:如何求等差数列{a n }的前n 项和S n ?

数列求和方法及典型例题

数列求和方法及典型例题 1.基本数列的前n 项和 ⑴ 等差数列{}n a 的前n 项和:n S ???? ??????+?-++=n b n a d n n na a a n n 211)1(212)( ⑵ 等比数列{}n a 的前n 项和n S : ①当1=q 时,1na S n =;②当1≠q 时,q q a a q q a S n n n --=--=11)1(11; 2. 数列求和的常用方法:公式法;性质法;拆项分组法;裂项相消法;错位相减法;倒序相加法. 题型一 公式法、性质法求和 1.已知n S 为等比数列{}n a 的前n 项和,公比7,299==S q ,则=++++99963a a a a 2.等差数列{}n a 中,公差2 1= d ,且6099531=++++a a a a ,则=++++100321a a a a . [例1]求数列 ,,,,,)21(813412211n n +的前n 项和n S . 题型二 拆项分组法求和 [练2]在数列{} n a 中,已知a 1=2,a n+1=4a n -3n +1,n ∈*N . (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为S n ,求S n 。 [练].求数列{}2)12(-n 的前n 项和n S . [例].求和:) 1(1431321211+++?+?+?n n . 题型三 裂项相消法求和 [例].求和: n n +++++++++11341231121 . [例]求和:n +++++++++++ 321132112111 [练4]已知数列{}n a 满足()*1112,1N n a a a n n ∈+==+

等比数列的求和公式

等比数列的求和公式 一、 基本概念和公式 等比数列的求和公式: q q a n --1)1(1 (1≠q ) q q a a n --11(1≠q ) n S = 或 n S = 1na (q = 1) 即如果q 是否等于1不确定则需 要对q=1或1≠q 推导性质:如果等差数列由奇数项,则S 奇-S 偶=a 中 ;如果等差数列由奇数项,则S 偶-S 奇= d n 2 。 二、 例题精选: 例1:已知数列{n a }满足:43,911=+=+n n a a a ,求该数列的通项n a 。 例2:在等比数列{n a }中,36,463==S S ,则公比q = 。 - 例3:(1)等比数列{n a }中,91,762==S S ,则4S = ; (2)若126,128,66121===+-n n n S a a a a ,则n= 。

例4:正项的等比数列{n a }的前n 项和为80,其中数值最大的项为54,前2n 项的和为6560,求数列的首项1a 和公比q 。 例5:已知数列{n a }的前n 项和n S =1-n a ,(a 是不为0的常数),那么数列{n a }是? 例6:设等比数列{n a }的前n 项和为n S ,若9632S S S =+,求数列的公比q 。 例7:求和:)()3()2()1(32n a a a a n ----+-+-+-。 例8:在 n 1和n+1之间插入n 个正数,使这n+2个数成等比数列,求插入的n 个数的积。 例9:对于数列{n a },若----------,,,,,123121n n a a a a a a a 是首项为1,公比为31的等比数列,求:(1) n a ;(2) n a a a a +---+++321。

数列经典例题(裂项相消法)20392

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101100 2.数列,)1(1+=n n a n 其前n 项之和为,10 9 则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距 为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且622 3219,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1 { n b 的前n 项和. 4.正项数列}{n a 满足02)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足 ,,2 1 1*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令),(1 1*2 N n a b n n ∈-= 求数列}{n b 的前n 项和n T . 7.在数列}{n a 中n n a n a a 2 11)11(2,1,+==+. (Ⅰ)求}{n a 的通项公式;

涵盖所有高中数列求和的方法和典型例题

数列的求和 1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列的求和公式?????≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定要讨论) 2 . 公 式 法 : 222221 (1)(21) 1236 n k n n n k n =++=++++= ∑L 2 3 3 3 3 3 1 (1)1232n k n n k n =+?? =++++=????∑L 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常 见 拆 项公式 : 1 11)1(1+-=+n n n n ; 1111 ()(2)22 n n n n =-++ )1 21 121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=? (三)例题分析: 例1.求和:①321ΛΛ个 n n S 111111111++++= ②22222)1()1()1 (n n n x x x x x x S ++++ ++=Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。 解:①)110(9 1 10101011112-= ++++==k k k k a Λ321Λ个 ])101010[(9 1)]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ8110910]9)110(10[ 911--=--=+n n n n ②)21()21()21(224422+++++++++ =n n n x x x x x x S Λ n x x x x x x n n 2)1 11()(242242++++++++=ΛΛ (1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2) 1() 1)(1(21)1(1)1(2 2222222222+-+-=+--+--=+---

(推荐)高中数学必修五数列求和方法总结附经典例题和答案详解

数列专项之求和-4 (一)等差等比数列前n 项求和 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n n 项求和 ② 数列{}n a 为等差数列,数列{}n b 为等比数列,则数列{}n n a b ?的求和就要采用此法. ②将数列{}n n a b ?的每一项分别乘以{}n b 的公比,然后在错位相减,进而可得到数列 {}n n a b ?的前n 项和. 此法是在推导等比数列的前n 项和公式时所用的方法. 例23. 求和:1 32)12(7531--+???++++=n n x n x x x S )0(≠x 例24.求数列 ??????,2 2,,26,24,2232n n 前 n 项的和. 一般地,当数列的通项12()() n c a an b an b = ++ 12(,,,a b b c 为常数)时,往往可将n a 变成两项的差,采用裂项相消法求和. 可用待定系数法进行裂项: 设1 2 n a an b an b λ λ = - ++,通分整理后与原式相比较,根据对应项系数相等得 21 c b b λ= -,从而可得 122112 11 =().()()()c c an b an b b b an b an b -++-++ 常见的拆项公式有: ① 111(1)1n n n n =-++; ② 1111 ();(21)(21)22121 n n n n =--+-+

③ 1a b =-- ④11; m m m n n n C C C -+=- ⑤!(1)!!.n n n n ?=+- ⑥]) 2)(1(1 )1(1[21)2)(1(1++-+=+-n n n n n n n …… 例25. 求数列 ???++???++,1 1, ,3 21, 2 11n n 的前n 项和. 例26. 在数列{a n }中,1 1211++ ???++++=n n n n a n ,又12+?=n n n a a b ,求数列{b n }的前n 项的和. 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组. 例27. 求数列{n(n+1)(2n+1)}的前n 项和. 例28. 求数列的前n 项和:231 ,,71,41,1112-+???+++-n a a a n 如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。特征: 121...n n a a a a -+=+= 例29.求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++ 例30. 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 ⑸记住常见数列的前n 项和: ①(1) 123...;2 n n n +++++= ②2 135...(21);n n ++++-= ③22221 123...(1)(21).6 n n n n ++++= ++ ④2 33 3 3 )]1(2 1[321+=+ +++n n n

详解数列求和的方法+典型例题

详解数列求和的常用方法 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+ =+= 2、等比数列的前n 项和公式 ?? ? ??≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(2 1 3211+= +?+++== ∑=n n n k S n k n (2)、)12)(1(6 1 321222212++= +?+++== ∑=n n n n k S n k n (3)、23 3331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列 }{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1 -n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1 321+=+?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则1 2 321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ②

①式—②式:n n n nq q q q q S q -+?++++=--1 321)1( ?)1(11 132n n n nq q q q q q S -+?++++-= - ?)11(11n n n nq q q q S ----= ?q nq q q S n n n ----=1) 1(12 综上所述:????????? ≠≠----=+==)10(1) 1(1)1)(1(2 1 )0(02 q q q nq q q q n n q S n n n 且 解析:数列}{1 -n nq 是由数列{}n 与{}1-n q 对应项的积构成的, 此类型的才适应错位相减,(课本中的的等比数列前n 项和公式就是用这种方法推导出来的),但要注意应按以上三种 情况进行分类讨论,最后再综合成三种情况。 第三类:裂项相消法 这是分解与组合思想在数列求和中的具体应用。 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项)如: 1、乘积形式,如: (1)、1 1 1)1(1+- =+= n n n n a n (2)、)1 21 121(211)12)(12()2(2+--+=+-= n n n n n a n (3)、]) 2)(1(1 )1(1[21)2)(1(1++-+=++=n n n n n n n a n ( 4 ) 、 n n n n n n n n S n n n n n n n n n a 2 )1(1 1,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++= -则 2、根式形式,如:

相关主题
文本预览
相关文档 最新文档