当前位置:文档之家› 发动机工作原理

发动机工作原理

发动机工作原理
发动机工作原理

第一章发动机工作原理

发动机是将其他形式的能量转变为机械能的一种机械装置。内燃机是燃料在发动机内部燃烧,内燃机每实现一次热功转换,都要经历一系列连续的工作过程,构成一个工作循环,否则,就不能实现热功的转换。

第一节发动机总体结构及基本原理

现代汽车发动机根据所用燃料的不同可分为:

1.汽油发动机(简称汽油机)

1). 化油器式汽油机: 汽油和空气在化油器内混合成可燃混合气,在输入气缸加

以压缩,然后用电火花点火使之燃烧而发热作功。

2). 汽油喷射式发动机: 将汽油直接喷人进气管或气缸内,与空气混合形成可燃

混合气,再用电火花点燃。

2.柴油发动机(简称柴油机):汽车用柴油机使用的燃料一般是轻柴油,它是通过喷

油泵和喷油器将柴油直接喷人气缸,与气缸内经过压缩的空气混合,使之在高温下自燃作功。

一.发动机总体构造

发动机基本由以下机构和系统组成:曲柄连杆机构、配气机构、供给系、润滑系、冷却系、点火系和起动系。

1.曲柄连杆机构:它的功用是将燃料燃烧时产生的热量转变为活塞往复运动的机械能,再通过连杆将活塞的往复运动变为曲轴的旋转运动而对外输出动力。

2.配气机构:它的功用是使可燃混合气及时充人气缸并及时从气缸排出废气。

3.供给系:它的功用是把汽油和空气混合成合适的可燃混合气供人气缸,以供燃烧,并将燃烧生成的废气排出发动机。

4.润滑系:它的功用是将润滑油供给作相对运动的零件以减少它们之间的摩擦阻力,减轻机件的磨损,并部分地冷却摩擦零件

5.冷却系:它的功用是把受热机件的热量散到大气中去,以保证发动机正常工作。

6.点火系:它的功用是保证按规定时刻及时点燃气缸中被压缩的混合气。

7.起动系:它的功用是用以使静止的发动机起动并转入自行运转。

汽油机一般都由上述两个机构和五个系统组成。对于汽车用柴油机,由于其混合气是自行着火燃烧的,所以柴油机没有点火系。因此柴油机由两个机构和四个系统组成。

二.四冲程发动机工作原理

(一)汽车发动机的基本名词术语

1.活塞行程与止点

上止点:活塞顶距离曲轴旋转中心最远的位置称为上止点。下止点:

活塞顶距离曲轴旋转中心最近的位置称为下止点。

活塞行程:上下止点间的距离。

曲轴每转动半周(即180度),相当于一个活塞行程,即曲轴每转一周,活塞完成两个行程。

2.气缸容积

活塞在气缸内作往复直线运动,当活塞位于上止点时,活塞顶上面的气缸空间为燃烧室容积,用Vc表示。

活塞从一个止点移到另一个止点所扫过的容积称为气缸工作容积

或气缸排量,用VL(1)

Vh=∏D2/4×S×10-3

式中: D—气缸直径,㎝。

s——活塞行程,cm。

活塞位于下止点时,活塞顶上部的全部气缸容积称为气缸总容积,用Va表示,即:

Va=Vc+V

h

多缸发动机所有气缸工作容积的总和称为发动机工作容积

或发动机排量,用V

L

表示。

3.压缩比

气缸总容积与燃烧室容积之比称为压缩比,用ε表示。

ε=Va/Vc=(Va+Vh)/Vc=1+Vh/Vc

表示活塞从下止点移到上止点时,气缸内气体被压缩的程度。现代汽车发动机压缩比,汽油机一般为6—9(有的轿车可达9-11),柴油机一般为16—22。

(二)四冲程汽油机工作原理

1.进气行程

进气行程中,进气门打开,排气门关闭,转动的曲轴带动活塞从上止点向下止点运动,缸内容积增大,压力降低而形成真空,将可燃混合气吸人气缸。由于进气系统的阻力,进气终了时缸内气体的压力略低于大气压,约为0.075MPa—0.09MPa,温度为370K —400K。

示功图上曲线ra表示进气行程,位于大气压力线之下。它与大气压力线纵坐标之差,即为活塞在各位置时缸内的真空度。

2.压缩行程

为使吸人缸内的混合气迅速燃烧,放出更多的热量而使发动机发出大的功率,必须在混合气燃烧前对其进行压缩,使其容积变小、温度升高。为此,在进气终了时便立即进入压缩行程。在此行程中,进、排门均关闭,曲轴推动活塞定时由下止点向上止点移动一个行程。

四冲程汽油机

的示功图

a)进气行程;

b)压缩行程;

曲线ac表

示压缩行程。压

缩终了时,活塞

到达上止点,混

合气被压人活

塞上方然烧室

中。此时,混合

气压力高达得而附为环医点约

0.6Mpa-1.2MPa,温度可达600K-700K。

3.作功行程

在压缩行程接近终了时,火花塞产生电火花点燃混合气,此时进排门仍关闭。由于混合气的迅速燃烧,使缸内气体的温度和压力迅速升高,最高压力可达5MPa-9MPa,最高温度可达2200K-2800K。在高温高压气体的作用力推动下,活塞向下止

点运动,活塞的下移通过连杆使曲轴旋转运动,产生转矩而作功。发动机至此完成了一次将热能转变为机械能的过程。

c)作功行程; d)排气行程;

图上曲线zb表示作功行程。

4.排气行程

当作功行程接近终了时排气门打开,进气门仍关闭,因废气压力高于大气压而自动排出,此外,当活塞越过下止点上移时,还靠活塞的推挤作用强制排气。活塞到上止点附近时,排气行程结束。

示功图上曲线br表示排气行程。

(三)四冲程柴油机工作原理

四冲程的柴油机(压燃式发动机),用的燃料是柴油,其粘度比汽油大,不易蒸发,而其自燃温度却比汽油低,故可燃混合气的形成及点火方式都与汽油机不同。

1.进气行程

它不同于汽油机的是进入气缸的不是可燃混合气,而是纯空气。

2.压缩行程

不同于汽油机的是压缩的是纯空气,且由于柴油机压缩比高,压缩终了的温度和压力都比汽油机高,压力可达3MPa~5MPa,温度可达800K—1000K。

3.作功行程

此行程与汽油机有很大不同,在柴油机压缩行程末,喷油泵将高压柴油经喷油器呈雾状喷人气缸内的高温空气中,迅速汽化并与空气形成混合气,由于此时气缸内的温度远高于柴油的自燃温度(约500K左右),柴油便立即自行着火燃烧,且此后一段时间内边喷油边燃烧,气缸内压力、温度急剧升高,推动活塞下行作功。

4.排气行程

与汽油机基本相同。排气终了气缸内压力约为0.105 MPa—0.125Mpa, 温度约为(

程发

飞压

高气时

800K-1000K。

四冲程发动机的工作特点:

(1)每一个发动机工作循环,曲轴转两周(720。),每一个行程曲轴转半周(180。),进气行程是进气门开启,排气行程是排气门开启,其余两个行程进、排气门均关闭。

(2)四个行程中,只有作功行程产生动力,其他三个行程是为作功行程做准备工作的辅助行程。

(3)在发动机运转的第一循环时,必须有外力使曲轴旋转完成进气、压缩行程,着火后,完成作功行程,并依靠曲轴和飞轮贮存的能量便可自行完成以后的行程,以后的工作循环发动机无需外力就可自行完成。

柴油机与汽油机的不同之处:

(1)汽油机的混合气是在气缸外部的化油器中形成的,而柴油机的混合气是在气缸内部形成的。柴油机在进气行程时,被吸人气缸内的是纯空气。

(2)汽油机在压缩终了时,靠火花塞强制点火,而柴油机则靠自燃。

(四)二冲程汽油机的工作原理

活塞在气缸内往复运动两个行程(相当于曲轴旋转一周)完成一个工作循环的发动机,称为二冲程发动机。

1.第一行程

活塞在曲轴的带动下,由下止点向上止点运动,当活塞上行到将换气口、排气口关闭时,已进入气缸的混合气被压缩,直到活塞运动到上止点,压缩行程便结束。

随着活塞上行,曲轴箱容积增大,形成一定的真空度。当活塞上行到进气口露出时,新鲜混合气被吸人曲轴箱内。

2.第二行程

当活塞上行到接近上止点时,火花塞产生电火花,点燃缸内的可燃混合气,混合气着火燃烧产生高温、高压,在气压的作用下,活塞由上止点向下止点运动,带动曲轴旋转向外输出功率。

当活塞下移到将进气口堵死时,随着活塞继续下移,曲轴箱内的新鲜混合气被预压。

当活塞下行到排气口露出时,燃烧后的废气在自身压力下经排气口排出气缸,紧接着换气口开启,曲轴箱内被预压的混合气经换气口进入气缸。这一过程称为“换气过程”,它一直延续到下一个行程活塞上行到将换气口、排气口关闭为止。

由上述可知,第一行程:活塞上方进行换气、压缩,活塞下方进气;第二行程:活塞上方进行作功、换气,活塞下方混合气被预压,换气过程纵跨两个行程。

(五)二冲程柴油机工作原理

二冲柴油机工作原理同二冲程汽油机工作原理有很多相似之处,所不同的是进入气缸的不是混合气,而是纯空气。新鲜空气由换气泵提高压力(约120kPa—140kPa)后,经气缸外部的空气室和气缸上的进气口进入气缸内,而废气由专设的排气门排出。

比较上述四冲程发动机与二冲程发动机的工作原理可以看出,二冲程发动机具有以下特点:

(1)四冲程发动机的进、排气是两个分开的专门过程,而二冲程发动机单纯排气(或进气)时间极短,是一个几乎完全重叠的、以新鲜气体清扫废气的换气过程。

(2)完成一个工作循环,二冲程发动机的曲轴只需转一圈,而四冲程发动机的曲轴需要转两圈。因此,当发动机工作容积、压缩比和转速相等时,从理论上讲,二冲程发动机

的功率应为四冲程发动机功率的两倍,但实际上,只有1.5—1。6倍。二冲程发动机比四冲程发动机的经济性差。

(3)当转速相同时,二冲程发动机的作功次数较四冲程发动机多一倍。因此,二冲程发动机运转较平稳,这对单缸发动机来说更为明显。

(4)由于二冲程发动机没有气门或只有排气门,从而省去了配气机构或使配气机构较为简单,简化了发动机的结构。

由于二冲程汽油机有混合气损失,其经济性差,排放污染严重、,在大中型汽车上的应用受到了限制。但由于它结构简单、质量轻、制造成本低等优点,轻便摩托车和微型汽车的小排量发动机广泛采用,二冲程柴油机由于换气时进入气缸的是纯空气,没有燃料损失,仍为一些汽车所采用。

三、内燃机产品名称和型号编制规则

内燃机产品名称均按所采用的燃料命名,例如柴油机、汽油机、煤气机、沼气机、双(多种)燃料发动机等。

内燃机型号由下列四部分组成:

(1)首部:为产品系列符号和(或)换代标志符号,由制造厂根据需要自选相应字母表示,但需主管部或部主管标准化机构核准。

(2)中部:由缸数符号、冲程符号、气缸排列形式符号和缸径符号组成。

(3)后部:结构特征和用途特征符号,以字母表示。

(4)尾部:区分符号。同一系列产品因改进等原因需要区分时,由制造厂选用适当符号表示

型号编制示例:

柴油机:

6135Q--表示六缸,四冲程,缸径135nun,水冷,车用

4120F--表示四缸,四冲程,缸径120mm,风冷,通用型。

12V135ZG--表示12缸,V形、四冲程,缸径135mm,水冷,增压,工程机械用。

汽油机:

1E65F--表示单缸、二冲程,缸径65mm、风冷、通用型。

4100Q--表示四缸、四冲程,缸径100mm、水冷、车用。

小结

1、发动机的定义。

2、发动机由两个机构和五个系统组成及各自的功用。

3、发动机排量及压缩比的计算。

4、四冲程,二冲程发动机的定义及工作循环过程。

5、柴油机与汽油机在工作原理上的区别。

第一章第三.四节发动机的性能指标

一.发动机的有效指标

发动机的有效指标是以曲轴输出功率为基础的指标,它比指示指标更有实用价值。

(一)发动机动力性指标

1.有效功率Pe

发动机曲轴所输出的功率,称为有效功率Pe.有效功率Pe,等于指示功率Pi与机械损失功率Pm之差。

Pe=Pi-Pm km

2.有效转矩Me

由发动机曲轴输出的转矩,称为有效转矩Me.

Me=9549.Pe/n N.m

其中:n——转速,r/min。

3.平均有效压力pe

发动机单位气缸工作容积输出的有效功,称为平均有效压力pe.

Pe=We/Vh

pe值越大,则单位气缸工作容积输出功越多,输出转矩越大。pe值是发动机重要的动力指标之一。

(二)发动机经济性指标

1.有效热效率η e

循环的有效功与所消耗燃料的热量之比,称为有效热效率η e.

2.有效燃料消耗率ge

单位有效功所消耗燃油的量,称为有效燃油消耗率ge。通常以每有效千瓦·小时的耗油量表示。

ge=G

/Pe g/(kw.h)

T

二.发动机的热平衡

在汽车发动机中,燃油燃烧所放出的热量,只有25%-40%转变为有效功,其余大部分热量随着废气和冷却水等发动机中排出。热平衡用来表示这些热量的分配情况。

燃油燃烧发出的热量QT大致分配如下:

(一)转化为有效功的热量Qe

Qe越大,转变为有效功的热量越多,发动机的性能越好。Qe/QT值:汽油机20%—30%;柴油机30%-40%。

(二)传给冷却介质的热量Qs

Qs包括:工质向缸壁及燃烧室散出的热量;废气在排气道内散失的热量;摩擦发热所散失的热量;从润滑油中散失的热量。

(三)废气带走的热量Q

汽油机40%-45%;柴油机35%-40%.

(四)其他热损失Ql

除上述三项以外的热损失,都包括在其他热量损失Ql之内。例如,燃油不完全燃烧的热损失及其他没有计及的热损失等。

三.发动机的机械损失

发动机的功率在内部传递过程中,存在的各种损失,这些损失称为机械损失,它主要包括以下三个方面:

(1)发动机内部运动机件的摩擦损失。如活塞环及活塞与壁间的摩擦,和轴承与轴颈

间的摩擦,气门传动机构的摩擦,油封处的摩擦等。这部分损失占总损失的60%—75%。

(2)驱动附属机构的损失。如驱动冷却水泵、风扇、机油泵、点火装置或喷油泵的损

失,它约占总机械损失的

(3)泵气损失。约占总机械损失的10%~20%。

发动机的进气过程和排气过程,统称为换气过程。其任

务是将废气尽可能排除干净,吸人更多的新鲜混合气,使发

动机尽可能发出大的功率与转矩。

发动机上一循环排气门开启直到下一循环进气门关闭

的整个时期,称为四冲程发动机的换气过程,它约占410~~

480~曲轴转角。

五.四冲程发动机的充气效率

充气效率(充气系数)ηv:实际进入气缸的新鲜空气量△G

大气状态下充满气缸工作容积的新鲜空气量△Go之比称为充

气效率,即:

ηv=△G/△Go

充气效率ηv是评价发动机换气过程完善程度的指标。

小结

1.发动机的有效指标:动力性指标:Pe,Me,pe。

经济性指标:ηe,ge。

2.发动机的热平衡方程。

3.非增压四冲程发动机的配气相位图。

第一章第五.六节汽油机的燃烧过程

一.汽油的组成及主要性能指标

(一)燃油简介

汽油与柴油都是用石油炼制的。石油主要包含了碳和氢两种元素,是各种烃的混合物。

(二)汽油的主要性能指标

汽油的使用性能指标主要有蒸发性和抗爆性。

1.汽油的蒸发性

汽油应该是快速地、无杂质地蒸发,衡量指标是10%、50%、90%蒸发温度。

10%蒸发温度标志汽油的起动性。

50%蒸发温度标志汽油的平均蒸发性。

90%蒸发温度标志中含有难以蒸发的重质成分,该温度太高,在燃烧室内易形成杂质,并稀释润滑油。

2.汽油的抗爆性

抗爆性是指汽油在燃烧室内燃烧时抵抗爆燃的能力,其评定指标辛烷值。

3.国产汽油规格

车用汽油有90号、93号、97号三种牌号。

二、汽油机混合气的形成

(一)化油器式汽油机的混合气形成过程

化油器式混合气的形成过程是:空气经空气滤清器进人化油器,在流经喉管时,流速增加,压力降低,在喉管中形成一定的真空度,将汽油从浮子室经主喷管吸出,被吸

出来的汽油正好喷人流过喉管的空气中,在高速空气流的冲击下被雾化成细小颗粒,并

不断蒸发、扩散,与空气混合成可燃混合气。

(二)汽油直接喷射式的混合气形成过程

汽油直接喷射系统混合气的形成是在进气管或气缸中进行的。喷油器将来自供油系统具有一定压力的汽油喷到各缸进气道的进气门前(多点喷射)或喷到节气门前方的进气管内(单点喷射)或直接喷人气缸(缸内喷射),与来自空气供给系统的新鲜空气在缸外(进气管喷射)或缸内(缸内喷射)相混合形成可燃混合气。

三、汽油机的燃烧过程

汽油机的燃烧过程包括着火和燃烧两部分。从压缩行程上止点前火花塞点火开始到膨胀行程燃料基本上烧完为止,燃烧持续较短(约占250-400转角),其燃烧过程接近于定容燃烧。

1.混合气浓度的表示方法

(1)燃烧lkg燃料提供的空气量L与理论上所需空气量Lo之比,称为过量空气系数α,即α=L/Lo。

(2)混合气所含空气质量A与燃料质量F之比称为空燃比,即A/F来表示可燃混合气成分。理论上,lkg汽油完全燃烧所需要的最少空气量约为14.7ks,被称为理论空气量。

把过量空气系数α二1,空燃比A/F=14.7的可燃混合气叫做理论混合气;α<1,A /F<14.7的可燃混合气叫做浓混合气;α>1,A/F>14.7的可燃混合气叫做稀混合气(三)正常燃烧过程

图所示为汽油机工作过程中缸内压力的变化关系。

汽油机的燃烧过程

I-着火延迟期;II…急燃期;Ⅲ-》L燃期;θ—点火提前角

1-开始点火;2—形成火焰中心;3—最高压力点

燃烧过程分为三个阶段:着火延迟期、急燃期、补燃期。

1.着火延迟期

从火花塞电极间跳过火花(点1)起,到形成火焰中心(点2)为止的这段时间,称为着火延迟期。图中用I阶段表示。

2.急燃期

从火焰中心形成起,火焰前锋按近似球面的形状向未燃混合气,到火焰掠过整个燃烧室,主要部分混合气燃烧完毕,因而出现最高压力(点3)为止称为急燃期,图中用

Ⅱ阶段表示。

3.补燃期

汽油蒸发不良及与空气混合不均匀时,部分颗粒较大的燃油在火焰前锋掠过时,只是表层燃油被燃烧,未燃烧的部分需要在补燃期内燃烧。补燃使排气温度增加,热效率下降。因此,希望尽可能减少补燃。

(四)不正常燃烧

汽油机的不正常燃烧,包括爆震燃烧和表面点火。

1.爆震燃烧

如果火焰前锋到达以前,未燃混合气已达到它的自燃温度而自行着火,形成新的火焰中心,产生新的火焰传播,这种现象称为爆燃。

严重的爆燃会有下列危害:

(1)机件过载

爆燃时的冲击波使缸壁、缸盖、活塞、连杆、曲轴等机件过载,使机件变形,甚至使机件损坏。

(2)机件烧损:活塞头部和气门等机件烧损。

(3)性能指标下降

发动机过热:有效功率降低,有效耗油率增加。

预防措施:主要有:使用抗爆性强的汽油可以避免爆燃的产生,另外,如减小压缩比、采用双火花塞等以及改变运行因素如负荷、转速等措施。

2.表面点火

不靠火花塞点火而由燃烧室内炽热物点燃混合气的燃烧现象,称为表面点火。

燃烧室内炽热物如:过热的火花塞电极、热的排气门、热的燃烧表面沉积物等。

导致燃烧过程的不稳定与工作过程的粗暴,使动力性、经济性都受到影响。避免表面点火的有效措施是采用低馏程的燃料与不易结焦的润滑油。

排放污染物的形成与危害

1.一氧化碳CO

一氧化碳产生的原因,主要是由于燃烧时氧气相对不足,燃油中的碳不能与足够的氧结合、燃料燃烧不完全而产生的。

2.氧化氮NOx

氧化氮NOx是在燃烧过程高温高压的作用下产生。

3.碳化氢HC

碳化氢HC产生,主要是未燃的燃料、裂解反应的中间产物, 使用中混合气过浓、过稀、雾化不良、断火等产生的燃烧不良或不能燃烧,也会造成HC的增加。

4.微粒

微粒的主要组成是碳粒,其他还有少量的硫酸盐类微粒。柴油机燃烧过程的微粒排放比较严重。汽油机的碳粒排放很少。但是,用含铅汽油时,微粒中有铅的化合物.

(二)控制排气污染的措施

发动机排放污染物的防治措施,可归纳为三个方面

1:前处理

2:机内净化

3:机外净化

小结

1.汽油的抗爆性评定指标是辛烷值。

2.汽油机混合气浓度的表示方法:(1)过量空气系数α;(2)空燃比。3.汽油机的不正常燃烧,包括爆震燃烧和表面点火。

4.排放污染物的形成与危害。

发动机地工作原理

发动机的工作原理及发展趋势 摘要: 发动机在汽车生产方面起着核心性作用,而我国发动机产业由于起步较晚,相对于国外的发动机产业来说在动力性、经济性、环保性方面都不理想。近20 年来, 面对世界石油资源日趋枯竭给社会发展带来的压力,世界汽车界不停地在寻找实现汽车工业可持续发展的解决方法。

一、引言 发动机是的工业的心脏,生活的助力器,它与我们的生活密不可分。 发动机在国外的发展已有上百年的历史了,但国内的发动机制造技术却还处于起步阶段,本文主要讨论汽车发动机的发展史、工作原理、种类、故障原因及国内发动机的未来发展趋势。掌握国内发动机的工作生产需求方向,了解国内现有的发动机生产工艺,是在今后的发动机制造生产中不可缺少的基础。 二、发动机的发展史 18世纪中叶,瓦特发明了蒸气机,此后人们开始设想把蒸汽机装到车子上载人。法国的居纽是第一个将蒸汽机装到车子上的人。1770年,居纽制作了一辆三轮蒸汽机车。这辆车全长米,时速为公里,是世界上第一辆蒸汽机车。 1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。发动机用煤气和空气的混合气体取代往复式蒸汽机的蒸汽,使用电池和感应线圈产生电火花,用电火花将混合气点燃爆发。这种发动机有气缸、活塞、连杆、飞轮等。煤气机是内燃机的初级产品,因为煤气发动机的压缩比为零。 1867年,德国人奥托受里诺研制煤气发动机的启发,对煤气发动机进行了大量的研究,制作了一台卧式气压煤气发动机,后经过改进,于1878年在法国举办的国际展览会上展出了他制作的样品。由于该发动机工作效率高,引起了参观者极大的兴趣。在长期的研究过程中,奥托提出了内燃机的四冲程理论,为内燃机的发明奠定了理论基础。德国人奥姆勒和卡尔·本茨根据奥托发动机的原理,各自研制出具有现代意义的汽油发动机,为汽车的发展铺平了道路。 1892年,德国工程师狄塞尔根据定压热功循环原理,研制出压燃式柴油机,并取得了制造这种发动机的专利权。 1957年,德国人汪克尔发明了转子活塞发动机,这是汽油发动机发展的一个重要分支。转子发动机的特点是利用内转子圆外旋轮线和外转子圆内旋轮线相结合的机构,无曲轴连杆和配气机构,可将三角活塞运动直接转换为旋转运动。它的零件数比往复活塞式汽油少40%,质量轻、体积小、转速高、功率大。1958年汪克尔将外转子改为固定转子为行星运动,制成功率为千瓦、转速

转子发动机的工作原理

转子发动机的工作原理 在过去的400年中,许多发明家和工程师一直都想开发一种连续运转的内燃机。人们希望有朝一日往复活塞式内燃机将被优雅的原动力引擎所取代,它的运动轨迹应该非常接近人类伟大的发明之一:轮子。 实际上,在十六世纪末期,在出版物中首次出现“连续运转内燃机”的说法。连杆和曲柄机构的发明人沃特詹姆斯 (1736-1819),也曾研究转子式内燃机。特别是在过去的150年里,发明者提出了许多关于转子发动机结构的提案。在1846年,人们画出了当今转子发动机工作室的几何结构,设计了使用外旋轮线的第一辆概念发动机。但是,这些概念都没有实用化,直到汪克尔菲加士博士在1957年研制出汪克尔转子发动机。 汪克尔博士通过研究和分析各种转子发动机类型的可行性,找到了旋轮线壳体的最佳形状。他对飞机发动机上所用的回转阀以及增压器的气密性密封机构具有深刻的了解,这些机构在其设计中的使用,使汪克尔型转子发动机得以实用化。 现代的转子发动机由茧形壳体(一个三角形转子被安置在其中)组成。缸体内部空间总是被分成三个工作室,转子转动这些工作室也在运动。依次在摆线型缸体内的不同位置完成进气、压缩、作功(燃烧)和排气四个过程。 转子和壳体壁之间的空间作为内部燃烧室,通过气体膨胀的压力驱动转子旋转。和普通内燃机一样,转子发动机必须在其工作室

中相继形成四个工作过程。如果将三角形的转子放置在圆形壳体的中心部,工作室将不会随着壳体内部转子的旋转而在体积上发生变化。即使空燃混合气在那里点燃,燃烧气体的膨胀压力也仅作用在转子的中部,不会产生旋转。这就是为什么壳体的内侧圆周被设计成旋轮线外形并和安装在偏心轴上的转子组装在一起的原因。因此,每转一圈,工作室的体积变化两次,从而实现内燃机的四个工作过程。 在汪克尔型转子发动机上,转子的顶点随着发动机壳体内圆周的椭圆形壳体而运动,同时保持与围绕在发动机壳体中心的一个偏心轨道上的输出轴齿轮的接触。三角形转子的轨道是用一个相位齿轮机构来规定的。相位齿轮包括安装在转子内侧的一个内齿圈和安装在偏心轴上的一个外齿轮。如果转子齿轮在其内侧有30个齿,轴齿轮将在其外原周上有20个齿,由此得到其齿数比为3:2。由于这一齿数比,转子和轴之间的转速比被限定为1:3。和偏心轴相比,转子有较长的转动周期。转子转动一圈,偏心轴转动三圈。当发动机转速为3000 转/分时,转子的速度只有1000 转/分。

解析水平对置发动机及转子发动机

水平对置发动机通常也被称为B型发动机,如B6、B4,分别代表水平对置6缸和4缸发动机。B 是英文单词“Boxer”(拳击手)的第一个字母。由于水平对置发动机的气缸呈水平相对的方式排列,活塞在水平方向上进行往复运动,就像是拳击手在出拳搏击一样,B型发动机也因此而得名。所以水平对置发动机通常也被称为BOXER。? ? 水平对置发动机通常也被称为BOXER? 如果我们将水平对置发动机的构造理解为是把V型发动机两排气缸的夹角加大到180度而形成的,那么就很好理解水平对置发动机的几大特点了。水平对置发动机的本质依然为往复活塞式内燃机,依然采用了曲柄连杆机构作为运动系统,依然有进气、压缩、做功、排气四个冲程,这就决定了水平对置发动依然会有普通发动机的一些优缺点,但也正因为它独特的气缸排列形式又有它自己独有的优缺点。? ? 水平对置发动机结构图? ? 可以把水平对置发动机的构造理解为V型发动机夹角加大到180度(动态演示)? 水平对置发动机的一个显著优点就是重心低,如果我们对比水平对置和V型发动机,就可以很好理解水平对置发动机重心低的这个优点了。如果再将所有的运动部件看作质点的话,那么他们都在一个水平面上,自然重心也就在该水平面上了。重心低这个优点直接增加了车辆行驶稳定性,高速过弯时车辆的侧倾更小,减小了侧翻的可能。? ? 水平对置发动机结构图(对比直列式与V型发动机)? 水平对置发动机将气缸放在一条直线上当然高度自然就会降低,这与前面所说的造成重心低那个优点的原因有些类似,而发动机整体高度较小就便于在有限的发动机舱中增加涡轮增压器的装置。保时捷一直钟情于水平对置式发动机有很大一部分原因是源于它的这个优点,因为保时捷911车型都采用了“溜背”式的外形设计和后置后驱的驱动方式,这就需要高度较小的发动机来提供动力。? ? 水平对置发动机实拍图? 低振动是水平对置发动机的另外一大优点,活塞运动的平衡良好(180度左右抵消),相比直列式,在曲轴方面所需的平衡配重因素减少,有助转速提升。它能保持650转的低转速,并保证发动机平稳的工作。? ? 水平对置发动机近景实拍? 既然水平对置发动机拥有以上诸多优点,那为什么目前在全球市场,一直采用水平对置发动机的只有保时捷和斯巴鲁两个厂商?必然是它存在一定的缺点。首先是,润滑系统不太理想,技术要求很高;其次是冷却系统也要求很严格;最重要的是它的制造成本要比V型发动机还高,之前我们介绍的一大优点——振动小是种理想状态,要在实际工作中达到这种理想状态,对发动机制造工艺和零部件装配精度的要求较高,因此制造成本相比常见的直列或V型发动机高出不少,而且维修保养难度较大。? 保时捷水平对置发动机技术? 保时捷的水平对置引擎最早是从6缸2.0L风冷开始的。911从诞生的头一天开始就是高性能跑车,因此保时捷引擎上面使用了昂贵的尖端技术。911是后纵置引擎后轮/四轮驱动布局风冷设计,引擎仓可用空间不多,保时捷设计之初只预留2.7L的空间认为2.7L是一个极限。?

康明斯电喷发动机故障代码资料

注意:此翻译稿仅供参考,所有内容以英文原版公告AEB15.43为准。

第I节 - Quantum诊断 先进的诊断技术 先进的诊断技术可对Quantum发动机进行简单的维修和服务。故障或保养条件的诊断检验可通过机载或非机载系统进行。 机载诊断 ?ECM具有大范围检测故障的能力 ?闪烁故障代码 ?位于驾驶室仪表盘上的故障指示灯可指示警告/停机故障 ?保养指示灯 机载诊断 1. 故障检测 在设备自己工作期间,当钥匙开关处于ON位置时检测故障。如果此时故障变为现行故障(当前检测到),存储器中就会记录故障,同时记录发动机参数速录数据。另外根据现行故障的严重程度,特定的故障可能会使警告指示灯(黄色)或停机指示灯(红色)、保养指示灯或燃油含水(WIF)指示灯变亮。 2. 闪烁故障代码 可通过诊断开关或油门踏板进入故障代码闪烁模式。要进入故障代码闪烁模式,钥匙开关必须处于ON(接通)位置并且发动机停机。使用诊断开关进入该模式时,在诊断开关转到ON位置后,ECM将自动闪烁第一个故障代码。诊断增加/减少将向前或向后调整现行故障代码。要使用油门踏板进入故障代码闪烁模式,必须循环踩下和释放油门踏板,使油门开度连续3次从0到100%。一旦进入诊断模式,循环踩下和释放油门踏板可顺序向前达到现行故障代码。下图描述了通过停机指示灯指示的故障代码闪烁方式的类型。

3. 故障指示灯 Quantum 系统使用多达5个指示灯(每个指示灯具有两种功能):停机指示灯、警告指示灯、保养指示灯/发动机保护指示灯(所有发动机系列使用其中一个,而不是同时使用两个)、等待起动指示灯和燃油含水指示灯。如果钥匙开关转到ON 位置而诊断开关保持断开,这些指示灯将会亮约2秒钟然后熄灭,以证实指示灯正常工作和接线正确。参阅下面的插图,这些指示灯全部变亮然后每次熄灭一个。 警告指示灯 – 用于所有Quantum 发动机 - 警告指示灯提供重要的操作员信息。要求操作员及时注意这些信息。 警告指示灯还用于描述诊断故障代码。 停机指示灯 – 用于所有Quantum 发动机 - 停机指示灯提供紧急的操作员信息。这些信息要求操作者快速响应并采取正确措施。停机指示灯还用于闪烁诊断故障代码。 发动机保护指示灯 – 用于QSK19/45/60, QST30发动机 - 当存在发动机保护故障时,发动机保护指示灯将变亮。可通过OEM 配线配置系统,以便用红色/停机指示灯指示发动机保护故障。这是通过将红色指示灯连接至ECM 的红色/停机指示灯输入和发动机保护指示灯输入来实现的。如果发动机保护指示灯信号用于控制其它功能,如车辆驱动电路,该电路中必须接入一个二极管。 选装 - 2指示灯布置方案- 用于QSK19/45/60发动机 - 选装的2-灯布置方案将取消发动机保护(白色)指示灯。因此,操作员仪表盘上只有一个警告指示灯(黄色)和一个停机指示灯(红色)。所有通过发动机保护指示灯指示的故障将通过停机(红色)指示灯来指示。这种改进只会影响故障指示灯的线路布置,不会影响软件或标定程序。参阅下面的线路图。

汽车发动机的工作原理和各部件作用

汽车发动机的工作原理和各部件作用 汽车, 原理, 发动机 发动机,又称为引擎,是一种能够把一种形式的能转化为另一种更有用的能的机器,通常是把化学能转化为机械能。(把电能转化为机器能的称谓电动机)有时它既适用于动力发生装置,也可指包括动力装置的整个机器.比如汽油发动机,航空发动机. 基本理论 汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。因此,汽车发动机是内燃机----燃烧在发动机内部发生。 有两点需注意: 1.内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。 2.同样也有外燃机。在早期的火车和轮船上用的蒸汽机就是典型的外燃机。燃料(煤、木头、油)在发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。所以,现代汽 车不用蒸汽机。 相比之下,内燃机比外燃机的效率高,比燃气轮机的价格便宜,比电动汽车容易添加燃料。这些优点使得大部分现代汽车都使用往复式的内燃机。 结构 机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。 一. 气缸体 水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却 水套和润滑油道等。 气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常 把气缸体分为以下三种形式。

!发动机基本工作原理

!发动机基本工作原理

发动机基本工作原理 一、基本理论 汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。因此,汽车发动机是内燃机----燃烧在发动机内部发生。 有两点需注意: 1.内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。 2.同样也有外燃机。在早期的火车和轮船上用的蒸汽机就是典型的外燃机。燃料(煤、木头、

油)在发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。所以,现代汽车不用蒸汽机。 相比之下,内燃机比外燃机的效率高,比燃气轮机的价格便宜,比电动汽车容易添加燃料。这些优点使得大部分现代汽车都使用往复式的内燃机。 二、燃烧是关键 汽车的发动机一般都采用4冲程。4冲程分别是:进气、压缩、燃烧、排气。完成这4个过程,发动机完成一个周期(2圈)。 理解4冲程活塞,它由一个活塞杆和曲轴相联,过程如下: 1.活塞在顶部开始,进气阀打开,活塞往下运动,吸入油气混合气 2.活塞往顶部运动来压缩油气混合气,使得爆炸更有威力。

直列4缸V6 水平对置4缸 不同的排列方式使得发动机在顺滑性、制造费用和外型上有着各自的优点和缺点,配备在相应的汽车上。 四、排量 混合气的压缩和燃烧在燃烧室里进行,活塞往复运动,你可以看到燃烧室容积的变化,最大值和最小值的差值就是排量,用升(L)或毫升(CC)来度量。汽车的排量一般在1.5L~4.0L之间。每缸排量0.5L,4缸的排量为2.0L,如果V型排列的6汽缸,那就是V6 3.0升。一般来说,排量表示发动机动力的大小。 所以增加汽缸数量或增加每个汽缸燃烧室的容

涡轮发动机的工作原理、特点

一.涡轮发动机的工作原理、特点 答:1.燃气涡轮喷气发动机 工作原理:航空燃气涡轮喷气发动机是一种热机,将燃油燃烧释放出的热能转变为流经发动机气流的动能。由于气流的速度增加而直接产生反作用推力,因此,这种发动机既是热机也是推进器 特点:与航空活塞发动机相比,燃气涡轮喷气发动机结构简单,重量轻,推力大,推进效率高,而且在很大的飞行速度范围内,发动机的推力随飞行速度的增加而增加,然而其较高的耗油率逐渐被涡扇发动机所替代。 2.涡轮风扇发动机 组成:进气道、风扇、低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮和喷管工作原理:涡扇发动机内路的工作情形与涡喷发动机相同。即流入内含的空气通过高速旋转的风扇,低压压气机和高压压气机对空气做功,压缩空气,提高空气压力。高压空气在燃烧室内和燃气混合,燃烧,将化学能转变为热能,形成高温高压的燃气。高温高压燃气首先在高压涡轮内膨胀,推动高压涡轮旋转,去带动高压压气机,然后再低压涡轮内膨胀,推动低压涡轮旋转,去带动低压压气机和风扇,最后燃气通过喷管排入大气产生反作用推力。 特点:与涡喷发动机相比,涡扇发动机具有推力大,推进效率高,噪音低,在一定的飞行速度范围内燃油消耗率低等优点。但涡扇发动机结构复杂,速度特性差。目前民航干线飞机大多装配涡扇发动机。 二.轴流式压气机的基元增压原理 答:轴流式压气机主要是利用扩散增压的原理来提高空气压力的。(根据气动知识得知亚音速气流流过扩张形通道时)速度降低,压力升高。参数分析。 基元级组成:由工作叶栅和整流器叶栅组成,两处叶栅通道均是扩形的 三.压气机转子的结构形式分析图3-40 答:(图3-40为CFM56发动机风扇后增压级转子,鼓筒靠精密螺栓固定于风扇轮盘后端,其外圆上作出三道凸缘,用拉刀一次拉出三级燕尾形榫槽,因此三级叶片数目相同,虽然对性能有一定影响,但加工却大大地简化) 轴流式压气机转子的基本结构型式有三种:鼓式盘式鼓盘式 特点 鼓式:结构简单、零件数目少、加工方便、有较高的抗弯刚度,但由于受到强度的限制,目前在实际中应用的不广泛。 盘式:强度好,但抗弯刚性差,并容易发生振动。目前这种简单的盘式转子只用于单盘或小流量的压气机上。 鼓盘式:这种转子兼有鼓式转子抗弯性好和盘式转子强度高的优点在发动机广泛应用。 四.燃烧室的分类工作过程优缺点 分类:管型燃烧室,环型燃烧室,管环型燃烧室。 工作过程:发动机工作时,被压气机压缩的空气,进入燃烧室,它一边向后流动,一边与喷嘴喷出的燃油混合,组成混合气。发动机起动时,混合气由点火装置产生的火花点燃:起动后,点火装置不再产生火花,新鲜混合气全靠已燃混合气的火焰引火而燃烧。 混合气在燃烧室内燃烧时,喷嘴喷出的燃油与燃烧室中流动的空气不断混合组成新的混合气,以供连续不断的燃烧之用,这样就形成了燃边油与空气混合边燃烧的连续不断的

康明斯电喷发动机故障代码

注意:此翻译稿仅供参考,所有内容以英文原版公告为准。

第I节 - Quantum诊断 先进的诊断技术 先进的诊断技术可对Quantum发动机进行简单的维修和服务。故障或保养条件的诊断检验可通过机载或非机载系统进行。 机载诊断 ECM具有大范围检测故障的能力 闪烁故障代码 位于驾驶室仪表盘上的故障指示灯可指示警告/停机故障 保养指示灯 机载诊断 1.故障检测 在设备自己工作期间,当钥匙开关处于ON位置时检测故障。如果此时故障变为现行故障(当前检测到),存储器中就会记录故障,同时记录发动机参数速录数据。另外根据现行故障的严重程度,特定的故障可能会使警告指示灯(黄色)或停机指示灯(红色)、保养指示灯或燃油含水(WIF)指示灯变亮。 2.闪烁故障代码 可通过诊断开关或油门踏板进入故障代码闪烁模式。要进入故障代码闪烁模式,钥匙开关必须处于ON(接通)位置并且发动机停机。使用诊断开关进入该模式时,在诊断开关转到ON位置后,ECM将自动闪烁第一个故障代码。诊断增加/减少将向前或向后调整现行故障代码。要使用油门踏板进入故障代码闪烁模式,必须循环踩下和释放油门踏板,使油门开度连续3次从0到100%。一旦进入诊断模式,循环踩下和释放油门踏板可顺序向前达到现行故障代码。下图描述了通过停机指示灯指示的故障代码闪烁方式的类型。

3. 故障指示灯 Quantum 系统使用多达5个指示灯(每个指示灯具有两种功能):停机指示灯、警告指示灯、保养指示灯/发动机保护指示灯(所有发动机系列使用其中一个,而不是同时使用两个)、等待起动指示灯和燃油含水指示灯。如果钥匙开关转到ON 位置而诊断开关保持断开,这些指示灯将会亮约2秒钟然后熄灭,以证实指示灯正常工作和接线正确。参阅下面的插图,这些指示灯全部变亮然后每次熄灭一个。 警告指示灯 – 用于所有Quantum 发动机 - 警告指示灯提供重要的操作员信息。要求操作员及时注意这些信息。 警告指示灯还用于描述诊断故障代码。 停机指示灯 – 用于所有Quantum 发动机 - 停机指示灯提供紧急的操作员信息。这些信息要求操作者快速响应并采取正确措施。停机指示灯还用于闪烁诊断故障代码。 发动机保护指示灯 – 用于QSK19/45/60, QST30发动机 - 当存在发动机保护故障时,发动机保护指示灯将变亮。可通过OEM 配线配置系统,以便用红色/停机指示灯指示发动机保护故障。这是通过将红色指示灯连接至ECM 的红色/停机指示灯输入和发动机保护指示灯输入来实现的。如果发动机保护指示灯信号用于控制其它功能,如车辆驱动电路,该电路中必须接入一个二极管。 选装 - 2指示灯布置方案- 用于QSK19/45/60发动机 - 选装的2-灯布置方案将取消发动机保护(白色)指示灯。因此,操作员仪表盘上只有一个警告指示灯(黄色)和一个停机指示灯(红色)。所有通过发动机保护指示灯指示的故障将通过停机(红色)指示灯来指示。这种改进只会影响故障指示灯的线路布置,不会影响软件或标定程序。参阅下面的线路图。

转子发动机工作原理

转子发动机工作原理 我们都知道,一般车辆使用的是4行程活塞发动机,要上下各两次才能完成一次循环,所以被称为4行程发动机。而转子发动机并没有活塞,只有一颗三角弧形的转子。当然也没有气缸壁,只有一个蚕茧形的气室,而转子就是在这蚕茧形的气室内转动。转子在气室内不是规矩的绕着轴心转动,如果转子真的是绕着固定轴心转动,那气室的形状将会是圆形,进气,压缩,爆炸,排气的内燃机四个行程将不存在,所以转子的驱动轴是偏心的,也就因为驱动轴是偏心的,所以转子才能在蚕茧形气室内上下旋转,因此气室才会设计成蚕茧形。 气室被三角弧形转子分成了三份,旋转时大小会不断变化,这些变化量就是转子发动机的排气量。这时只要在气室的侧壁上下开孔,下孔就会因转子压缩气室内的空间而变成排气孔,而没有开口的腰部,空气就会被压缩,只要有火花塞点火就可以引爆混合汽油空气产生膨胀,推动转子旋转,而混合燃油的空气则由上空吸入,这样转子发动机就完成了进气,压缩,爆炸,和排气四个行程。 因为转子是三角弧形的,所以有三个独立运作的空间,于是转子转一圈就会有三次的动力行程;转子中间还有一个很重要的设计,那就是转子齿与驱动齿的齿比绝对是3:2,所以转子转一圈驱动轴转三圈,这就是转子发动机驱动轴可以轻易达到10000r/min的高转速的原因;而4行程活塞发动机若要达到每一转就有一次动力则需要两气缸,也就是说相同的转速下,一个转子相当于两气缸;四冲程发动机由于每两转完成四个行程,所以动力行程为半圈180度,而转子转一圈驱动轴转了三圈,所以动力行程为3/4圈270度,每次动力行程较四冲程活塞发动机多了50度,再加上同转速下一个转子=两个气缸,就变成动力时

转子发动机的结构原理

摘要 目前在商品汽车上普遍使用往复式活塞发动机。还有一种知名度很高,但应用很少的发动机,这就是三角活塞旋转式发动机。转子发动机又称为米勒循环发动机。它采用三角转子旋转运动来控制压缩和排放,与传统的活塞往复式发动机的直线运动迥然不同。这种发动机由德国人菲加士·汪克尔发明,在总结前人的研究成果的基础上,解决了一些关键技术问题,研制成功第一台转子发动机。 本文将简要介绍转子发动机的发展历史、结构、工作原理、以及其特点和发展方向。

目录 第一章转子发动机的发展历程 第一节转子发动机的发明 第二节转子发动机的应用 第二章转子发动机的主要结构 第一节转子发动机总成 第二节转子发动机的主要零件 第三章转子发动机的工作原理 第一节转子发动机的工作过程 第二节转子发动机与传统发动机的比较 第四章转子发动机的特点及发展方向第五章结论

第一章转子发动机的发展历程 发动机是汽车最为关键的部分,是决定车子性能的最重要的因素,犹如人的心脏。大部分人都知道我们日常用的是活塞往复式发动机,又分为两冲程发动机和四冲程发动机,但是还有一种不为大部分人所熟知应用很少的发动机,那就是转子发动机,又叫汪克尔发动机。这种发动机的结构紧凑轻巧,运转宁静畅顺,也许会取替传统的活塞式发动机。 第一节转子发动机的发明 1959年,世界上第一台转子发动机才由德国工程师菲利克斯·汪克尔发明出来,第一台转子发动机名为KKM400型转子发动机。 汪克尔于1902年出生在德国,1921年到1926年受雇于海德堡一家科技出版社的销售部。在1924年,汪克尔在海德堡建立了自己的公司,他花了大量的时间在那里进行转子发动机的研制,在1927年,诸如气密性和润滑等的一系列技术问题的攻克终于有了眉目。60年初在德国生产出第一辆装配了转子发动机的小跑车。 实际上在过去的400年中,许多发明家和工程师一直都想开发一种连续运转的内燃机。人们希望有朝一日往复活塞式内燃机将被优雅的原动力引擎所取代,它的运动轨迹应该非常接近人类伟大的发明之一:轮子。 在十六世纪末期,在出版物中首次出现"连续运转内燃机"的说法。连杆和曲柄机构的发明人詹姆斯.沃特(James Watt, 1736-1819),也曾研究转子式内燃机。特别是在过去的150年里,发明者提出了许多关于转子发动机结构的提案。直到1959年汪克尔博士通过研究和分析各种转子发动机类型的可行性,找到了旋轮线壳体的最佳形状。他对飞机发动机上所用的回转阀以及增压器的气密性密封机构具有深刻的了解,这些机构在其设计中的使用,使汪克尔型转子发动机得以实用化。

发动机工作原理

发动机工作原理 第一节 发动机的分类和基本构造 1. 分类 车用内燃机(internal combustion engine ),根据其将热能转变为机械能的主要构件的型式,可分为活塞式内燃机和燃气轮机两大类。前者又可按活塞运动方式分为往复活塞式内燃机(reciprocating engine )和旋转活塞式内燃机两种。往复活塞式内燃机在汽车上应用最为广泛,是本课研究的重点。汽车(automobile )发动机(主要指车用往复活塞式内燃机)分类方法很多,按照不同的分类方法可以把汽车发动机分成不同的类型,下面是其分类 情况。 (1) 按照所用燃料分类 内燃机按照所使用燃料的不同可以分为汽油机 (gasoline engine )和柴油机(diesel engine)(图1-1)。使用汽油为燃料的内燃机称为汽油机;使用柴油机为燃料的内燃机称为柴油机。汽油机与柴油机比较各有特点;汽油机转速高,质量小,噪音小,起动容易,制造成本低;柴油机压缩比大,热效率高,经济性能和排放性能 都比汽油机好。 (2) 按照行程(stroke)分类 内燃机按照完成一个工作循环(operating cycle)所需的行程数可分为四行程内燃机(four - stroke cycle engine)和二行程内燃机(two - stroke cycle engine) (图1-2 )。把曲轴转两圈(720°),活塞在气缸内上下往复运动四个行程,完成一个工作循环的内燃机称为四行程内燃机;而把曲轴转一圈(360°),活塞在气 U n R e g i s t e r e d

缸内上下往复运动两个行程,完成一个工作循环的内燃机称为二行程内燃机。汽车发动机广 泛使用四行程内燃机。 (3) 按照冷却方式分类 内燃机按照冷却方式不同可以分为水冷发动机 (liquid - cooled engine) 和风冷发动机(air - cooled engine)(图1-3)。水冷发动机是利用在气缸体和气缸盖冷却水套中进行循环的冷却液(coolant)作为冷却介质进行冷却的;而风冷发动机是利用流动于气缸体与气缸盖外表面散热片(fins)之间的空气作为冷却介质进行冷却的。水冷发动机冷却均匀,工作可靠,冷却效果好,被广泛地应用于现代车用发动机。 (4) 按照气缸(cylinder)数目分类 内燃机按照气缸数目不同可以分为单缸发动机(single - cylinder engine)和多缸发动机(multi - cylinder engine )(图1-4)。仅有一个气缸的发动机称为单缸发动机;有两个以上气缸的发动机称为多缸发动机。 如双缸、三缸、四缸、五缸、六缸、八缸、十二缸等都是多缸发动机。现代车用发动机多采用四缸、六缸、八缸发U n R e g i s t e r e d

发动机的组成及工作原理

发动机的组成及工作原理 一、组成: 总的来说,目前发动机由两大机构、五大系统组成 1、曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。 2、配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。进、排气门的开闭由凸轮轴控制。凸轮轴由曲轴通过齿形带或齿轮或链条驱动。进、排气门和凸轮轴以及其他一些零件共同组成配气机构 3、燃料供给系 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去; 4、润滑系 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 5、冷却系 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 6、点火系 在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 火花塞有一个中心电极和一个侧电极,两电极之间是绝缘的。当在火花塞两电极间加上直流电压并且电压升高到一定值时,火花塞两电极之间的间隙就会被击穿而产生电火花,能够在火花塞两电极间产生电火花所需要的最低电压称为击穿电压;能够在火花塞两电极间产生电火花的全部设备称为发动机点火系。 7、起动系 理解这个并不难,要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动

发动机的组成及工作原理

发动机的组成及工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

发动机的组成及工作原理 一、组成: 总的来说,目前发动机由两大机构、五大系统组成 1、曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。 2、配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。进、排气门的开闭由凸轮轴控制。凸轮轴由曲轴通过齿形带或齿轮或链条驱动。进、排气门和凸轮轴以及其他一些零件共同组成配气机构 3、燃料供给系 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去; 4、润滑系 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 5、冷却系 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 6、点火系 在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 火花塞有一个中心电极和一个侧电极,两电极之间是绝缘的。当在火花塞两电极间加上直流电压并且电压升高到一定值时,火花塞两电极之间的间隙就会被击穿而产生电火花,能够在火花塞两电极间产生电火花所需要的最低电压称为击穿电压;能够在火花塞两电极间产生电火花的全部设备称为发动机点火系。 7、起动系

简述汽车发动机ECU工作原理

简述汽车发动机ECU工作原理 汽车电脑工作原理汽车电脑是按照预定程序自动地对各种传感器的输入信号进行处理,然后输出信号给执行器,从而控制汽车运行的电子设备。 汽车电脑的分类 目前汽车电脑已经得到了广泛的应用,例如车身电脑、发动机电脑、变速器电脑以及ABS 电脑等。虽然不同车型上配置的电脑数量和类型不尽相同,但总的发展趋势是用一台主电脑处理大多数传感器的输入信号,用一些较小的电子控制单元控制其他系统。 汽车电脑的构成 汽车电脑的主要部分是单片机,单片机是一块集成了微处理器(CPU)、存储器以及输入和输出接口的电路板。微处理器是单片机的核心部件,微处理器将输入模拟信号转化为数字信号,并根据存储的参考数据进行对比处理,计算出输出值,输出信号经过功率放大后控制执行器,例如喷油器和继电器等。随着单片机计算能力和内存容量越来越大,汽车电脑的功能也越来越多。 汽车电脑的工作过程 (1)信号过滤和放大输入电路接收传感器和其他装置的输入信号,并对信号进行过滤和放大。输入信号放大的目的是使信号增加到汽车电脑可以识别的程度,某些传感器,例如氧传感器,产生一个小于1V的低电压信号,只能产生极小的电流,这样的信号送入电脑内的微处理器之前必须放大,这个放大作用由电脑中输入芯片中的放大电路来完成。 (2)模数(A/D)转换由于很多传感器产生的是模拟信号,而微处理器处理的是数字信号,所以必须把模拟信号转换为数字信号,这项工作由电脑输入芯片中的模数转换器完成。模数转换器以固定的时间间隔不断对传感器的模拟输入信号进行扫描,并对模拟信号赋予固定的数值,然后将这个固定值转换成二进制码。在一些汽车电脑中,输入处理芯片和微处理器制成一体。 (3)微处理器将已经预处理过的信号进行运算,并将处理后的数据送至输出电路。输出电路将数字信号放大,有些还要还原为模拟信号,以驱动执行元件工作 随着汽车电子化和自动化程度的提高,汽车电脑将越来越多,这样必将导致车身线束日益复杂。为了实现多个汽车电脑之间的信息快速传递、简化电路以及降低成本,汽车电脑之间要采用通信网络技术连成一个网络系统。例如变速器需要与发动机协调配合,根据车速、发动机转速以及动力负荷等因素自动进行换挡,因此变速器电脑需要得到节气门位置传感器、车速传感器、水温传感器以及发动机转速传感器等信号,这就要实现变速器电脑与发动机电脑之间的信息传递,这个工作通常是由CAN总线来完成的。

发动机工作原理中英文对照解释

发动机工作原理(中英文对照) 发动机工作原理 大多数汽车的发动机是内燃机,往复四冲程汽油机,但是也有使用其它类型的发动机,包括柴油机,转子发动机,二冲程发动机和分程燃烧发动机。 往复的意思就是上下运动或前后运动,在往复发动机中,气缸中活塞的上下运动产生发动机的动力,这种类型几乎所有的发动机都是依赖气缸体即发动机缸体,缸体是铸铁或铸铝制的,它包括发动机气缸和冷却液循环用的水套。缸体的顶部是气缸盖,它组成了燃烧室,缸体底部是油底壳。 气缸内活塞的直线运动产生动力,然而,必须将直线运动转化成旋转运动,使汽车车轮转动,活塞销将活塞连接在连杆顶部,连杆底部与曲轴连接,使汽车车轮转动,活塞销将活塞连杆顶部,连杆底部与曲轴连接,连杆将活塞的往复运动传递给曲轴,曲轴将其转化为旋转运动,连杆是用连杆曲轴安装在曲轴上的,用类似的轴承即主轴承将曲轴固定在缸体内。 气缸的直径称为发动机的内径,排量和压缩比是两个常用的发动机参数,排量是指发动机的大小,压缩比是气缸总容积与燃烧室压缩容积之比。 术语: 冲程是用来说明活塞在气缸内的运动,也就是活塞行程的距离根据发动机类型的需要二冲程或四冲程来完成一个工作循环四冲程发动机也叫做奥托发动机,为了纪念德国工程师奥托,他是在1876年第一个应用该原理的,在四冲程发动机中,要求气缸活塞四冲程来完成一个完整的工作循环,每个冲程根据其行为命名分别为: 进气冲程,压缩冲程,做功冲程和排气冲程。 1、进气冲程 当活塞下移时,雾化后的可燃混合气通过打开的进气门进入气缸,为了达到最大的进气量,进气门在活塞到达上止点前10°打开,使进、排气门有20°打开重叠角,进气门一直打开到活塞到达下止点充分进入混合气之后50°左右。 2、压缩冲程 活塞开始向上移动时,进气门关闭,混合气在燃烧室中压缩,根据不同因素包括压缩比,节气门开度,发动机转速压力上升到约1兆帕,接近冲程顶部时,火花塞产生的电火花击穿点火间隙点燃可燃混合气。 3、做功冲程 燃烧膨胀的气体产生的压力上升到3.5个兆帕时,推动活塞下移,接近气缸底时,排气门打开。 4、排气冲程 随着排气门开启约下止点前50°,活塞回升,使气缸内压力下降在排气冲程,减少对活塞回压,派出废气,为下一个进气冲程做准备,通常情况下,进气门在排气冲程完成前打开。 只要发动机保持运转,每个气缸内四个冲程循环连续不断地重复下去。 两冲程发动机也同样通过四行程来完成,一个工作循环但是进气冲程,压缩冲程合为一个冲程,做功冲程形成另一个冲程,术语两行程循环和两行程就是所谓的术语双循环但实际上并不太准确。 在所用的汽车发动机中,所有的活塞都是固定在一个曲轴上的,气缸中发动机越多,每转为发动机的做功冲程产生越多的动力,这就意味着八缸发动机运转的越平顺,因为发动机在做功冲程中运转时间和旋转角度紧密。 多气缸发动机有三种排列形式,任其一种

汽车工作原理

带您真正去了解汽车——总体工作原理概述 可以说,汽车是当代科学与艺术的结晶。从汽车的引擎启动开始就已经发生了涉及到物理、化学、机械等数不清的多种变化,因此,汽车的总体工作是一个非常复杂的过程。由于汽车行业的飞速发展,所以,我们仅对当今非常普遍的采用燃油喷射(EFI)引擎的汽车予以了解。 在驾驶者通过钥匙启动点火开关时: 此时点火开关迅速接通蓄电池与起动机,起动机将蓄电池的电能转化为机械能,起动机的前端齿轮啮合引擎曲轴后方的大飞轮旋转实现发动机的运转。 在引擎正常运转以后,起动机停止工作。此时,引擎控制计算机(在钥匙插入点火开关并旋转时已经开始工作)同时控制燃油泵通过油箱向引擎输送燃油、引擎点火线圈在适当时机点火。 因为引擎的运转,气缸内的活塞已经高速的在气缸内上下运动,同时产生真空效应将外界的新鲜空气通过空气流量计和进气门引入到气缸内。在空气进入到气缸同时,引擎控制计算机所控制的燃油也通过喷油嘴喷注到气缸内并与空气形成混合气体。在混合气体形成后,计算机控制点火线圈通过火花塞迅速在气缸内点燃混合气体,产生巨大能量的爆炸将活塞向下推动。 在汽车的怠速阶段: 引擎多个气缸内的活塞在混合气爆炸的推动下有顺序的交替上下运动,带动引擎曲轴的高速转动,这样就形成了汽车的最原始动力。这时曲轴输出的原始动力将通过离合器(手排挡方式的变速箱)传递到变速箱。在怠速阶段变速箱应处于空挡状态,此时,引擎传递过来的原始动力不会通过变速箱传递到车轮,而是

在变速箱内部转化为热能。这样就形成了汽车的停车怠速。在此状态下驾驶者通过油门对发动机所做出的任何动作都不会导致汽车运行。 在汽车的行驶阶段: 在怠速过程中踩下离合器(使变速箱与引擎的原始动力脱离)时,将档位操纵杆推入到相应的档位上,再松开离合器(使变速箱接受引擎的原始动力)。这时,由引擎所传递的动力在变速箱内通过不同档位的齿轮比转换后,通过传动轴传递到车轮上,就形成了汽车的行驶运动。同时在行驶时按照需要,可以变换不同的档位使动力动态的传递到车轮上来满足行驶的需求。

汪克尔转子发动机原理解析

汪克尔转子发动机 ★简介: 转子发动机采用三角转子旋转运动来控制压缩和排放,与传统的活塞往复式发动机的直线运动迥然不同。这种发动机由德国人菲加士·汪克尔发明,在总结前人的研究成果的基础上,解决了一些关键技术问题,研制成功第一台转子发动机。

汪克尔于1902年出生在德国,1921年到1926年受雇于海德堡一家科技出版社的销售部。在1924年,汪克尔在海德堡建立了自己的公司,他花了大量的时间在那里进行转子发动机的研制,在1927年,诸如气密性和润滑等的一系列技术问题的攻克终于有了眉目。60年初在德国生产出第一辆装配了转子发动机的小跑车。当时业内人士认为这种发动机的结构紧凑轻巧,运转宁静畅顺,也许会取替传统的活塞式发动机。 1964年,日内瓦的德法合资企业COMOBIL公司,首次把转子发动机装在轿车上成为正式产品。1967年,日本人也将转子发动机装在马自达轿车上开始成批生产。 一向对新技术情有独钟的马自达公司投巨资从汪克尔公司买下了这项技术。由于这是一项高新技术,懂得这项技术的人寥寥无几,发动机坏了无人会修,而且耗油大,汽车界有人对这种发动机的市场前景产生了怀疑。70年代石油危机爆发,各国忙于应付各方面的困难而无暇顾及发展转子发动机,唯有马自达公司仍然深信转子发动机的潜力,独自研究和生产转子发动机,并为此付出了相当大的代价。他们逐步克服了转子发动机的缺陷,成功地由试验性生产过渡到商业性生产,并将安装了转子发动机的RX-7型跑车打入了美国市场,令人刮目相看。

在世界环保意识日益强化,石油资源日渐沽竭的今天,以氢气做动力源的研究已成为一大课题。当年马自达坚持下来的转子发动机从结构上讲是最适合燃烧氢气,而且最干净,因为氢燃烧完后排出的是水蒸汽,对环境没有任何污染。马自达公司改制了RX-7型跑车的转子发动机,使它可以用氢做燃料。这种发动机装配在马自达HR一X汽车上,1立方米的燃料箱吸储了相当43立方米的压缩氢气,以每小时60公里的车速可行驶230公里,引起了各界人士的关注。

发动机工作原理(中英文对照)

发动机工作原理 大多数汽车的发动机是内燃机,往复四冲程汽油机,但是也有使用其它类型的发动机,包括柴油机,转子发动机,二冲程发动机和分程燃烧发动机。 往复的意思就是上下运动或前后运动,在往复发动机中,气缸中活塞的上下运动产生发动机的动力,这种类型几乎所有的发动机都是依赖气缸体即发动机缸体,缸体是铸铁或铸铝制的,它包括发动机气缸和冷却液循环用的水套。缸体的顶部是气缸盖,它组成了燃烧室,缸体底部是油底壳。 气缸内活塞的直线运动产生动力,然而,必须将直线运动转化成旋转运动,使汽车车轮转动,活塞销将活塞连接在连杆顶部,连杆底部与曲轴连接,使汽车车轮转动,活塞销将活塞连杆顶部,连杆底剖与曲轴连接,连杆将活塞的往复运动传递给曲轴,曲轴将其转化为旋转运动,连杆是用连杆曲轴安装在曲轴上的,用类似的轴承即主轴承将曲轴固定在缸体内。 气缸的直径称为发动机的内径,排量和压缩比是两个常用的发动机参数,排量是指发动机的大小,压缩比是气缸总容积与燃烧室压缩容积之比。 术语: 冲程是用来说明活塞在气缸内的运动,也就是活塞行程的距离根据发动机类型的需要二冲程或四冲程来完成一个工作循环四冲程发动机也叫做奥托发动机,为了纪念德国工程师奥托,他是在1876年第一个应用该原理的,在四冲程发动机中,要求气缸活塞四冲程来完成一个完整的工作循环,每个冲程根据其行为命名分别为: 进气冲程,压缩冲程,作功冲程和排气冲程。 1、进气冲程 当活塞下移时,雾化后的可燃混合气通过打开的进气门进入气缸,为了达到最大的进气量,进气门在活塞到达上止点前10°打开,使进、排气门有20°打开重叠角,进气门一直打开到活塞到达下止点充分进入混合气之后50°左右。 2、压缩冲程 活塞开始向上移动时,进气门关闭,混合气在燃烧室中压缩,根据不同因素包括压缩比,节气门开度,发动机转速压力上升到约1兆帕,接近冲程顶部时,火花塞产生的电火花击穿点火间隙点燃可燃混合气。 3、作功冲程 燃烧膨胀的气体产生的压力上升到3.5个兆帕时,推动活塞下移,接近气缸底时,排气门打开。 4、排气冲程 随着排气门开启约下止点前50°,活塞回升,使气缸内压力下降在排气冲程,减少对活塞回压,派出废气,为下一个进气冲程作准备,通常情况下,进气门在排气冲程完成前打开。只要发动机保持运转,每个气缸内四个冲程循环连续不断地重复下去。 两冲程发动机也同样通过四行程来完成,一个工作循环但是进气冲程,压缩冲程合为一个冲程,作功冲程形成另一个冲程,术语两行程循环和两行程就是所谓的术语双循环但实际上并不太准确。 在所用的汽车发动机中,所有的活塞都是固定在一个曲轴上的,气缸中发动机越多,每转为发动机的作功冲程产生越多的动力,这就意味着八缸发动机运转的越平顺,因为发动机在作功冲程中运转时间和旋转角度紧密。 多气缸发动机有三种排列形式,任其一种 1、直列式发动机用一个气缸体,大多数四缸发动机和一些六缸发动机都采用这种型式,这种气缸不必垂直分布,它们可以向任一方向倾斜。 2、V-型发动机用两排同样的气缸,通常夹角为60°或90°,大多数有六缸或八缸,尽管四缸和十二缸也有采用V型的。

相关主题
文本预览
相关文档 最新文档