当前位置:文档之家› 门电路大全

门电路大全

门电路大全
门电路大全

门电路大全

CD4000 双3输入端或非门

CD4001 四2输入端或非门*

CD4002 双4输入端或非门

CD4007 双互补对加反向器

CD4009 六反向缓冲/变换器

CD4011 四2输入端与非门*

CD4012 双4输入端与非门

CD4023 三2输入端与非门

CD4025 三2输入端与非门

CD4030 四2输入端异或门

CD4041 四同相/反向缓冲器

CD4048 8输入端可扩展多功能门*

CD4049 六反相缓冲/变换器*

CD4050 六同相缓冲/变换器

CD4068 8输入端与门/与非门

CD4069 六反相器*

CD4070 四2输入异或门

CD4071 四2输入端或门*

CD4072 双4输入端或门

CD4073 三3输入端与门

CD4075 三3输入端或门

CD4077 四异或非门

CD4078 8输入端与非门/或门

CD4081 四2输入端与门*

CD4082 双4输入端与非门

CD4085 双2路2输入端与或非门

CD4086 四2输入端可扩展与或非门

CD40104 TTL至高电平CMOS转换器

CD40106 六施密特触发器

CD40107 双2输入端与非缓冲/驱动器

CD40109 四低-高电平位移器

CD4501 三多输入门

CD4052 六反向缓冲器(三态输出)*

CD4503 六同相缓冲器(三态输出)

CD4504 6TTL或CMOS同级移相器

CD4506 双可扩展AIO门

CD4507 四异或门

CD4519 4位与/或选择器

CD4530 双5输入多数逻辑门

CD4572 四反向器加二输入或非门加二输入与非门

CD4599 8位可寻址锁存器*

********************************************************************** 触发器

CD4013 双D触发器*

CD4027 双JK触发器*

CD4042 四锁存D型触发器*

CD4043 四三态R-S锁存触发器(“1”触发)*

CD4044 四三态R-S锁存触发器(“0”触发)

CD4047 单稳态触发/无稳多谐振荡器

CD4093 四2输入端施密特触发器*

CD4098 双单稳态触发器*

CD4099 8位可寻址锁存器*

CD4508 双4位锁存触发器

CD4528 双单稳态触发器(与CD4098管脚相同,只是3、13脚复位开关为高电平有效)* CD4538 精密单稳多谐振荡器

CD4583 双施密特触发器

CD4584 六施密特触发器

CD4599 8位可寻址锁存器

**********************************************************************

计数器

CD4017 十进制计数/分配器*

CD4020 14位二进制串行计数器/分频器*

CD4022 八进制计数/分配器*

CD4024 7位二进制串行计数器/分频器

CD4029 可预置数可逆计数器(4位二进制或BCD码)*

CD4040 12二进制串行计数器/分频器*

CD4045 12位计数/缓冲器

CD4059 四十进制N分频器

CD4060 14二进制串行计数器/分频器和振荡器*

CD4095 3输入端J-K触发器(相同J-K输入端)

CD4096 3输入端J-K触发器(相反和相同J-K输入端)

CD40110 十进制加/减计数/锁存/7端译码/驱动器

CD40160 可预置数BCD加计数器(异步复位)*

CD40161 可预置数4位二进制加计数器(R非=0时,CP上脉冲复位)(异步复位)* CD40162 可预置数BCD加计数器(同步复位)*

CD40163 可预置数4位二进制加计数器(R非=0时,CP上脉冲复位)(同步复位)* CD40192 可预置数BCD加/减计数器*

CD40193 可预置数4位二进制加/减计数器*

CD4510 可预置BCD加/减计数器*

CD4516 可预置4位二进制加/减计数器*

CD4518 双BCD同步加计数器*

CD4520 双同步4位二进制加计数器*

CD4521 24级频率分频器

CD4522 可预置数BCD同步1/N加计数器*

CD4526 可预置数4位二进制同步1/N加计数器*

CD4534 实时与译码计数器

CD4536 可编程定时器

CD4541 可编程定时器

CD4553 3数字BCD计数器

CD4568 相位比较器/可编程计数器

CD4569 双可预置BCD/二进制计数器

CD4597 8位总线相容计数/锁存器

CD4598 8位总线相容可建地址锁存器

**********************************************************************

译码器

CD4511 BCD锁存/7段译码器/驱动器*

CD4514 4位锁存/4-16线译码器

CD4515 4位锁存/4-16线译码器(负逻辑输出)

CD4026 十进制计数/7段译码器(适用于时钟计时电路,利用C端的功能可方便的实现60或12分频)

CD4028 BCD-十进制译码器*

CD4033 十进制计数/7段译码器*

CD4054 4位液晶显示驱动

CD4055 BCD-7段码/液晶驱动

CD4056 BCD-7段码/驱动

CD40102 8位可预置同步减法计时器(BCD)

CD40103 8位可预置同步减法计时器(二进制)

CD4513 BCD-锁存/7端译码/驱动器(无效“0”不显)

CD4514 4位锁存/4线—16线译码器(输出“1”)*

CD4515 4位锁存/4线—16线译码器(输出“0”)*

CD4543 BCD-锁存/7段译码/驱动器

CD4544 BCD-锁存/7段译码/驱动器——波动闭锁

CD4547 BCD-锁存/7段译码/大电流驱动器

CD4555 双二进制4选1译码器/分离器(输出“1”)*

CD4556 双二进制4选1译码器/分离器(输出“0”)*

CD4558 BCD-7段译码

CD4555 双二进制4选1译码器/分离器

CD4556 双二进制4选1译码器/分离器(负逻辑输出)

**********************************************************************

移位寄存器

CD4006 18位串入—串出移位寄存器

CD4014 8位串入/并入—串出移位寄存器*

CD4015 双4位串入—并出移位寄存器*

CD4021 8位串入/并入—串出移位寄存器*

CD4031 64位移位寄存器

CD4034 8位通用总线寄存器

CD4035 4位串入/并入—串出/并出移位寄存器*

CD4076 4线D型寄存器

CD4094 8位移位/存储总线寄存器

CD40100 32位左移/右移

CD40105 先进先出寄存器

CD40108 4×4多端口寄存器阵列

CD40194 4位并入/串入—并出/串出移位寄存器(左移/右移)*

CD40195 4位并入/串入—并出/串出移位寄存器*

CD4517 64位移位寄存器

CD45490 连续的近似值寄存器

CD4562 128位静态移位寄存器

CD4580 4×4多端寄存器

********************************************************************** 模拟开关和数据选择器

CD4016 四联双向开关

CD4019 四与或选择器【Qn=(An*Ka)+(Bn*Kb)】*

CD4051 单八路模拟开关*

CD4052 双4路模拟开关

CD4053 三2路模拟开关

CD4066 四双向模拟开关*

CD4067 单十六路模拟开关*

CD4097 双八路模拟开关

CD40257 四2选1数据选择器

CD4512 八路数据选择器*

CD4529 双四路/单八路模拟开关

CD4539 双四路数据选择器

CD4551 四2通道模拟多路传输

********************************************************************** 运算电路

CD4008 4位超前进位全加器*

CD4019 四与或选择器【Qn=(An*Ka)+(Bn*Kb)】

CD4527 BCD比例乘法器

CD4032 三路串联加法器

CD4038 三路串联加法器(负逻辑)

CD4063 四位量级比较器

CD4070 四2输入异或门*

CD4585 4位数值比较器*

CD4089 4位二进制比例乘法器*

CD40101 9位奇偶发生器/校验器

CD4527 BCD比例乘法器*

CD4531 12位奇偶数

CD4559 逐次近似值码器

CD4560 “N”BCD加法器

CD4561 “9”求补器

CD4581 4位算术逻辑单元

CD4582 超前进位发生器

CD4585 4位数值比较器

********************************************************************** 存储器

CD4049 4字×8位随机存取存储器

CD4505 64×1位RAM

CD4537 256×1静态随机存取存储器

CD4552 256位RAM

********************************************************************** 特殊电路

CD4046 锁相环集成电路*

CD4532 8位优先编码器*

CD4500 工业控制单元

CD4566 工业时基发生器

CD4573 可预置运算放大器

CD4574 比较器、线性、双对双运放

CD4575 双/双预置运放/比较器

CD4597 8位总线相容计数/锁存器

CD4598 8位总线相容可建地址锁存器

MOS管及简单CMOS逻辑门电路原理图

MOS管及简单CMOS逻辑门电路原理图 现代单片机主要是采用CMOS工艺制成的。 1、MOS管 MOS管又分为两种类型:N型和P型。如下图所示: 以N型管为例,2端为控制端,称为“栅极”;3端通常接地,称为“源极”;源极电压记作Vss,1端接正电压,称为“漏极”,漏极电压记作VDD。要使1端与3端导通,栅极2上要加高电平。 对P型管,栅极、源极、漏极分别为5端、4端、6端。要使4 端与6端导通,栅极5要加低电平。 在CMOS工艺制成的逻辑器件或单片机中,N型管与P型管往往是成对出现的。同时出现的这两个CMOS管,任何时候,只要一只导通,另一只则不导通(即“截止”或“关断”),所以称为“互补型CMOS管”。 2、CMOS逻辑电平 高速CMOS电路的电源电压VDD通常为+5V;Vss接地,是0V。 高电平视为逻辑“1”,电平值的范围为:VDD的65%~VDD(或者~VDD)

低电平视作逻辑“0”,要求不超过VDD的35%或0~。 +~+应看作不确定电平。在硬件设计中要避免出现不确定电平。 近年来,随着亚微米技术的发展,单片机的电源呈下降趋势。低电源电压有助于降低功耗。VDD为的CMOS器件已大量使用。在便携式应用中,VDD为,甚至的单片机也已经出现。将来电源电压还会继续下降,降到,但低于VDD的35%的电平视为逻辑“0”,高于VDD的65%的电平视为逻辑“1”的规律仍然是适用的。 3、非门 非门(反向器)是最简单的门电路,由一对CMOS管组成。其工作原理如下:A端为高电平时,P型管截止,N型管导通,输出端C的电平与Vss保持一致,输出低电平;A端为低电平时,P型管导通,N型管截止,输出端C的电平与V一致,输出高电平。 4、与非门

门电路

实验一门电路的电特性 一、实验目的 1、在理解 CMOS 门电路的工作原理和电特性基础上,学习并掌握其电特性主要参数的测试方法。 2、在理解 TTL 门电路的工作原理和电特性基础上,学习并掌握其电特性主要参数的测试方法。 3、学习查阅集成电路芯片数据手册。 4、学习并掌握数字集成电路的正确使用方法。 二、预习任务 1. 回顾上学期的“常用电子仪器使用”以及实验中用到的测试方法。回答下列问题: (1)如何调整函数信号发生器,使其输出100Hz、0~5V的锯齿波(三角波)信号? 答:首先调输出模式至三角波,再调节幅度调节按钮,使显示屏幅值处显示为 5Vp-p,为了保证输出的三角波是0~5V,则还需设置偏置电压,调节偏置/最小值按钮,将最小值设置为0V,这样就可以输出0~5V的三角波;按频率范围选择按钮,将屏幕上频率调为读数为100Hz。若需要输出锯齿波,则要调节占空比,以获得想要的波形。 (2)用示波器观测到如图1所示的a、b两个信号,假设此时示波器的垂直定标(灵敏度)旋钮位置分别为1V/格和2V/格,请写出它们的最高值和最低值。 答:第一幅图最高值为 2V,最低值为-2V; 第二幅图最高值为 4V,最低值为 0。 (3)电压传输特性曲线是指输出电压随输入电压变化的曲线。示波器默认的时基模式为“标准(YT)模式”显示的是电压随时间变化的波形,若要观测电压传输特性曲线,需改变示波器上哪些菜单或旋钮? 答:为观测电压传输特性曲线,需要将两相关的信号输入示波器的两个输入端,并将模式调为Y-X模式。本次实验须将输入电压信号与输出电压信号分别作为X与Y,即可观测电压传输特性曲线。在Y-X工作模式下,示波器上显示的图样为以通道一的测量值(输入电压)为横坐标,通道二的测量值(输出电压)为

电路基础分析知识点整理

电路分析基础 1.(1)实际正方向:规定为从高电位指向低电位。 (2)参考正方向:任意假定的方向。 注意:必须指定电压参考方向,这样电压的正值或负值才有意义。 电压和电位的关系:U ab=V a-V b 2.电动势和电位一样属于一种势能,它能够将低电位的正电荷推向高电位,如同水路中的水泵能够把低处的水抽到高处的作用一样。电动势在电路分析中也是一个有方向的物理量,其方向规定由电源负极指向电源正极,即电位升高的方向。 电压、电位和电动势的区别:电压和电位是衡量电场力作功本领的物理量,电动势则是衡量电源力作功本领的物理量;电路中两点间电压的大小只取决于两点间电位的差值,是绝对的量;电位是相对的量,其高低正负取决于参考点;电动势只存在于电源内部。 3. 参考方向 (1)分析电路前应选定电压电流的参考方向,并标在图中; (2)参考方向一经选定,在计算过程中不得任意改变。参考方向是列写方程式的需要,是待求值的假定方向而不是真实方向,因此不必追求它们的物理实质是否合理。 (3)电阻(或阻抗)一般选取关联参考方向,独立源上一般选取非关联参考方向。 (4) 参考方向也称为假定正方向,以后讨论均在参考方向下进行,实际方向由计算结果确定。 (5)在分析、计算电路的过程中,出现“正、负”、“加、减”及“相同、相反”这几个名词概念时,切不可把它们混为一谈。 4. 电路分析中引入参考方向的目的是为分析和计算电路提供方便和依据。应用参考方向时,“正、负”是指在参考方向下,电压和电流的数值前面的正、负号,若参考方向下一个电流为“-2A”,说明它的实际方向与参考方向相反,参考方向下一个电压为“+20V”,说明其实际方向与参考方向一致;“加、减”指参考方向下列写电路方程式时,各项前面的正、负符号;“相同、相反”则是指电压、电流是否为关联参考方向,“相同”是指电压、电流参考方向关联,“相反”指的是电压、电流参考方向非关联。 5.基尔霍夫定律 基尔霍夫定律包括结点电流定律(KCL)和回路电压(KVL)两个定律,是集总电路必须遵循的普遍规律。 中学阶段我们学习过欧姆定律(VAR),它阐明了线性电阻元件上电压、电流之间的相互约束关系,明确了元件特性只取决于元件本身而与电路的连接方式无关这一基本规律。 基尔霍夫将物理学中的“液体流动的连续性”和“能量守恒定律”用于电路中,总结出了他的第一定律(KCL);根据“电位的单值性原理”又创建了他的第二定律(KVL),从而解决了电路结构上整体的规律,具有普遍性。基尔霍夫两定律和欧姆定律合称为电路的三大基本定律。 6.几个常用的电路名词 1.支路:电路中流过同一电流的几个元件串联的分支。(m) 2.结点:三条或三条以上支路的汇集点(连接点)。(n) 3.回路:由支路构成的、电路中的任意闭合路径。(l) 4.网孔:指不包含任何支路的单一回路。网孔是回路,回路不一定是网孔。平面电路的每个网眼都是一个网孔。

初中物理串联电路基本计算(非常实用)

初中物理串联电路基本计算 1 .在图1所示的电路中,电源电压为6伏且不变,电阻R 1的阻值为20欧.闭合电键S ,电流表 的示数为0.1安.求: ① 电压表的示数. ② 电阻R 2的阻值. 2 .在图2所示的电路中,电源电压为10伏且保持不变,电阻R 1的阻值为30欧.闭合电键S 后, 电路中的电流为0.2安.求:①电阻R 1两端的电压.②电阻R 2的阻值. 3 .如图3电路中,电源电压保持36伏不变,电阻R 1为48欧,当电键K 闭合时,电流表示数为0.5 安,求: (1)电阻R 1两端电压; (2)电阻R 2的阻值. 4 .如图4所示,电源电压为12V ,R 1=10Ω,开关S 闭合后,电压表的示数为4V ,求: (1)R 1的电压; (2)通过R 1的电流; (3)R 2的阻值. R 2 S R 1 图2 图1 图3 图4

5.在图5所示电路中,电源电压为6伏,电阻R 1的阻值为l0欧,闭合电键后,通过R 1的电流为 0.2安.求: (1)电压表的示数; (2)电阻R 2两端的电压和R 2的阻值; (3)通电10分钟,通过 R 1的电荷量. 6.如图6所示的电路中,电阻R 2的阻值为10欧,闭合电键K ,电流表、电压表的示数分别为0.3 安和1.5伏.求: (1)电阻R 1的阻值. (2)电源电压. (3) 通电1分钟,通过电阻R 2的电荷量. 7.如图7(a )所示电路,电源电压保持不变,滑动变阻器R 2上标有 “50Ω 2Α”字样,当滑片在b 端时,电流为0.2安,电压表示数为2伏, 求:①电源电压; ②移动滑片,当滑片在某位置时,电压表的示数如图7(b )所示,求R 2连入电路的电阻. 图5 图6 A K 2R 1 V V R 1 R 2 S a b 图7 (a) 1 2 3 图7 (b)

电路图符号大全

电路图形大全一、图形

电位器 表示符号:VR,RP,W 可调电阻 表示符号:VR,RP,W 电位器 表示符号:VR,RP,W 三脚消磁电阻表示符号:RT 二脚消磁电阻 表示符号:RT 压敏电阻 表示符号:RZ,VAR 光敏电阻CDS 电容(有极性电容) 表示符号: 电容(有极性电容) 表示符号:C 电容(无极性电容)表示符号:C 四端光电光电耦合器 表示符号:IC,N 六端光电光电耦合器 表示符号:IC,N 场效应管增强型N-MOS 电阻电阻器或固定电阻表 示符号:R 可调电阻 表示符号:VR,RP,W 热敏电阻 表示符号:RT 可调电容 表示符号:C 单向可控硅(晶闸 管) 双向可控硅(晶闸管) 双向可控硅(晶闸管) 晶振石英晶体振荡器 表示符号:X 石英晶体滤波器 表示符号:X 双列集成电路 表示符号:IC或U 运算放大器倒相放大器 AND gate 非门 NAND gate与非门NOR gate 或非门 保险管 表示符号:F 变压器永久磁铁电感

二、电工电路图符号大全 电流表PA 电压表PV 有功电度表PJ 无功电度表PJR 频率表PF 相位表PPA 最大需量表(负荷监控仪) PM 功率因数表PPF 有功功率表PW 无功功率表PR 无功电流表PAR

声信号HA 光信号HS 指示灯HL 红色灯HR 绿色灯HG 黄色灯HY 蓝色灯HB 白色灯HW 连接片XB 插头XP 插座XS 端子板XT 电线,电缆,母线W 直流母线WB 插接式(馈电)母线WIB 电力分支线WP 照明分支线WL 应急照明分支线WE 电力干线WPM 照明干线WLM 应急照明干线WEM 滑触线WT 合闸小母线WCL 控制小母线WC 信号小母线WS 闪光小母线WF 事故音响小母线WFS 预告音响小母线WPS 电压小母线WV 事故照明小母线WELM 避雷器F 熔断器FU 快速熔断器FTF 跌落式熔断器FF 限压保护器件FV 电容器C

与门电路和与非门电路原理

什么就是与门电路及与非门电路原理? 什么就是与门电路 从小巧的电子手表,到复杂的电子计算机,它们的许多元件被制成集成电路的形式,即把几十、几百,甚至 成干上万个电子元件制作在一块半导体片或绝缘片上。每种集成电路都有它独特的作用。有一种用得最 多的集成电路叫门电路。常用的门电路有与门、非门、与非门。 什么就是门电路 “门”顾名思义起开关作用。任何“门”的开放都就是有条件的。例如.一名学生去买书包,只买既好瞧 又给买的,那么她的家门只对“好瞧”与“结实”这两个条件同时具备的书包才开放。 门电路就是起开关作用的集成电路。由于开放的条件不同,而分为与门、非门、与非门等等。 与门 我们先学习与门,在这之前请大家先瞧图15-16,懂得什么就是高电位,什么就是低电位。 图15-17甲就是我们实验用的与用的与门,它有两个输入端A、B与一个输出端。图15-17乙就是它连人 电路中的情形,发光二极管就是用来显示输出端的电位高低:输出端就是高电位,二极管发光;输出端就是 低电位,二极管不发光。

实验 照图15-18甲、乙、丙、丁的顺序做实验。图中由A、B引出的带箭头的弧线,表示把输入端接到高电位或低电位的导线。每次实验根据二极管就是否发光,判定输出端电位的高低。 输入端着时,它的电位就是高电位,照图15-18戊那样,让两输人端都空着,则输出瑞的电位就是高电位,二极管发光。 可见,与门只在输入端A与输入端B都就是高电位时,输出端才就是高电位;输入端A、B只要有一个就是低电位,或者两个都就是低电位时,输出端也就是低电位。输人端空着时,输出端就是高电位。 与门的应用

图15-19就是应用与门的基本电路,只有两个输入端A、B同低电位间的开关同时断开,A与B才同时就 是高电位,输出端也因而就是高电位,用电器开始工作。 实验 照图15-20连接电路。图中输入端与低电位间连接的就是常闭按钮开关,按压时断开,不压时接通。 观察电动机在什么情况下转动。 如果图15-20的两个常闭按钮开关分别装在汽车的前后门,图中的电动机就是启动汽车内燃机的电动机, 当车间关紧时常闭按钮开关才能被压开,那么这个电路可以保证只有两个车门都关紧时汽车才能开动。 与非门,与非门就是什么意思 DTL与非门电路: 常将二极管与门与或门与三极管非门组合起来组成与非门与或非门电路,以消除在串接时产生的电平偏离, 并提高带负载能力。

基本放大电路计算题,考点

第6章-基本放大电路-填空题: 1.射极输出器的主要特点是电压放大倍数小于而接近于1,输入电阻高、输出电阻低。 2.三极管的偏置情况为发射结正向偏置,集电结正向偏置时,三极管处于饱和状态。 3.射极输出器可以用作多级放大器的输入级,是因为射极输出器的。(输入电阻高)4.射极输出器可以用作多级放大器的输出级,是因为射极输出器的。(输出电阻低)5.常用的静态工作点稳定的电路为分压式偏置放大电路。 6.为使电压放大电路中的三极管能正常工作,必须选择合适的。(静态工作点) 7.三极管放大电路静态分析就是要计算静态工作点,即计算、、三个值。(I B、I C、U CE)8.共集放大电路(射极输出器)的极是输入、输出回路公共端。(集电极) 9.共集放大电路(射极输出器)是因为信号从极输出而得名。(发射极) 10.射极输出器又称为电压跟随器,是因为其电压放大倍数。(电压放大倍数接近于1)11.画放大电路的直流通路时,电路中的电容应。(断开) 12.画放大电路的交流通路时,电路中的电容应。(短路) 13.若静态工作点选得过高,容易产生失真。(饱和) 14.若静态工作点选得过低,容易产生失真。(截止) 15.放大电路有交流信号时的状态称为。(动态) 16.当时,放大电路的工作状态称为静态。(输入信号为零) 17.当时,放大电路的工作状态称为动态。(输入信号不为零) 18.放大电路的静态分析方法有、。(估算法、图解法) 19.放大电路的动态分析方法有微变等效电路法、图解法。 20.放大电路输出信号的能量来自。(直流电源) 二、计算题: 1、共射放大电路中,U CC=12V,三极管的电流放大系数β=40,r be=1KΩ,R B=300KΩ,R C=4KΩ,R L=4K Ω。求(1)接入负载电阻R L前、后的电压放大倍数;(2)输入电阻r i输出电阻r o 解:(1)接入负载电阻R L前: A u= -βR C/r be= -40×4/1= -160 接入负载电阻R L后: A u= -β(R C// R L) /r be= -40×(4//4)/1= -80 (2)输入电阻r i= r be=1KΩ 输出电阻r o = R C=4KΩ 2、在共发射极基本交流放大电路中,已知U CC = 12V,R C = 4 k?,R L = 4 k?,R B = 300 k?,r be=1KΩ,β=37.5试求: (1)放大电路的静态值 (2)试求电压放大倍数A u。

电路图符号大全

电流表PA 电压表PV 有功电度表PJ 无功电度表PJR 频率表PF 相位表PPA 最大需量表(负荷监控仪) PM 功率因数表PPF 有功功率表PW 无功功率表PR 无功电流表PAR 声信号HA 光信号HS 指示灯HL 红色灯HR 绿色灯HG 黄色灯HY 蓝色灯HB

白色灯HW 连接片XB 插头XP 插座XS 端子板XT 电线,电缆,母线W 直流母线WB 插接式(馈电)母线WIB 电力分支线WP 照明分支线WL 应急照明分支线WE 电力干线WPM 照明干线WLM 应急照明干线WEM 滑触线WT 合闸小母线WCL 控制小母线WC 信号小母线WS 闪光小母线WF 事故音响小母线WFS 预告音响小母线WPS 电压小母线WV 事故照明小母线WELM 避雷器F 熔断器FU 快速熔断器FTF 跌落式熔断器FF 限压保护器件FV 电容器C 电力电容器CE 正转按钮SBF 反转按钮SBR 停止按钮SBS 紧急按钮SBE 试验按钮SBT 复位按钮SR 限位开关SQ 接近开关SQP 手动控制开关SH 时间控制开关SK 液位控制开关SL 湿度控制开关SM 压力控制开关SP

速度控制开关SS 温度控制开关,辅助开关ST 电压表切换开关SV 电流表切换开关SA 整流器U 可控硅整流器UR 控制电路有电源的整流器VC 变频器UF 变流器UC 逆变器UI 电动机M 异步电动机MA 同步电动机MS 直流电动机MD 绕线转子感应电动机MW 鼠笼型电动机MC 电动阀YM 电磁阀YV 防火阀YF 排烟阀YS 电磁锁YL 跳闸线圈YT 合闸线圈YC 气动执行器YPA,YA 电动执行器YE 光电池,热电传感器 B 压力变换器BP 温度变换器BT 速度变换器BV 时间测量传感器BT1,BK 液位测量传感器BL 温度测量传感器BH,BM 发热器件(电加热) FH 照明灯(发光器件) EL 空气调节器EV 电加热器加热元件EE 感应线圈,电抗器L 励磁线圈LF 消弧线圈LA

与门电路和与非门电路原理

什么是与门电路及与非门电路原理? 什么是与门电路 从小巧的电子手表,到复杂的电子计算机,它们的许多元件被制成集成电路的形式,即把几十、几百,甚至成干上万个电子元件制作在一块半导体片或绝缘片上。每种集成电路都有它独特的作用。有一种用得最多的集成电路叫门电路。常用的门电路有与门、非门、与非门。 什么是门电路 “门”顾名思义起开关作用。任何“门”的开放都是有条件的。例如?一名学生去买书包,只买既好看又给买的,那么他的家门只对“好看”与“结实”这两个条件同时具备的书包才开放。 门电路是起开关作用的集成电路。由于开放的条件不同,而分为与门、非门、与非门等等。 与门 我们先学习与门,在这之前请大家先看图15-16,懂得什么是高电位,什么是低电位。 图15-17甲是我们实验用的与用的与门,它有两个输入端A、E和一个输出端。图15-17乙是它连人电 路中的情形,发光二极管是用来显示输出端的电位高低:输出端是高电位,二极管发光;输出端是低电位,二极管不发光。 实验 照图15-18甲、乙、丙、丁的顺序做实验。图中由A、B引出的带箭头的弧线,表示把输入端接到高电位或低电位的导线。每次实验根据二极管是否发光,判定输岀端电位的高低。

输入端着时,它的电位是高电位,照图15-18戊那样,让两输人端都空着,则输岀瑞的电位是高电位, 二极管发光。 可见,与门只在输入端A与输入端E都是高电位时,输岀端才是高电位;输入端A、E只要有一个是低电位,或者两个都是低电位时,输岀端也是低电位。输人端空着时,输岀端是高电位。 与门的应用 图15-19是应用与门的基本电路,只有两个输入端A、E同低电位间的开关同时断开,A与E才同时是高电位,输出端也因而是高电位,用电器开始工作。 实验 照图15-20连接电路。图中输入端与低电位间连接的是常闭按钮开关,按压时断开,不压时接通 观察电动机在什么情况下转动。 如果图15-20的两个常闭按钮开关分别装在汽车的前后门,图中的电动机是启动汽车内燃机的电动机, 当车间关紧时常闭按钮开关才能被压开,那么这个电路可以保证只有两个车门都关紧时汽车才能开动。与非门,与非门是什 么意思

《电路基础》考试大纲

《电路基础》考试大纲 Ⅰ考试性质 普通高等学校本科插班生招生考试是由专科毕业生参加的选拔性考试。高等学校根据考生的成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。《电路基础》是电气工程及其自动化、电子信息工程专业的一门重要的专业基础课。该课程考核的目的是为了衡量学生理解、掌握电路原理的基本概念、基本原理、基本电路分析计算方法的程度,衡量学生是否具备应用所学知识分析和设计电路的能力。 Ⅱ考试内容 总体要求:考生应按本大纲的要求掌握电路基本理论、基本概念;熟练掌握电路基本分析方法,能对一般电路进行正确计算;理解各种元器件的基本电路结构和特性;能较好地理解和运用所学知识解决电路问题和进行简单的电路设计,掌握一般问题的分析思路,具备进一步学习电气工程及其自动化、电子信息工程专业后续课程的能力和基础。 一、集总电路的分析基础 ⒈考试内容 (1)电路的基本概念,电路基本物理量的概念及计算,参考方向。 (2)基尔霍夫定律:基尔霍夫电流定律、基尔霍夫电压定律。 (3)电阻元件:伏安特性、欧姆定律、功率计算。 (4)独立电源:电压源、电流源的概念和基本性质、伏安特性曲线。 (5)受控源:受控源的概念、符号、计算。 ⒉考试要求 (1)掌握电路的基本概念,电路基本物理量的概念及其参考方向,掌握电路中电位、电压、电流、功率等物理量的分析计算。 (2)掌握基尔霍夫电流定理、基尔霍夫电压定律的概念、参考方向及其应用。 (3)掌握欧姆定律及其应用。 (4)理解电源的概念、电流源和电压源的计算方法,理解电源的基本性质。 (5)了解受控源的概念、符号、计算。 二、线性电路的基本分析方法 ⒈考试内容

电学基础计算习题附答案

1、如图17所示的电路中,电源电压保持不变,电阻R1的阻值为20Ω。闭合开关S,电流表A1的示数为0.3A,电流表A2的示数为0.5A。请解答下列问题: (1)电源电压U;(2)电阻R2的阻值。 2、在图所示电路中,电源电压保持不变,定值电阻R1=10Ω,R2为滑动变阻器.闭合开关S,当滑片P在a端是,电流表的示数为0.3A;当滑片P在b端时,电压表示数为2V. 求:(1)滑动变阻器R2的最大阻值? (2)当滑片P在b端时,定值电阻R1消耗的电功率是多大? 3、如图所示的电路中,开关S闭合后,电压表V l、V2的示数分别为12 V和4 V,电阻R2=20Ω,求电阻R1的阻值和电流表A的示数分别为多少? 4、在如图甲所示的电路中,电源电压为6V保持不变,当闭合开关后,两个电流表指针偏转均为图乙所示,则电阻 R1和R2的阻值各为多少? 5、一个电阻为20Ω的用电器正常工作时,两端的电压是12V,如果要使该用电器在18V的电源上仍能正常工作,则: (1)在电路中应串联一个电阻,还是并联一个电阻?画出电路图; (2)这个电阻的阻值是多少?

6、在如图所示的电路中,电源电压保持不变,电阻R1的阻值为20Ω。闭合开关S,电流表A1的示数为0.5A,电流表A2的示数为0.2A。求: (1)电源电压U;(2)电阻R2的阻值。 7、如图所示,电阻R1=15Ω,开关S断开时电流表示数为0.4A,开关S闭合后电流表的示数为1A,若电源电压不变, 求:(1)电源电压是多少? (2)R2的阻值是多少? (3)通电1m in电路消耗的电能是多少? 8、把一只小灯泡接到3V的电源上,通过它的电流为0.2A,求:通电60s电流所做的功。 9、在图12所示的电路中,电源电压保持不变,电阻R2的阻值为15欧。闭合电键S后,电流表的示数为1安,通过电阻R2的电流为0.4安。求: ①电源电压U。 ②电阻R1的阻值。

电气电路图符号大全

=============================================== ============================================== 电路图符号大全: AAT 电源自动投入装置 AC 交流电 DC 直流电 FU 熔断器 G 发电机 M 电动机 HG 绿灯 HR 红灯 HW 白灯 HP 光字牌 K 继电器 KA(NZ) 电流继电器(负序零序) KD 差动继电器 KF 闪光继电器 KH 热继电器 KM 中间继电器 KOF 出口中间继电器 KS 信号继电器 KT 时间继电器 KV(NZ) 电压继电器(负序零序) KP 极化继电器 KR 干簧继电器 KI 阻抗继电器 KW(NZ) 功率方向继电器(负序零序) KM 接触器 KA 瞬时继电器;瞬时有或无继电器;交流继电器 KV电压继电器 L 线路 QF 断路器 QS 隔离开关 T 变压器 TA 电流互感器 TV 电压互感器 W 直流母线 YC 合闸线圈 YT 跳闸线圈 PQS 有功无功视在功率 EUI 电动势电压电流 SE 实验按钮 SR 复归按钮 f 频率

Q——电路的开关器件 FU——熔断器 FR——热继电器 KM——接触器 KA——1、瞬时接触继电器 2、瞬时有或无继电器 3、交流继电器KT——延时有或无继电器 SB——按钮开关 Q——电路的开关器件 FU——熔断器 KM——接触器 KA——1、瞬时接触继电器 2、瞬时有或无继电器 3、交流继电器KT——延时有或无继电器 SB——按钮开关 SA 转换开关 电流表 PA 电压表 PV 有功电度表 PJ 无功电度表 PJR 频率表 PF 相位表 PPA 最大需量表(负荷监控仪) PM 功率因数表 PPF 有功功率表 PW 无功功率表 PR 无功电流表 PAR 声信号 HA 光信号 HS 指示灯 HL 红色灯 HR 绿色灯 HG 黄色灯 HY 蓝色灯 HB 白色灯 HW 连接片 XB 插头 XP 插座 XS 端子板 XT 电线电缆母线 W 直流母线 WB 插接式(馈电)母线 WIB 电力分支线 WP 照明分支线 WL 应急照明分支线 WE 电力干线 WPM 照明干线 WLM 应急照明干线 WEM 滑触线 WT 合闸小母线 WCL

3.1 MOS逻辑门电路解析

3逻辑门电路 3.1 MOS逻辑门电路 3.2TTL逻辑门电路 *3.3射极耦合逻辑门电路 *3.4砷化镓逻辑门电路 3.5逻辑描述中的几个问题 3.6逻辑门电路使用中的几个实际问题* 3.7用VerilogHDL描述逻辑门电路

3.逻辑门电路 教学基本要求: 1.了解半导体器件的开关特性。 2.熟练掌握基本逻辑门(与、或、与非、或非、异或门)、三态门、OD门(OC门)和传输门的逻辑功能。 3.学会门电路逻辑功能分析方法。 4.掌握逻辑门的主要参数及在应用中的接口问题。

3.1 MOS逻辑门 3.1.1数字集成电路简介 3.1.2逻辑门的一般特性 3.1.3MOS开关及其等效电路 3.1.4CMOS反相器 3.1.5CMOS逻辑门电路 3.1.6CMOS漏极开路门和三态输出门电路3.1.7CMOS传输门 3.1.8CMOS逻辑门电路的技术参数

1 . 逻辑门:实现基本逻辑运算和复合逻辑运算的单元电路。 2. 逻辑门电路的分类 二极管门电路 三极管门电路 TTL 门电路 MOS 门电路 PMOS 门 CMOS 门 逻辑门电路 分立门电路 集成门电路 NMOS 门 3.1.1 数字集成电路简介

1.CMOS 集成电路: 广泛应用于超大规模、甚大规模集成电路 4000系列 74HC 74HCT 74VHC 74VHCT 速度慢 与TTL 不兼容 抗干扰 功耗低 74LVC 74VAUC 速度加快 与TTL 兼容 负载能力强 抗干扰 功耗低 速度两倍于74HC 与TTL 兼容 负载能力强 抗干扰 功耗低 低(超低)电压 速度更加快 与TTL 兼容 负载能力强 抗干扰功耗低 74系列 74LS 系列 74AS 系列 74ALS 2.TTL 集成电路: 广泛应用于中、大规模集成电路 3.1.1 数字集成电路简介

数字门电路结构与原理

数字门电路结构与原理 一·引言 如果您已阅读了博闻网有关布尔逻辑方面的文章,您就会知道数字设备取决于布尔。在布尔逻辑的应用一文中,我们了解了七种基本的门。这些门是所有数字设备的基本组成部分。。如果回顾一下计算机技术的发展历史,从最初的继电器制造的电子门到现在包含多达2000个晶体管的芯片!实现这些门的技术已发生了根本性变化。 CMOS逻辑门电路是在TTL电路问世之后,所开发出的第二种广泛应用的数字集成器件,从发展趋势来看,由于制造工艺的改进,CMOS电路的性能有可能超越TTL而成为占主导地 位的逻辑器件。CMOS电路的工作速度可与TTL相比较,而它的功耗和抗干扰能力则远优于TTL。此外,几乎所有的超大规模存储器件,以及PLD器件都采用CMOS艺制造,且费用较低。 早期生产的CMOS门电路为4000系列,随后发展为4000B系列。当前与TTL兼容的CMO 器件如74HCT系列等可与TTL器件交换使用。下面首先讨论CMOS反相器,然后介绍其他CMO 逻辑门电路。 MOS管结构图 二.正文 (一)·MOS管主要参数: 1.开启电压VT ·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压; ·标准的N沟道MOS管,VT约为3~6V; ·通过工艺上的改进,可以使MOS管的VT值降到2~3V。 2. 直流输入电阻RGS ·即在栅源极之间加的电压与栅极电流之比 ·这一特性有时以流过栅极的栅流表示 ·MOS管的RGS可以很容易地超过1010Ω。 3. 漏源击穿电压BVDS

·在VGS=0(增强型)的条件下,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS ·ID剧增的原因有下列两个方面: (1)漏极附近耗尽层的雪崩击穿 (2)漏源极间的穿通击穿 ·有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后 ,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID 4. 栅源击穿电压BVGS ·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。 5. 低频跨导gm ·在VDS为某一固定数值的条件下,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导 ·gm反映了栅源电压对漏极电流的控制能力 ·是表征MOS管放大能力的一个重要参数 ·一般在十分之几至几mA/V的范围内 6. 导通电阻RON ·导通电阻RON说明了VDS对ID的影响,是漏极特性某一点切线的斜率的倒数 ·在饱和区,ID几乎不随VDS改变,RON的数值很大,一般在几十千欧到几百千欧之间·由于在数字电路中,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似 ·对一般的MOS管而言,RON的数值在几百欧以内 7. 极间电容 ·三个电极之间都存在着极间电容:栅源电容CGS 、栅漏电容CGD和漏源电容CDS ·CGS和CGD约为1~3pF ·CDS约在0.1~1pF之间 8. 低频噪声系数NF ·噪声是由管子内部载流子运动的不规则性所引起的 ·由于它的存在,就使一个放大器即便在没有信号输人时,在输出端也出现不规则的电压或电流变化 ·噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB) ·这个数值越小,代表管子所产生的噪声越小 ·低频噪声系数是在低频范围内测出的噪声系数 ·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小 (二)、CMOS反相器 由教科书模拟部分已知,MOSFET有P沟道和N沟道两种,每种中又有耗尽型和增强型两类。由N沟道和P沟道两种MOSFET组成的电路称为互补MOS或CMOS电路。 下图表示CMOS反相器电路,由两只增强型MOSFET组成,其中一个为N沟道结构,另一个为P沟道结构。为了电路能正常工作,要求电源电压VDD大于两个管子的开启电压的绝对值之和,即 VDD>(VTN+|VTP|) 。

常用电路图符号最全汇总

常用电路图符号最全汇总 电路图,是一种以物理电学标准符号来绘制各电子元器件组成和关系的电路原理布局图,它被广泛应用于人类工程规划和电路研究。通过分析电路图,可以得知电子元器件之间的工作原理,并为性能、安装线路提供规划方案。在设计的过程,可以在纸上或电脑上进行绘制,等确定无误之后,在付诸实际。 电路图符号大全 电路图符号是绘制电路图的基础,只有了解对应的电路图符号,才能轻松上手绘制。电路图符号数量众多,大致可以分为四个类别:传输路径、集成电路组件、限定符号、开关和继电器符号;齐全的电路图符号便于用户随时选用,帮助用户更高效率地完成任务。 基本电路符号

汇聚基本的电路图符号,例如:电池、接地线、二极管等,可以满足基础电路的绘制需求。 传输路径符号 基本的电路符号,用于连接各元器件,起到“桥梁互通”的作用。 集成电路组件符号

以寄存器、转换器、计数器为代表的基础集成电路元器件,在电路图中较为常见。 限定符号 用于表示电路的属性,如脉冲、材料、温度等。 开关和继电器符号 是电路图中的控制元件,能够调节或改变电路的工作性能。

字符电路图符号大全 AAT 电源自动投入装置AC 交流电DC 直流电EUI 电动势电压电流f 频率FR——热继电器FU 熔断器FU——熔断器FU——熔断器G 发电机HG 绿灯HP 光字牌HR 红灯HW 白灯K 继电器KA 瞬时继电器;瞬时有或无继电器;交流继电器KA(NZ)电流继电器(负序零序)KA——1、瞬时接触继电器 2、瞬时有或无继电器 3、交流继电器KD 差动继电器KF 闪光继电器KH 热继电器KI 阻抗继电器KM 接触器KM 中间继电器KM——接触器KM——接触器KOF 出口中间继电器KP 极化继电器KR 干簧继电器KS 信号继电器KT 时间继电器KT——延时有或无继电器KT——延时有或无继电器KV(NZ)电压继电器(负序零序)KV电压继电器KW(NZ)功率方向继电器(负序零序)L 线路M 电动机PQS 有功无功视在功率QF 断路器QS 隔离开关Q— —电路的开关器件Q——电路的开关器件SA 转换开关SB——按钮开

门电路

门电路

实验一门电路的电特性 一、实验目的 1、在理解 CMOS 门电路的工作原理和电特性基础上,学习并掌握其电特性主 要参数的测试方法。 2、在理解 TTL 门电路的工作原理和电特性基础上,学习并掌握其电特性主 要参数的测试方法。 3、学习查阅集成电路芯片数据手册。 4、学习并掌握数字集成电路的正确使用方法。 二、预习任务 1. 回顾上学期的“常用电子仪器使用”以及实验中用到的测试方法。回答下 列问题: (1)如何调整函数信号发生器,使其输出100Hz、0~5V的锯齿波(三角波)信号? 答:首先调输出模式至三角波,再调节幅度调节按钮,使显示屏幅值处显示为 5Vp-p,为了保证输出的三角波是0~5V,则还需设置偏置电压,调节偏置/最小值按钮,将最小值设置为0V,这样就可以输出0~5V的三角波;按频率范围选择按钮,将屏幕上频率调为读数为100Hz。若需要输出锯齿波,则要调节占空 比,以获得想要的波形。 (2)用示波器观测到如图1所示的a、b两个信号,假设此时示波器的垂直定标(灵敏度)旋钮位置分别为1V/格和2V/格,请写出它们的最高值和最低值。 答:第一幅图最高值为 2V,最低值为-2V; 第二幅图最高值为 4V,最低值为 0。 (3)电压传输特性曲线是指输出电压随输入电压变化的曲线。示波器默认的时基模式为“标准(YT)模式”显示的是电压随时间变化的波形,若要观测电压传输特性曲线,需改变示波器上哪些菜单或旋钮? 答:为观测电压传输特性曲线,需要将两相关的信号输入示波器的两个输入端,并将模式调为Y-X模式。本次实验须将输入电压信号与输出电压信号分别作为X与Y,即可观测电压传输特性曲线。在Y-X工作模式下,示波器上显示的图样为以通道一的测量值(输入电压)为横坐标,通道二的测量值(输出电压)为

初中物理电学基本计算题归类

初中物理电学基本计算题归类 题型一:简单串并联问题 例1、如图1所示的电路中,电阻R1的阻值为10。闭合电键S,电流表A1的示数为0.3A,,电流表A2的示数为0.5A.求(1)通过电阻R2的电流.(2)电源电压.(3)电阻R2的阻值 例2、如图所示,小灯泡标有“2.5V”字样,闭合开关S后,灯泡L正常发光,电流表、电压表的示数分别为0.14A 和6V.试求(1)电阻R的阻值是多少,(2)灯泡L消耗的电功率是多少, 解题方法:解决串、并联电路的问题,首先要判断电路的连接方式, 搞清串并联电路中电流、电压、电阻的关系,结合欧姆定律和其它电学规律加以解决。 练习 1、如图所示,电源电压不变。闭合开关S,小灯泡L恰好正常发光。已知R=12,电流表,1 A1的示数为0.5A,电流表A2的示数为1.5A。求:(1)电源电压;(2)灯L的电阻;(3)灯L的额定 题型二:额定功率、实际功率的计算 例1、把一个标有“220V 40W”灯泡接在电压为110V电源上使用, 该灯泡的额定状态下的电阻、额定电流、额定功率、实际状态下的电阻、电流、实际功率分别是多少, 例2 、标有“6V,6W”和“3V,6W”的两只灯泡串联接在电源上,有一只灯泡正常发光,而另一只较暗,分析: (1)电源电压(2)两灯泡消耗的实际功率分别是多少, (3)两灯泡哪只较亮, 解题方法:找准题中的不变量、变量,选择合适的公式计算 练习:1、有一只标有“PZ220—40”的灯泡,接在220V家庭电路中,求: 〈1〉灯泡正常发光时的电阻, <2〉灯泡正常发光时通过它的电流, 〈3〉1KW?h电可供此灯泡正常工作长时间, 〈4〉若实际电压为200V,则灯泡的实际功率为多大,灯泡的发光情况如何,

电路图符号大全

电路图形大全 一、图形 二极管 表示符号:D 变容二极管 表示符号:D 双向触发二极管 表示符号:D 稳压二极管 表示符号:ZD,D 桥式整流二极管 表示符号:D 肖特基二极管隧道二极管 光敏二极管或光电接收二 极管 发光二极管 表示符号:LED

光敏三极管或光电接收三 极管 表示符号:Q,VT 单结晶体管(双基极二极 管) 表示符号:Q,VT 复合三极管 表示符号:Q,VT PNP型三极管 表示符号:Q,VT PNP型三极管 表示符号:Q,VT NPN型三极管 表示符号:Q,VT 带阻尼二极管及电阻NPN 型三极管 表示符号:Q,VT IGBT 场效应管 表示符号:Q,VT 带阻尼二极管IGBT 场效应 管 表示符号:Q,VT

稳压二极管 表示符号:ZD,D 隧道二极管 双色发光二极管 表示符号:LED NPN型三极管 表示符号:Q,VT 带阻尼二极管NPN型三极 管 表示符号:Q,VT 接面型场效应管 P-JFET 接面型场效应管 N-JFET 场效应管增强型 P-MOS

场效应管耗尽型 P-MOS 场效应管耗尽型 N-MOS 电阻电阻器或固定电 阻表示符号:R 电位器 表示符号:VR,RP,W 可调电阻 表示符号:VR,RP,W 电位器 表示符号:VR,RP,W 三脚消磁电阻 表示符号:RT 二脚消磁电阻 表示符号:RT 压敏电阻 表示符号:RZ,VAR 光敏电阻 CDS 电容(有极性电容) 表示符号: 电容(有极性电容) 表示符号:C

电容(无极性电容) 表示符号:C 四端光电光电耦合器 表示符号:IC,N 六端光电光电耦合器 表示符号:IC,N 场效应管增强型 N-MOS 电阻电阻器或固定电 阻表示符号:R 可调电阻 表示符号:VR,RP,W 热敏电阻 表示符号:RT 可调电容 表示符号:C

电路图符号大全

电路图符号大全 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

电路图形大全一、图形

表示符号:RT 表示符号:RT 表示符号:RZ,VAR 光敏电阻CDS 电容(有极性电容) 表示符号: 电容(有极性电容) 表示符号:C 电容(无极性电容)表示符号:C 四端光电光电耦合器 表示符号:IC,N 六端光电光电耦合器 表示符号:IC,N 场效应管增强型N-MOS 电阻电阻器或固定电阻表 示符号:R 可调电阻 表示符号:VR,RP,W 热敏电阻 表示符号:RT 可调电容表示符号:C 单向可控硅(晶闸管) 双向可控硅(晶闸管) 双向可控硅(晶闸管) 晶振石英晶体振荡器表示符号:X 石英晶体滤波器 表示符号:X 双列集成电路 表示符号:IC或U 运算放大器倒相放大器 AND gate 非门 NAND gate与非门 NOR gate 或非门 保险管 表示符号:F 变压器 表示符号:T 永久磁铁电感表示符号:L 继电器继电器 晶振石英晶体振荡器表示符号:X 单列集成电路 表示符号:IC或U OR gate 或门 保险管 表示符号:F 带铁芯电感线圈 表示符号:L 线路输入端子 电池或直流电源 AC 交流 恒流源

二、电工电路图符号大全 电流表 PA 电压表 PV 有功电度表 PJ 无功电度表 PJR 频率表 PF 相位表 PPA 最大需量表(负荷监控仪) PM 功率因数表 PPF 有功功率表 PW 无功功率表 PR 无功电流表 PAR 声信号 HA 光信号 HS 指示灯 HL 红色灯 HR 绿色灯 HG 黄色灯 HY 蓝色灯 HB 白色灯 HW

基本门电路

基本门电路 一、实验目的 1.了解TTL 门电路的原理、性能和使用方法; 2.掌握基本门电路逻辑功能; 3.熟悉基本运算单元、半加器和全加器的逻辑关系和功能。 二、实验原理 在数字电路中,门电路是实现某种逻辑关系的最基本的单元,任何复杂的组合电路和时序电路都可用逻辑门通过适当的组合连接而成。因此,掌握逻辑门的工作原理,熟练、灵活地使用逻辑门,是学习数字电路的基础。本实验在数字学习机上进行,其各种逻辑电路都是由集成TTL 门电路构成,逻辑关系用正逻辑分析。 1.与门 逻辑功能为当输入端A 与B 均为“1”时,输 出才为“1”,其逻辑函数式为 B A F ?= 2.或门 逻辑功能为当输入端A 或B 有一端为“1”时, 输出为“1”,其逻辑函数式为 B A F += 3.异或门 其逻辑功能为当输入信号A 、B 相同时,输 出为“0”,当两个输入信号不同时,输出为“1”。 其逻辑函数式为 B A B A B A F ⊕=+= 4.半加器 半加器是求同一位上的两个加数和的运算单元。这个和称为半加和或本位和。逻辑表达式为 n n n n n n n B A B A B A S ⊕=+=' n n n B A C =' 式中,n A ,n B 分别表示两个加数在第n 位上的数码,'n S 为本位和,' n C 为该位向高一位的进位。 5.全加器 全加器是在半加器的基础上,能够实现两 个加数的某一位加法运算全功能的逻辑电路。 它不仅能求本位和,而且可以同时将从低位来 的进位也加进去。全加器电路由两个半加器和 一个或门构成,逻辑表达式为 1'1'-++=n n n n n C S C S S 1' -+=n n n n n C S B A C 式中,n S 表示全加和,1-n C 表示低位全加器输 出的进位数,n C 表示本位全加进位数,' n S 表示 半加和。 图20-1 与门电路 F 图20-2 或门电路 F 图20-3 异或门电路 F 图20-4 有异或门的半加器 C 'n S 'n An Bn 图20-5 全加器逻辑图 1

基本运算电路比例积分微分

第一节基本运算电路 一、比例运算电路 比例运算电路有反相输入、同相输入和差动输入三种基本形式。1.反相比例运算电路 ·平衡电阻――使两个差分对管基极对地的电阻一致,故R 2 的阻值为 R 2=R 1 //R F 反相比例运算电路 ·虚地概念 运放的反相输入端电位约等于零,如同接地一样。“虚地”是反相比例运算电路的一个重要特点。 可求得反相比例运算放大电路的输出电压与输入电压的关系为 反相比例运算电路的输入电阻:由于反相输入端为“虚地”,显然电路的输 入电阻为 R i =R 1 。 反相比例运算电路有如下几个特点: ①输出电压与输入电压反相,且与R F 与R 1 的比值成正比,与运放内部各项 参数无关。当R F =R 1 时,u O =-u I ,称为反相器。 ②输入电阻R i =R 1 ,只决定于R 1 ,一般情况下反相比例运算电路的输入电阻 比较低。 ③由于同相输入端接地,反相输入端为“虚地”,因此反相比例运算电路没有共模输入信号,故对运放的共模抑制比要求相对比较低。 2.同相比例运算电路 利用“虚短”和“虚断”,可得输出电压与输入电压的关系为

同相比例运算电路有如下几个特点: ①输出电压与输入电压同相,且与R F 与R 1 的比值成正比,电压放大倍数 当R f =∞或R 1 =0时,则u O =u I 。这种电路的输出电压与输入 电压幅度相等、相位相同,称为电压跟随器,又称为同相跟随器。 ②同相比例运算电路的输入电阻很高。由于电路存在很深的负反馈实际的输入电阻要比R id 高很多倍。 ③同相比例运算电路由于u +=u - 而u + =u I ,因此同相比例运算电路输入端 本身加有共模输入电压u IC =u I 。故对运放的共模抑制比相对要求高。 无论是反相比例运算电路还是同相比例运算电路由于引入的是电压负反馈(详细分析见第七章),所以输出电阻R o 很低。 3.差分比例运算电路 利用“虚短”和“虚断”,即i +=i - =0、u + =u - ,应用叠加定理可求得 当满足条件R 1=R 2 、R F =R 3 时, 电路的输出电压与两个输入电压之差成正比,实现了差分比例运算。 电路的差模输入电阻为R i =2R 1 。 缺点:对元件的对称性要求较高,外接电阻要求精密匹配,即使选用误差为±0.1%的电阻,也往往不能满足要求。在要求改变运算关系时,又必须同时选配两对高精密电阻,非常不方便。输入电阻不够高。 4.比例电路应用实例 二、加法电路

相关主题
文本预览
相关文档 最新文档