当前位置:文档之家› 第四章差动放大器与集成运算放大器

第四章差动放大器与集成运算放大器

差分-运放-运算放大器

差分接法:差分放大电路(图3.8a.4)的输入信号是从集成运放的反相和同相输入端引入,如果反馈电阻RF等于输入端电阻R1 ,输出电压为同相输入电压减反相输入电压,这种电路也称作减法电路。 图3.8a.4 差分放大电路 差分放大器 如图所示,通过采用两个输入,该差分放大器产生的输出等于U1和U2之差乘以增益系数

运算放大器的单电源供电方法 大部分运算放大器要求双电源(正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。例如,LM324可以在、+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。 在一些交流信号放大电路中,也可以采用电源偏置电路,将静态直流输出电压降为电源电压的一半,采用单电源工作,但输入和输出信号都需要加交流耦合电容,利用单电源供电的反相放大器如图1(a)所示,其运放输出波形如图1(b)所示。 该电路的增益Avf=-RF/R1。R2=R3时,静态直流电压Vo(DC)=1/2Vcc。耦合电容Cl和C2的值由所需的低频响应和电路的输入阻抗(对于C1)或负载(对于C2)来确定。Cl及C2可由下式来确定:C1=1000/2πfoRl(μF);C2=1000/2πfoRL(μF),式中,fo是所要求最低输入频率。若R1、RL单位用kΩ,fO用Hz,则求得的C1、C2单位为μF。一般来说,R2=R3≈2RF。 图2是一种单电源加法运算放大器。该电路输出电压Vo=一RF(V1/Rl十V2/R2十V3/R3),若R1=R2=R3=RF,则Vo=一(V1十V2十V3)。需要说明的是,采用单电源供电是要付出一定代价的。它是个甲类放大器,在无信号输入时,损耗较大。

采用折叠式结构的两级全差分运算放大器的设计

目录 1. 设计指标 (1) 2. 运算放大器主体结构的选择 (1) 3. 共模反馈电路(CMFB)的选择 (1) 4. 运算放大器设计策略 (2) 5. 手工设计过程 (2) 5.1 运算放大器参数的确定 (2) 5.1.1 补偿电容Cc和调零电阻的确定 (2) 5.1.2 确定输入级尾电流I0的大小和M0的宽长比 (3) 5.1.3 确定M1和M2的宽长比 (3) 5.1.4确定M5、M6的宽长比 (3) 5.1.5 确定M7、M8、M9和M10宽长比 (3) 5.1.6 确定M3和M4宽长比 (3) 5.1.7 确定M11、M12、M13和M14的宽长比 (4) 5.1.8 确定偏置电压 (4) 5.2 CMFB参数的确定 (4) 6. HSPICE仿真 (5) 6.1 直流参数仿真 (5) 6.1.1共模输入电压范围(ICMR) (5) 6.1.2 输出电压范围测试 (6) 6.2 交流参数仿真 (6) 6.2.1 开环增益、增益带宽积、相位裕度、增益裕度的仿真 (6) 6.2.2 共模抑制比(CMRR)的仿真 (7) 6.2.3电源抑制比(PSRR)的仿真 (8) 6.2.4输出阻抗仿真 (9) 6.3瞬态参数仿真 (10) 6.3.1 转换速率(SR) (10) 6.3.2 输入正弦信号的仿真 (11) 7. 设计总结 (11) 附录(整体电路的网表文件) (12)

采用折叠式结构的两级全差分运算放大器的设计 1. 设计指标 5000/ 2.5 2.551010/21~22v DD SS L out dias A V V V V V V GB MHz C pF SR V s V V ICMR V P mW μ>==?== >=±=?≤的范围 2. 运算放大器主体结构的选择 图1 折叠式共源共栅两级运算放大器 运算放大器有很多种结构,按照不同的标准有不同的分类。从电路结构来看, 有套筒 式共源共栅、折叠式共源共栅、增益提高式和一般的两级运算放大器等。本设计采用的是如图1所示的折叠式共源共栅两级运算放大器,采用折叠式结构可以获得很高的共模输入电压范围,与套筒式的结构相比,可以获得更大的输出电压摆幅。 由于折叠式共源共栅放大器输出电压增益没有套筒式结构电压增益那么高,因此为了得到更高的增益,本设计采用了两级运放结构,第一级由M0-M10构成折叠式共源共栅结构,第二级由M11-M14构成共源级结构,既可以提高电压的增益,又可以获得比第一级更高的输出电压摆幅。 为了保证运放在闭环状态下能稳定的工作,本设计通过米勒补偿电容Cc 和调零电阻Rz 对运放进行补偿,提高相位裕量! 另外,本文设计的是全差分运算放大器,与单端输出的运算放大器相比较,可以获得更高的共模抑制比,避免镜像极点及输出电压摆幅。 3. 共模反馈电路(CMFB )的选择 由于采用的是高增益的全差分结构,输出共模电平对器件的特性和失配相当敏感,而且不能通过差动反馈来达到稳定,因此,必须增加共模反馈电路(CMFB )来检测两个输出端

差分运算放大器基本知识

一.差分信号的特点: 图1 差分信号 1.差分信号是一对幅度相同,相位相反的信号。差分信号会以一个共模信号 V ocm 为中心,如图1所示。差分信号包含差模信号和公模信号两个部分, 差模与公模的定义分别为:Vdiff=(V out+-V out- )/2,Vocm=(V out+ +V out- )/2。 2.差分信号的摆幅是单端信号的两倍。如图1,绿色表示的是单端信号的摆 幅,而蓝色表示的是差分信号的摆幅。所以在同样电源电压供电条件下,使用差分信号增大了系统的动态范围。 3.差分信号可以抑制共模噪声,提高系统的信噪比。In a differential system, keeping the transport wires as close as possible to one another makes the noise coupled into the conductors appear as a common-mode voltage. Noise that is common to the power supplies will also appear as a common-mode voltage. Since the differential amplifier rejects common-mode voltages, the system is more immune to external noise. 4.差分信号可以抑制偶次谐波,提高系统的总谐波失真性能。 Differential systems provide increased immunity to external noise, reduced even-order harmonics, and twice the dynamic range when compared to signal-ended system. 二.分析差分放大器电路 图2.差分放大器电路分析图

全差分运算放大器设计

全差分运算放大器设计 岳生生(200403020126) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11 1357 113 51 3 57 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=-+ 第二级增益 9 2 2 9112 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- + 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r = = ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

集成运算放大器练习题及答案

第十章 练习题 1. 集成运算放大器是: 答 ( ) (a) 直接耦合多级放大器 (b) 阻容耦合多级放大器 (c) 变压器耦合多级放大器 2. 集成运算放大器的共模抑制比越大, 表示该组件: 答 ( ) (a) 差模信号放大倍数越大; (b) 带负载能力越强; (c) 抑制零点漂移的能力越强 3. 电路如图10-1所示,R F2 引入的反馈为 : 答 ( ) (a) 串联电压负反馈 (b) 并联电压负反馈 (c) 串联电流负反馈 (d) 正反馈 图10-1 4. 比例运算电路如图10-2所示,该电路的输出电阻为: 答 ( ) (a) R F (b) R 1+R F (c) 零 图10-2 5. 电路如图10-3所示,能够实现u u O i =- 运算关系的电路是: 答 ( ) (a) 图1 (b) 图2 (c) 图3 图10-3 6. 电路如图10-4所示,则该电路为: 答 ( )

(a)加法运算电路; (b)反相积分运算电路; (c) 同相比例运算电路 图10-4 7. 电路如图10-5所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 O u i 1 u i2 图10-5 8. 电路如图10-6所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 u O u i 1u i2 图10-6 9. 电路如图10-7所示,该电路为: 答 ( ) (a)比例运算电路 (b) 比例—积分运算电路 (c) 微分运算电路 O u 图10-7 10. 电路如图10-8所示 ,输入电压u I V =1,电阻R R 1210==k Ω, 电位器R P 的阻值为20k Ω 。 试求:(1) 当R P 滑动点滑动到A 点时,u O =? (2) 当R P 滑动点滑动到B 点时,u O =? (3) 当R P 滑动点滑动到C 点(R P 的中点)时 , u O =?

全差分套筒式运算放大器设计

全差分套筒式运算放大器设计 1、设计内容 本设计基于经典的全差分套筒式结构设计了一个高增益运算放大器,采用镜像电流源作为偏置。为了获得更大的输出摆幅及差模增益,电路采用了共模反馈及二级放大电路。 本设计所用到的器件均采用SMIC 0.18μm的工艺库。 2、设计要求及工艺参数 本设计要实现的各项指标和相关的工艺参数如表1和表2所示:

3、放大器设计 3.1 全差分套筒式放大器拓扑结构与实际电路 图1 全差分套筒式放大器拓扑结构 图2 最终电路图

3.2 设计过程 在图1中,Mb1和M9组成的恒流源为差放提供恒流源偏置,且M1,M2完全一样,即两管子所有参数均相同。Mb2、M7和M8构成了镜像电流源,M5、M6和M7、M8构成了共源共栅电流源,M1、M2、M3、M4构成了共源共栅结构,可以显著提高输出阻抗,提高放大倍数(把M3的输出阻抗提高至原来的(gm3 + gmb3)ro2倍。但同时降低了输出电压摆幅。为了提高摆幅,控制增益,在套筒式差分放大器输出端增加二级放大。 本设计中功率上限为10mW,可以给一级放大电路分配3mA的电流。设计要求摆幅为3V,所以图1中M1、M3、M5、M9的过驱动电压之和不大于1.8-3/2=0.3V。我们可以平均分配每个管子的过驱动电压。根据漏电计算流公式(1)(考虑沟道长度调制效应),可以计算出每个管子的宽长比。 I D=1 2μn C ox W L (V GS?V TH)2(1+λV DS)(1) 其中,C ox等于ε/t ox,μn和t ox可以从工艺库中查找。 4、仿真结果 经过调试优化之后的仿真结果如以下各图所示: 图3 增益及相位裕度 从图中可以看出,本设计的低频增益达到了74.25dB,达到了预期要求。3dB 带宽为35kHz左右,比较小,可见设计还有改进的余地。 当CL为2pF时,相位裕度: PM=180°+∠βH(ω)=180°?125.5°=54.5° 电源电压为1.8V时,输出摆幅如下图所示,达到了3V。

第9章 集成运算放大器 习题参考答案

第9章 集成运算放大器 习题参考答案 9.1 理想运算放大器有哪些特点?什么是“虚断”和“虚短”? 解:开环电压放大倍数A u o →∞; 差模输入电阻r id →∞; 输出电阻r o →0; 共模抑制比K CMRR →∞。 -+≈u u 由于两个输入端间的电压为零,而又不是短路,故称为“虚短”; 0≈=-+i i 像这样,输入端相当于断路,而又不是断开,称为“虚断”。 9.2 电路如图9.2所示,求下列情况下,U O 和U i 的关系式。 (1)S 1和S 3闭合,S 2断开时; (2)S 1和S 2闭合,S 3断开时。 解:(1)这是反相比例运算电路,代入公式,得 i u u -=0 (2)根据叠加原理得i u u =0 。 9.3 如图9.2.2所示是用运算放大器测量电阻的原理电路,输出端接有满量程5V ,500mA 的 电压表。当电压表指示2.5V 时,试计算被测电阻R x 的阻值。 解:因为流过R x 和R 1的电流相等,即10V/ R 1=2.5 V/ R x ,所以计算得R x =500K Ω。 9.4 电路如图9.2.9所示,已知初始时刻电容两端的电压为零,C=1μF ,R =10K Ω。输入电 压波形如图9.2所示。画出输出电压u o 的波形,并求出u o 从0V 变化到-5V 需要多少 时间?

解:t RC t u 1000-=- =,波形如图: u o 从0V 变化到-5V 需要的时间 为-100t=-5V ,则t=0.05S 。 9.5 在图9.2.1的反相比例运算电路中,设R 1=10K Ω,R f =500 K Ω。 试求闭环电压放大倍数。若u i =10mV ,则u o 为多少? 解:5105001 -=Ω Ω- =- =K K R R A f uf mV mV u 501050-=?-=。 9.6 在图9.2.3的同相比例运算电路中,设R 1=2K Ω,R f =10 K Ω。 试求闭环电压放大倍数。若u i =10mV ,则u o 为多少? 解:6210111 =Ω Ω+ =+ =K K R R A f uf ,mV mV u 601060=?= 。 9.7 在图9.3中,已知R f = 2R 1,u i = -2V 。 试求输出电压u o 。 解:前一级是电压跟随器电路,后一级是反相比例运算电路,所以V u R R u i f 41 0=- = 。 9.8 图9.4是利用两个运算放大器组成的较高输入电阻的差动放大电路。 试求输出u o 与输入u i1 ,u i2的运算关系式。 解:前一级是同相比例运算电路,后一级是差动运算电路,所以10111i u K u ??? ??+= 。 9.9 积分运算电路如图9.2.5所示,R 1=10K Ω,其输出与输入的关系为?-=t u u d 100 S o ,求 C =?。 解:因为?- =t u RC u d 1S o ,所以1/RC=100,C=1μF 。

几个常用经典差动放大器应用电路详解资料

几个常用经典差动放大器应用电路详解 成德广营浏览数:1507发布日期:2016-10-10 10:48 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。关键词:CMRR差动放大器差分放大器 简介 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。 大学里的电子学课程说明了理想运算放大器的应用,包括反相和同相放大器,然后将它们进行组合,构建差动放大器。图 1 所示的经典四电阻差动放大器非常有用,教科书和讲座 40 多年来一直在介绍该器件。 图 1. 经典差动放大器 该放大器的传递函数为: 若R1 = R3 且R2 = R4,则公式 1 简化为:

这种简化可以在教科书中看到,但现实中无法这样做,因为电阻永远不可能完全相等。此外,基本电路在其他方面的改变可产生意想不到的行为。下列示例虽经过简化以显示出问题的本质,但来源于实际的应用问题。 CMRR 差动放大器的一项重要功能是抑制两路输入的共模信号。如图1 所示,假设V2 为 5 V,V1 为 3 V,则4V为共模输入。V2 比共模电压高 1 V,而V1 低 1 V。二者之差为 2 V,因此R2/R1的“理想”增益施加于2 V。如果电阻非理想,则共模电压的一部分将被差动放大器放大,并作为V1 和V2 之间的有效电压差出现在VOUT ,无法与真实信号相区别。差动放大器抑制这一部分电压的能力称为共模抑制(CMR)。该参数可以表示为比率的形式(CMRR),也可以转换为分贝(dB)。 在1991 年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定运算放大器为理想运算放大器,则共模抑制可以表示为: 其中,Ad为差动放大器的增益, t 为电阻容差。因此,在单位增益和 1%电阻情况下,CMRR 等于 50 V/V(或约为 34 dB);在 0.1%电阻情况下,CMRR等于 500 V/V(或约为 54 dB)-- 甚至假定运算放大器为理想器件,具有无限的共模抑制能力。若运算放大器的共模抑制能力足够高,则总CMRR受限于电阻匹配。某些低成本运算放大器具有 60 dB至 70 dB的最小CMRR,使计算更为复杂。 低容差电阻 第一个次优设计如图 2 所示。该设计为采用OP291 的低端电流检测应用。R1 至R4 为分立式 0.5%电阻。由Pallás-Areny文章中的公式可知,最佳CMR为 64 dB.幸运的是,共模电压离接地很近,因此CMR并非该应用中主要误差源。具有 1%容差的电流检测电阻会产生 1%误差,但该初始容差可以校准或调整。然而,由于工作范围超过 80°C,因此必须考虑电阻的温度系数。

差分运放运算放大器

图3.8a.4 差分放大电路 差分放大器 如图所示,通过采用两个输入,该差分放大器产生的输出等于U1和U2之差乘以增益系数 运算放大器的单电源供电方法 大部分运算放大器要求双电源(正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。例如,LM324可以在、+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。 在一些交流信号放大电路中,也可以采用电源偏置电路,将静态直流输出电压降为电源电压的一半,采用单电源工作,但输入和输出信号都需要加交流耦合电容,利用单电源供电的反相放大器如图1(a)所示,其运放输出波形如图1(b)所示。 该电路的增益Avf=-RF/R1。R2=R3时,静态直流电压Vo(DC)=1/2Vcc。耦合电容Cl和C2的值由所需的低频响应和电路的输入阻抗(对于C1)或负载(对于C2)来确定。Cl及C2可由下式来确定:C1=1000/2πfoRl(μF);C2=1000/2πfoRL(μF),式中,fo是所要求最低输入频率。若R1、RL单位用kΩ,fO用Hz,则求得的C1、C2单位为μF。一般来说,R2=R3≈2RF。 图2是一种单电源加法运算放大器。该电路输出电压Vo=一RF(V1/Rl十V2/R2十V3/R3),若R1=R2=R3=RF,则Vo=一(V1十V2十V3)。需要说明的是,采用单电源供电是要付出一定代价的。它是个甲类放大器,在无信号输入时,损耗较大。 思考题(1)图3是一种增益为10、输入阻抗为10kΩ、低频响应近似为30Hz、驱动负载为1kΩ的单电源反相放大器电路。该电路的不失真输入电压的峰—峰值是多少呢?(提示:一般运算放大器的典型输入、输

第四章集成运算放大器解析

电子电路基础习题册答案(第三版)全国中等职业技术第四章集成运算 放大器 2012-01-22 14:15:52| 分类:电子电路习题交流| 标签:|字号大中小订阅全国中等职业技术(电子类)专业通用教材、第四章一、二、三、四、五节习题答案 第四章集成运算放大器的应用 §4-1 集成运放的主要参数和工作点 1、理想集成运放的开环差模电压放大倍数为Aud=∞,共模抑制比为K CMR= ∞,开环差模输 入电阻为ri= ∞,差模输出电阻为r0=0 ,频带宽度为Fbw=∞。 2、集成运放根据用途不同,可分为通用型、高输入阻抗型、高精度型和低功 耗型等。 3、集成运放的应用主要分为线性区和非线性区在分析电路工作原理时,都可以当作理想运 放对待。 4、集成运放在线性应用时工作在负反馈状态,这时输出电压与差模输入电压满足关系;在 非线性应用时工作在开环或正反馈状态,这时输出电压只有两种情况; +U0m 或-U0m 。 5、理想集成运放工作在线性区的两个特点:(1)up=uN ,净输入电压为零这一特性成为虚短, (2)ip=iN,净输入电流为零这一特性称为虚断。 6、在图4-1-1理想运放中,设Ui=25v,R=1.5KΩ,U0=-0.67V,则流过二极管的电流为10 mA ,二极 管正向压降为0.67 v。 7、在图4-1-2所示电路中,集成运放是理想的,稳压管的稳压值为7.5V,Rf=2R1则U0= -15 V。

二、判断题 1、反相输入比例运算放大器是电压串联负反馈。(×) 2、同相输入比例运算放大器是电压并联正反馈。(×) 3、同相输入比例运算放大器的闭环电压放大倍数一定大于或等于1。(√) 4、电压比较器“虚断”的概念不再成立,“虚短”的概念依然成立。(√) 5、理想集成运放线性应用时,其输入端存在着“虚断”和“虚短”的特点。(√) 6、反相输入比例运算器中,当Rf=R1,它就成了跟随器。(×) 7、同相输入比例运算器中,当Rf=∞,R1=0,它就成了跟随器。(×) 三、选择题 1、反比例运算电路的反馈类型是(B )。 A.电压串联负反馈 B.电压并联负反馈 C.电流串联负反馈 2、通向比例运算电路的反馈类型是(A )。 A.电压串联负反馈 B.电压并联负反馈 C.电压串联正反馈 3、在图4-1-3所示电路中,设集成运放是理想的,则电路存在如下关系(B )。 A.uN=0 B.un=ui C.up=ui-i1R2 4、图4-1-4所示的集成运算放大电路中,输出电压u0等于(A )。 A.3ui B.-2ui C.-3ui D.2ui 5、图4-1-5所示的集成运算放大电路中,输出电压u0等于(B )。 A.-ui B. ui C.3ui D.-2ui

全差分运算放大器设计

全差分运算放大器设计 岳生生(0126) 一、设计指标 以上华CMOS 工艺设计一个全差分运算放大器,设计指标如下: 直流增益:>80dB 单位增益带宽:>50MHz 负载电容:=5pF 相位裕量:>60度 增益裕量:>12dB 差分压摆率:>200V/us 共模电压:(VDD=5V) 差分输入摆幅:>±4V 运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的 ,DSAT N V 之和小于,输出端的所有PMOS 管的 ,DSAT P V 之和也必须小于。对于单 级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 性能指标分析 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 1 1 1 3 5 7 1 1 3 5 1 3 5 7 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=- +P 第二级增益9 2 2 9 11 2 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=-+P 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r == ≥++ 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR : 1)、输入级: max 1max |2| Cc out DS C C d SR dt I v I C C = = = 单位增益带宽1m u C g C ω= ,可以得到 1m C u g C ω =

第3章.集成运算放大器及其应用习题解答

第3章集成运算放大器及其应用习题解答 3.1 差动放大电路的工作原理是什么? 解:最简单的差动放大电路由两个完全对称的单管放大电路拼接而成。由于电路的对称性,输出信号电压采用从两管集电极间提取的双端输出方式,对于无论什么原因引起的零点漂移,均能有效地抑制。 在电路的两个输入端输入大小相等、极性相同的信号电压,由于电路的对称性,两管集电极电位的大小、方向变化相同,输出电压为零(双端输出)。说明差动放大电路对共模信号无放大作用。共模信号的电压放大倍数为零。 在电路的两个输入端输入大小相等、极性相反的信号电压,由于电路的对称性,差动放大电路的输出电压为两管各自输出电压变化量的两倍。 3.2 集成运算放大器的基本组成有哪些? 解:从电路的总体结构上看,集成运算放大器基本上都由输入级、中间放大级、输出级和偏置电路四个部分组成。 3.3 集成运算放大器的主要参数有哪些? 解:1.开环差摸电压增益: 2.输入失调电压U io: 3.输入失调电流I io: 4.差摸输入电阻r id和输出电阻r o: 5.共模抑制比K CMR: 6.最大差模输入电压U idmax: 7.最大共模输入电压U icmax: 8.静态功耗P co: 9.最大输出电压U opp: 3.4 理想集成运算放大器的主要条件是什么? 解:(1)开环差模电压增益A ud=∞; (2)共模抑制比K CMR=∞; (3)开环差模输入电阻r id=∞; (4)开环共模输入电阻r ic=∞; (5)开环输出电阻r o=0。 3.5 通用型集成运放一般由几部分电路组成,每一部分常采用哪种基本电路?通常对每

一部分性能的要求分别是什么? 解:(1)输入级:一般采用具有恒流源的双输入端的差分放大电路,主要作用是减小放大电路的零点漂移、提高输入阻抗。 (2)中间放大级:一般采用多级放大电路,主要作用是放大电压,使整个集成运算放大器有足够高的电压放大倍数。 (3)输出级:一般采用射级输出器或互补对称电路,其目的是实现与负载的匹配,使电路有较大的输出功率和较强的带负载能力。 (4)偏置电路:是为上述各级电路提供稳定合适的偏置电流,稳定各级的静态工作点,一般由各种恒流源电路构成。 3.6 已知一个集成运放的开环差模增益A od为100dB,最大输出电压峰-峰值U opp=±14V,分别计算差模输入电压u I(即u+-u-)为10μV、100μV、1mV、1V和-10μV、-100μV、-1mV、-1V时的输出电压u o。 解:因为U=A od u I,A od=100dB即A od=105,所以, 当u I(即u+-u-)为10μV、100μV、-10μV、-100μV时 U=A od u I分别为1V、10V、-1V、-10V。 当u I(即u+-u-)为1mV、1V时,U=A od u I为最大值14V。 当u I(即u+-u-)为-1mV、-1V时,U=A od u I为负最大值-14V。 3.7 电路如图3-32所示,具有理想的对称性。设各管β均相同。 (1)说明电路中各晶体管的作用; (2)若输入差模电压为(u i1-u i2),则由此产生的差模电流为△i o,求解电路电流放大倍数A i的近似表达式。 图3-32 习题3.7的图 解:(1)T1和T2组成复合放大管,T3和T4也是组成复合放大管,具有放大差模信号和抑制共模信号的作用。T5和T6组成恒流源电路,具有恒流作用。

第一章 集成运算放大器测试题

第一章 集成运算放大器自测题 一、填空题 二、分析计算题 1、某运算放大器电路如图1所示,运算放大器为理想的,且电阻值R 为已知,设输入信号为s v 。试问: (1)当输入信号s v 仅接在端口A 处,端口B 接地,试求该放大器的电压增益 s o v v G = ,从A 点看进去的输入阻抗i R ,输出阻抗o R 分别为多少? (2)当输入信号s v 仅接在端口B 处,端口A 接地,试求该放大器的电压增益 s o v v G = ,从B 点看进去的输入阻抗i R ,输出阻抗o R 分别为多少? (3)当输入信号s v 跨接在端口A 、B 处时,且要求s v 信号A 端为正,B 端为负,

试求该放大器的电压增益s o v v G =,从A 、B 点看进去的输入阻抗i R ,输出阻抗o R 分别为多少? R 20o v 2、在图2所示的运算放大器电路中,假设运算放大器试理想的,并且各电阻为已知值。 (1)试写出输出函数的表达式(要求有过程)。 (2)试求图中所示的输入阻抗i R 和输出阻抗o R 。 1 v 2 v o 3、米勒积分器电路如图3(a )所示,且初始输入电压和输出电压均为0,时间常数为mS RC 1==τ 。若输入的波形如图3(b )所示,试画出输出的波形(要求坐标对齐并标明数值)。 o v 图3 i v 4、图4所示的电路为浮动负载(两个连接端都没接地的负载提供电压),这在电 源电路中有很好的应用性,假设运算放大器是理想的。 (1)当节点A 输入峰峰值为1V 的正弦波i v 时,试画出节点B 、节点C 对地时

的电压波形,并画出o v 的波形。 (2)电压增益 i o v v 为多少? C B 图4 i v 5、图5为实用的单电源供电的自举式同相交流电压放大器电路,假设运算放大器是理想的。已知Ω===K R R R 10431,Ω=K R 502,Ω=M R 15。 F C C C μ10321===,V V CC 15+=。问: (1)放大器的各信号端口的直流电位为多少?电容321C C C 、、的作用是什么? (2)交流放大倍数 i o v v 为多少,输入阻抗 i R 为多大? o 6、在图6所示的电路中,比较器的输出电压的最大值为V 10±。试画出个电路 的电压传输特性曲线。 1 o v 图6 2 o v (a) (c) v 2(b) v 33 o i v

差动放大电路与集成运算放大器 习题

第三章差动放大电路与集成运算放大器 3.1 选择填空 1.使用差动放大电路的目的是为了提高()。 A输入电阻B电压放大倍数C抑制零点漂移能力D电流放大倍数 2.差动放大器抑制零点漂移的效果取决于()。 A两个晶体管的静态工作点B两个晶体管的对称程度 C各个晶体管的零点漂移D两个晶体管的放大倍数 3.差模输入信号是两个输入信号的(),共模输入信号是两个输入信号的()。 A 和 B 差 C 比值 D 平均值 4.电路的差模放大倍数越大表示(),共模抑制比越大表示()。 A有用信号的放大倍数越大B共模信号的放大倍数越大 C抑制共模信号和温漂的能力越强 5.差动放大电路的作用是()。 A放大差模B放大共模C抑制共模D抑制共模,又放大差模 6.差动放大电路由双端输入变为单端输入,差模电压增益是()。 A增加一倍B为双端输入的1/2 C不变D不定 7.差动放大电路中当U I1=300mV,U I2=-200mV,分解为共模输入信号U IC=()mV,差模输入信号U ID=()mV。 A500 B100 C250 D50 8.在相同条件下,阻容耦合放大电路的零点漂移()。 A比直接耦合电路大B比直接耦合电路小C与直接耦合电路相同 9.差动放大电路由双端输出改为单端输出,共模抑制比K CMRR减小的原因是()。 A A UD不变,A UC增大 B A UD减小,A UC不变 C A UD减小,A UC增大 D A UD增大,A UC减小 3.2简答题 1.直接耦合放大电路能放大交流信号吗?直接耦合放大电路和阻容耦合放大电路各有什么优缺点? 2.什么叫零点漂移?产生零点漂移的主要原因是什么?如何抑制零点漂移?在阻容耦合放大电路中是否存在零点漂移? 3.有甲已二个直接耦合放大电路,甲电路的Au=100,乙电路的Au=50。当外界温度变化了20℃时,甲电路的输出电压漂移了10V,乙电路的输出电压漂移了6V,向哪个电路的温度漂移参数小?其数值是多少? 4.解释下列术语的含义:差模信号,共模信号,差模电压放大倍数,共模电压放大倍数,共模抑制比。 5.差动式放大电路为什么能抑制零点漂移?单端输出和双端输出时,它们抑制零点漂移的原理是否一样?为什么? 6.共模抑制比是如何定义的?为什么说共模抑制比越大电路抗共模干扰能力就越强?7.长尾电路中的公共射极电阻Re,它对差模信号和共模信号各有什么影响?用恒流源取代Re有什么好处? 8.集成运算放大器的内部电路一般由哪几个主要部分组成?各部分的作用是什么? 3.3双端输出的差动式放大电路如图3.1所示,已知Rc1= Rc2=3KΩ,Re=5.1KΩ,每个三极管的U BE=0.7V,β=50,r be=2kΩ,Rs1=Rs2=02.KΩ

模电第四章答案

第4章 集成运算放大电路 自测题 一、选择合适答案填入空内。 (1)集成运放电路采用直接耦合方式是因为( C )。 A.可获得很大的放大倍数 B.可使温漂小 C.集成工艺难于制造大容量电容 (2)通用型集成运放适用于放大( B )。 A.高频信号 B.低频信号 C.任何频率信号 (3)集成运放制造工艺使得同类半导体管的( C )。 A.指标参数准确 B.参数不受温度影响 C.参数一直性好 (4)集成运放的输入级采用差分放大电路是因为可以( A )。 A.减小温漂 B.增大放大倍数 C.提高输入电阻 (5)为增大电压放大倍数,集成运放的中间级多采用( A )。 A.共射放大电路 B.共集放大电路 C.共基放大电路 二、判断下列说法是否正确,用“√”和“×”表示判断结果。 (1)运放的输入失调电压U IO 是两输入端电位之差。( × ) (2)运放的输入失调电流I IO 是两输入端电流之差。( √ ) (3)运放的共模抑制比c d CMR A A K = 。( √ ) (4)有源负载可以增大放大电路的输出电流。( √ ) (5)在输入信号作用时,偏置电路改变了各放大管的动态电流。( × ) 三、电路如图T4.3 所示,已知β1=β2=β3= 100 。各管的U BE 均为0.7V , 试求I C 2的值。 解:分析估算如下: 21 100CC BE BE R V U U I A R μ--= = 00202211B B B B I I I I ββ ββ ++= =++; 020 2( )1R B B B I I I I β βββ+=+=++ 图T4.3 22021C B B I I I β ββ β +==?+。比较上两式,得 2(2) 1002(1) C R R I I I A ββμβββ+= ?≈=+++ 四、电路如图T4.4所示。

全差分运算放大器设计说明

全差分运算放大器设计 岳生生(6) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的 ,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11135711 3 5 1 3 5 7 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=- +P 第二级增益 9 2 291129 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- +P 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r == ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

半导体器件(二极管三极管场效应管差动放大电路集成运放)解读

半导体基本知识和 半导体器件(二极管、三极管、场效应管、集成运放) 一、选择题: 1、PN结外加正向电压时,其空间电荷区()。 A.不变 B.变宽 C.变窄 D.无法确定 2、PN结外反正向电压时,其空间电荷区()。 A.不变 B.变宽 C.变窄 D.无法确定 3、当环境温度升高时,二极管的反向饱和电流I s将增大,是因为此时PN结内部的() A. 多数载流子浓度增大 B.少数载流子浓度增大 C.多数载流子浓度减小 D.少数载流子浓度减小 4、PN结反向向偏置时,其内电场被()。 A.削弱 B.增强 C.不变 D.不确定 5、在绝对零度(0K)和没有外界激发时,本征半导体中( ) 载流子。 A.有 B.没有 C.少数 D.多数 6、集成运放的输入级采用差分放大电路是因为可以()。 A.减小温漂B. 增大放大倍数 C. 提高输入电阻 D. 减小输出电阻 7、以下所列器件中,()器件不是工作在反偏状态的。 A、光电二极管 B、发光二极管 C、变容二极管 D、稳压管 8、当晶体管工作在放大区时,()。 A. 发射结和集电结均反偏 B.发射结正偏,集电结反偏 C.发射结和集电结均正偏 D.发射结反偏,集电结正偏 9、稳压二极管稳压时,其工作在( ), A.正向导通区B.反向截止区C.反向击穿区 D.不确定 10、抑制温漂(零漂)最常用的方法是采用()电路。 A.差放 B.正弦 C.数字 D.功率放大 11、在某放大电路中,测得三极管三个电极的静态电位分别为0 V,-10 V,-9.3 V,则这只三极管是()。 A.NPN 型硅管B.NPN 型锗管Array C.PNP 型硅管 D.PNP 型锗管 12、某场效应管的转移特性如右图所示,该管为()。 A.P沟道增强型MOS管 B.P沟道结型场效应管 C.N沟道增强型MOS管 D.N沟道耗尽型MOS管 13、通用型集成运放的输入级采用差动放大电路,这是因为它的()。 A.输入电阻高 B.输出电阻低 C.共模抑制比大 D.电压放大倍数大 14、如右图所示复合管,已知V1的β1 = 30,V2的β2 = 50,则复合后的β约为()。

第4章集成运算放大器习题解答

页脚 . 第四章习题参考答案 4-1 什么叫“虚短”和“虚断”? 答 虚短:由于理想集成运放的开环电压放大倍数无穷大,使得两输入端之间的电压近似相等,即-+≈u u 。 虚断:由于理想集成运放的开环输入电阻无穷大,流入理想集成运放的两个输入端的电流近似等于零,即0≈=-+i i 。 4-2 理想运放工作在线性区和非线性区时各有什么特点?分析方法有何不同? 答 理想运放工作在线性区,通常输出与输入之间引入深度负反馈,输入电压与输出电压成线性关系,且这种线性关系只取决于外部电路的连接,而与运放本身的参数没有直接关系。此时,利用运放“虚短”和“虚断”的特点分析电路。 理想运放工作在非线性去(饱和区),放大器通常处于开环状态,两个输入端之间只要有很小的差值电压,输出电压就接近正、负电压饱和值,此时,运放仍具有“虚断”的特点。 4-3 要使运算放大器工作在线性区,为什么通常要引入负反馈? 答 由于理想运放开环电压放大倍数∞=uo A ,只有引入深度负反馈,才能使闭环电压放大倍数F A 1 u = ,保证输出电压与输入电压成线性关系,即运放工作在线性区。 4-4 已知F007运算放大器的开环放大倍数dB A uo 100=,差模输入电阻Ω=M r id 2,最大输出电压V U sat o 12)(±=。为了保证工作在线性区,试求:(1)+u 和-u 的最大允许值;(2)输入端电流的最大允许值。 解 (1)由运放的传输特性 5o uo 1012=== + +u u u A 则V 102.1101245 --+?== =u u (2)输入端电流的最大允许值为 A 10610 2102.1116 4id --+?=??==r u I 4-5 图4-29所示电路,设集成运放为理想元件。试计算电路的输出电压o u 和平衡电阻R 的值。

相关主题
文本预览
相关文档 最新文档