当前位置:文档之家› 抗震设计方法概述

抗震设计方法概述

抗震设计方法概述
抗震设计方法概述

本学期的“工程结构抗震分析”课程首先介绍了地震与地震震害以及结构抗震分析的必要性和其方法的发展过程,然后简单回顾了一下结构动力学基础,接下来认识了地震波与强震地面运动的特性,以及地震作用下结构的动力方程,最后重点讲述了几种抗震设计分析方法——反应谱分析法,时程分析法(弹性和弹塑性),和静力弹塑性分析法。通过一个学期的学习,本人对强震地面运动特征和抗震设计原理和方法有了一定的了解和把握。

在进行建筑、桥梁以及其它结构物的抗震设计时,一般都要遵循以下五个步骤:抗震设防标准选定、抗震概念设计、地震反应分析、抗震性能验算以及抗震构造设计,其流程如图1 所示。

本文将着眼于图1流程中的第3个步骤,

从我国现行规范中的3种最常用的结构响应分

析方法出发,简单介绍一下其各自的基本概念

和适应范围(具体原理和计算过程在此不再详

述,读者可另查阅相关课本和规范),以及现有

抗震设计规范中存在的问题,以便初学者对结

构抗震设计分析方法有个初步的认识,也作为

本人对本课程的学习总结。

一.3种最常用的结构响应分析方法

1.底部剪力法

定义:根据地震反应谱理论,以工程结构

底部的总地震剪力与等效单质点的水平地震作

用相等来确定结构总地震作用的一种计算方

法。

底部剪力法适用于基本振型主导的规则和

高宽比很小的结构,此时结构的高阶振型对于

结构剪力的影响有限,而对于倾覆弯矩则几乎

没有什么影响,因此采用简化的方式也可满足

工程设计精度的要求。

高规规定:高度不超过40m、以剪切变形

为主且质量和刚度沿高度分布比较均匀的高层

建筑结构,可采用底部剪力法。

底部剪力法尚有一个重要的意义就是我们可以用它的理念,简化的估算建筑结构的地震响应,从而至少在静力的概念上把握结构的抗震能力,它还是很有用的。

2.振型分解反应谱法

定义:振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。

反应谱的振型分解组合法常用的有两种:SRSS和CQC。虽然说反应谱法是将并非同一时刻发生的地震峰值响应做组合,仅作为一个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。一般而言,对于那些对结构反应起重要作用的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太小(工程上一般都可以满足)时,SRSS是精确的,频率稀疏表面上的反应就是结构的振型周期拉的比较开;而对于那些结构

反应起重要作用的振型所对应的频率密集的结果(高振型的影响较大,或者考虑扭转振型的条件下),CQC是精确的。这是因为对于建筑工程上常用的阻尼而言,振型相关系数(见高规3.3.11-6)在很窄的范围内才有显著的数值。

高规规定:高层建筑结构宜采用振型分解反应谱法。对质量和刚度不对称、不均匀的结构以及高度超过100m的高层建筑结构应采用考虑扭转耦联振动影响的振型分解反应谱法。

反应谱分析的精确性:对于采用平均意义上的光滑反应谱进行分析而言,其峰值估计与相应的时程分析的平均值相比误差很小,一般只有百分之几,因此可以很好的满足工程精度的要求,正是在这个平均(普遍性)意义上,我们认为反应谱分析方法是精确的。但是对于单个锯齿形的反应谱而言,其分析结果与单个波的时程分析,误差可以达到10-30%之间,因此在个别(特殊性)意义上而言,反应谱分析结果是有误差的,因此,规范规定对于复杂的或者高层建筑需要采用时程分析进行补充计算和验证。

3.时程分析法

定义:由结构基本运动方程沿时间历程进行积分求解结构振动响应的方法。

理论上时程分析是最准确的结构地震响应分析方法,但是由于其分析的复杂性,且地震波的随机性,因此一般只是把它作为反应谱的验证方法而不是直接的设计方法使用。

高规规定:7~9度抗震设防的高层建筑,下列情况应采用弹性时程分析法进行多遇地震下的补充计算:1)甲类高层建筑结构;2)表3.3.4所列的乙、丙类高层建筑结构;3)不满足本规程第4.4.2~4.4.5条规定的高层建筑结构;4)本规程第10章规定的复杂高层建筑结构;5)质量沿竖向分布特别不均匀的高层建筑结构。

另外,进行动力时程分析时,应符合下列要求:

1)应按建筑场地类别和设计地震分组选用不少于二组实际地震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符,且弹性时程分析时,每条时程曲线计算所得的结构底部剪力不应小于振型分解反应谱法求得的底部剪力的65%,多条时程曲线计算所得的结构底部剪力的平均值不应小于振型分解反应谱法求得的底部剪力的80%。

2)地震波的持续时间不宜小于建筑结构基本自振周期的3~4倍,也不宜少于12s,地震波的时间间距可取0.01s或0.02s;

3)结构地震作用效应可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

4.反应谱分析与时程分析对于高阶振型计算的不同之处

一般反应谱的高频段是采用平台段来表达的,实际上对于高阶振型反应不显著的结构而言,反应谱适用性很好,也足够准确。但是对于高柔结构而言,一般高阶振型的影响比较显著,采用时程分析的时候,等于其高频段的峰值并未被人为削成平台段,因此采用时程分析的时候此频段的地震响应可能很大,一般表现为高层建筑的顶部或者对其他结构对高阶振型影响显著部位,其地震响应峰值比反应谱分析结果要大(但是总体的剪力和弯矩差别则没这么明显)。

二.现有抗震设计规范中存在的问题

通过对不同规范的比较,以及参考其它文献。目前在我国的抗震设计规范中还存在以下有待深入研究解决的问题:

1.长周期反应谱问题

随着我国经济建设发展,高耸结构和大跨度桥梁建设的飞速发展迫切需要解决长周期反应谱取值问题。建规反应谱截止周期是6s,公规的截止周期是5s。而目前已有很多工程结构的基本周期远远超过了规范的截止周期,规范反应谱已经不能满足超高层建筑和大跨度桥

梁抗震反应谱分析的要求。

2.阻尼修正问题

阻尼比不仅影响反应谱的形状,而且对反应谱不同周期段的影响程度是不一样的,总的趋势是阻尼对长周期部分反应谱的影响小,对高频部分影响大。阻尼比取值或者不同振型阻尼比取值的不同将会直接影响到地震反应的计算结果。而且,随着建规控制技术、减震耗能措施的大量推广应用,结构中不同构件间的阻尼比会有很大变化。目前,建规中已经考虑了阻尼的影响采用了一个阻尼调整系数进行调整。而公规中还是以5%的临界阻尼比为依据。因此,迫切需要针对不同结构阻尼比对反应谱进行修正。

3.位移反应谱

目前的抗震设计方法实质上是基于强度的设计方法,结构设计先通过弹性设计确定结构的设计强度水平,并利用结构的延性能力弥补结构强度的不足。在延性设计方法中,延性主要用于结构变形验算,并不作为设计目标。对于超高层建筑和大跨度桥梁等长自振周期的结构,实际强震记录计算表明,反应谱长周期段衰减很快,当T→∞是,结构主要受位移控制。因此有必要发展基于位移的设计方法。

4.反应谱组合方法

但前反应谱组合方法主要是基于单分量地震作用下的振型组合问题,从大跨度桥梁抗震分析角度来看,发展不同地震动分量作用下和多点激励下的地震反应振型组合是规范中有待完善的地方。

5.考虑地震动持时和能量

地震动持时和能量输入对结构的弹塑性地震反应及累积损伤的影响已为地震工程界所共识,有学者提出了各种计算持时和能量以及如何考虑结构破坏乃至倒塌的方法。但如何以规范条文形式来规范这些算法使其最终成为实用的设计方法仍有待进一步努力。

6.抗震设计方法的改进

现行规范采用的反应谱方法存在着缺陷,对于超高、大跨度等长周期结构无能为力,只好以规定最小地震作用的办法解决。因此应发展相应的抗震计算方法。目前,比较热门的研究方向是采用能量设计方法和随机振动理论进行抗震设计。

基于结构性能的抗震设计与抗震评估方法综述

第37卷 第1期2005年3月西安建筑科技大学学报(自然科学版) J1Xi’an Univ.of Arch.&Tech.(Natural Science Edition) Vol.37 No.1 Mar.2005 基于结构性能的抗震设计与抗震评估方法综述 邢 燕,牛荻涛 (西安建筑科技大学土木工程学院,陕西西安710055) 摘 要:基于性能的结构设计是21世纪抗震设计的发展趋势,而新建结构的抗震设计与在役结构的抗震评估及加固设计则是减轻地震灾害的二个重要方面.对基于性能的结构设计方法进行了评述,并对性能设计理论在结构抗震性能评估与加固设计中的应用状况进行了分析,进一步指出建立在役结构抗震性能评估及加固理论与方法需研究解决的问题. 关键词:结构性能;抗震设计;抗震评估;在役结构 中图分类号:TU311.3 文献标识码:A 文章编号:100627930(2005)0120024205 Ξ Summarization of performance-based seismic design and evaluation method XING Yan,NIU Di2tao (School of Civil Eng.,Xi’an Univ.of Arch.&Tech.,Xi’an710055,China) Abstract:Performance2based design is the development current of seismic design of the21th century.Two important aspects of alleviating earthquake disaster are seismic design of new structures and seismic evaluation as well as the retrofit design of existing structures.The methods of performance2based design are reviewed in this paper.The actuality and existent problems are analyzed and that performance2based design is applied to seismic evaluation and retrofit design. Key words:performance;seismic design;seismic evaluation;existing structure 1989年美国加洲Lorma Prieta地震(Ms7.1)和1994年美国Northridge地震(Ms6.7),伤亡数百人,而造成的经济损失高达150~200亿美元;1995年日本阪神大地震(Ms7.1)[1],死亡5500多人,造成的经济损失高达1000亿美元,震后的恢复重建工作花费两年多时间,耗资近1000亿美元.2000年我国台湾发生的7.6级地震,死亡2103人,房屋倒塌上万,对经济影响也十分巨大.上述震害说明,随着经济的发展和人口密度的增加,人们逐渐认识到过去的仅以保证人的生命安全为目标的设计理论,在抗震设计理念、适应社会需求等方面都存在一定的不足.按规范设计的建筑物可以避免倒塌而不危及人的生命,但一次地震,甚至一次中等大小的地震所造成的损失,就大大超过了社会和业主所能接受的程度.因此,现代及未来的建筑不仅要防止倒塌,还要考虑控制经济损失,保证结构使用功能的延续等问题. 近年来国际上提出了基于结构性能的抗震设计理论(Performance2based seismic design,简称PBSD),其基本思想是以结构抗震性能分析为基础,针对每一种设防水准(如50a超越概率为6312%, Ξ收稿日期:2003207208 基金项目:国家自然科学基金资助项目(50078044) 作者简介:邢 燕(19792),女,山西长治人,硕士研究生,主要从事服役结构的抗震性能评估和加固研究.

《建筑结构抗震设计》期末复习题

《建筑结构抗震设计》期末考试复习题 一、名词解释 (1)地震波:地震引起的振动以波的形式从震源向各个方向传播并释放能量; (2) 地震震级:表示地震本身大小的尺度,是按一次地震本身强弱程度而定的等级; (3)地震烈度:表示地震时一定地点地面振动强弱程度的尺度; (4)震中:震源在地表的投影; (5)震中距:地面某处至震中的水平距离; (6)震源:发生地震的地方; (7)震源深度:震源至地面的垂直距离; (8)极震区:震中附近的地面振动最剧烈,也是破坏最严重的地区; (9)等震线:地面上破坏程度相同或相近的点连成的曲线; (10)建筑场地:建造建筑物的地方,大体相当于一个厂区、居民小区或自然村;(11)沙土液化:处于地下水位以下的饱和砂土和粉土在地震时有变密的趋势,使孔隙水的压力急剧上升,造成土颗粒局部或全部将处于悬浮状态,形成了犹如“液化”的现象,即称为场地土达到液化状态; (12)结构的地震反应:地震引起的结构运动; (13)结构的地震作用效应:由地震动引起的结构瞬时内力、应力应变、位移变形及运动加速度、速度等; (14)地震系数:地面运动最大加速度与重力加速度的比值; (15)动力系数:单质点体系最大绝对加速度与地面运动最大加速度的比值; (16)地震影响系数:地震系数与动力系数的乘积; (17)振型分解法:以结构的各阶振型为广义坐标分别求出对应的结构地震反应,然后将对应于各阶振型的结构反应相组合,以确定结构地震内力和变形的方法,又称振型叠加法; (18)基本烈度:在设计基准期(我国取50年)内在一般场地条件下,可能遭遇超越概率(10%)的地震烈度。 (19)设防烈度:按国家规定权限批准的作为一个地区抗震设防依据的地震烈度。(20)罕遇烈度:50年期限内相应的超越概率2%~3%,即大震烈度的地震。 (21)设防烈度 (22)多道抗震防线:一个抗震结构体系,有若干个延性较好的分体系组成,并由延性较好的结构构件连接起来协同作用; (24)鞭梢效应;

基于结构性能抗震设计理论综述

基于结构性能的抗震设计理论综述摘要:基于结构功能的设计理论是90年代国际上提出的新概念,是抗震设计理念上的一次变革。本文首先阐述了基于结构性能的设计理论产生的背景、研究内容、设计流程;然后重点介绍了目前已被世界地震工程界广泛应用的基于位移的设计方法;最后就其研究和应用前景进行了展望。 关键词:结构性能抗震设计位移位移延性系数能力需求曲线 discuss on aseismatic design based on structural performance abstract: aseismatic design based on structural performance was put forward firstly in 90’s of last century. it was a reform of design ideas . this paper introduced the background、content and process of the design theory. the method of design based on displacement which has been applied widely was emphasized. at the end of this paper, the development of the design was analysed. keywords: structural performance, aseismatic design, displacement, modulus of displacement ductibility, curve of capability demand. 前言: 传统的抗震设计方法是以保证人的生命安全为原则的设计方

抗震设计方法概述

本学期的“工程结构抗震分析”课程首先介绍了地震与地震震害以及结构抗震分析的必要性和其方法的发展过程,然后简单回顾了一下结构动力学基础,接下来认识了地震波与强震地面运动的特性,以及地震作用下结构的动力方程,最后重点讲述了几种抗震设计分析方法——反应谱分析法,时程分析法(弹性和弹塑性),和静力弹塑性分析法。通过一个学期的学习,本人对强震地面运动特征和抗震设计原理和方法有了一定的了解和把握。 在进行建筑、桥梁以及其它结构物的抗震设计时,一般都要遵循以下五个步骤:抗震设防标准选定、抗震概念设计、地震反应分析、抗震性能验算以及抗震构造设计,其流程如图1 所示。 本文将着眼于图1流程中的第3个步骤, 从我国现行规范中的3种最常用的结构响应分 析方法出发,简单介绍一下其各自的基本概念 和适应范围(具体原理和计算过程在此不再详 述,读者可另查阅相关课本和规范),以及现有 抗震设计规范中存在的问题,以便初学者对结 构抗震设计分析方法有个初步的认识,也作为 本人对本课程的学习总结。 一.3种最常用的结构响应分析方法 1.底部剪力法 定义:根据地震反应谱理论,以工程结构 底部的总地震剪力与等效单质点的水平地震作 用相等来确定结构总地震作用的一种计算方 法。 底部剪力法适用于基本振型主导的规则和 高宽比很小的结构,此时结构的高阶振型对于 结构剪力的影响有限,而对于倾覆弯矩则几乎 没有什么影响,因此采用简化的方式也可满足 工程设计精度的要求。 高规规定:高度不超过40m、以剪切变形 为主且质量和刚度沿高度分布比较均匀的高层 建筑结构,可采用底部剪力法。 底部剪力法尚有一个重要的意义就是我们可以用它的理念,简化的估算建筑结构的地震响应,从而至少在静力的概念上把握结构的抗震能力,它还是很有用的。 2.振型分解反应谱法 定义:振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。 反应谱的振型分解组合法常用的有两种:SRSS和CQC。虽然说反应谱法是将并非同一时刻发生的地震峰值响应做组合,仅作为一个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。一般而言,对于那些对结构反应起重要作用的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太小(工程上一般都可以满足)时,SRSS是精确的,频率稀疏表面上的反应就是结构的振型周期拉的比较开;而对于那些结构

最经典的抗震设计思路

一。抗震设计思路发展历程 随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。 最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用(0.1倍自重)用于结构设计。到了60年代,随着地面运动记录的不断丰富,人们通过单自由度体系的弹性反应谱,第一次从宏观上看到地震对弹性结构引起的反应随结构周期和阻尼比变化的总体趋势,揭示了结构在地震地面运动的随机激励下的强迫振动动力特征。但同时也发现一个无法解释的矛盾,当时规范所取的设计用地面运动加速度明显小于按弹性反应谱得出的作用于结构上的地面运动加速度,这些结构大多数却并未出现严重损坏和倒塌。后来随着对结构非线性性能的不断研究,人们发现设计结构时取的地震作用只是赋予结构一个基本屈服承载力,当发生更大地震时,结构将在一系列控制部位进入屈服后非弹性变形状态,并靠其屈服后的非弹性变形能力来经受地震作用。由此,也逐渐形成了使结构在一定水平的地震作用下进入屈服,并达到足够的屈服后非弹性变形状态来耗散能量的现代抗震设计理论。 由以上可以看出,结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力的“抗”到允许结构屈服,并赋予结构一定的非弹性变形性能力的“耗”的一系列转变。 二。现代抗震设计思路及关系 在当前抗震理论下形成的现代抗震设计思路,其主要内容是: 1.合理选择确定结构屈服水准的地震作用。一般先以一具有统计意义的地面峰值加速度作为该地区地震强弱标志值(即中震的),再以不同的R(地震力降低系数)得到不同的设计用地面运动加速度(即小震的)来进行结构的强度设计,从而确定了结构的屈服水准。 2.制定有效的抗震措施使结构确实具备设计时采用的R所对应的延性能力。其中主要包括内力调整措施(强柱弱梁、强剪弱弯)和抗震构造措施。 现代抗震设计理念是基于对结构非弹性性能的研究上建立起来的,其核心是关系,关系主要指在不同滞回规律和地面运动特征下,结构的屈服水准与自振周期以及最大非弹性动力反应间的关系。其中R为弹塑性反应地震力降低系数,简称地震力降低系数;而为最大非弹性反应位移与屈服位移之比,称为位移延性系数;T则为按弹性刚度求得的结构自振周期。 60年代开始,研究者在滞回曲线为理想弹塑性及弹性刚度始终不变的前提下,通过对不同周期,不同屈服水准的非弹性单自由度体系做动力分析,得到了有关弹塑性反应下最大位移的规律:对T大于1.0秒的体系适用“等位移法则”即非弹性反应下的最大位移总等于同一地面运动输入下的弹性反应最大位移。对于T在0.12-0.5秒之间的结构,适用“等能量法则”即非弹性反应下的弹塑性变形能等于同一地震地面运动输入下的弹性变形能。当“等能量原则”适用时,随着R的增大,位移延性需求的增长速度比“等位移原则”下按与R 相同的比例增长更快。由以上规律我们可以看出,如果以结构弹性反应为准,把结构用来做

最新13章建筑结构抗震设计基础知识

青岛黄海职业学院教师教案 (编号1)年月日课题第十三章建筑结构抗震设计基本知识 课时 13.1 概述13.2抗震设计的基本要求 教学目的熟悉地震波、震级、烈度的概念;明确建筑抗震设防依据、目标及分类标准;理解抗震概念设计的基本内容和要求 教学重点抗震设防要求 教学难点抗震设防要求 教学关键点地震波、震级、烈度的概念 教具《建筑结构》教材及教案 板书设计第十三章建筑结构抗震设计基本知识 13.1 概述 三、震级 一、构造地震 二、地震波

四、烈度 13.2抗震设计的基本要求 五、抗震设防 青岛黄海职业学院教师教案 教案内容及教学过程提示与补充

课题导入: 地球是一个近似于球体的椭球体,平均半径约6370km,赤道半径约6378km,两极 半径约6357km. 地球内部可分为三大部分:地壳、地幔和地核. 课程新授: 第十三章建筑结构抗震设计基本知识 13.1 概述 一、构造地震 地震按其成因划分为四种类型: 1.火山地震:由于火山爆发而引起的地震; 2.陷落地震:由于地表或者地下岩层突然发生大规模陷落和崩塌而造成的地震; 3.诱发地震:由于人工爆破,矿山开采及工程活动引发的地震; 4.构造地震:由于地球内部岩层的构造变动引起的地震(约占地震发生的90%)—— 是结构抗震的主要研究对象 震源、震中和震中距 地球内部断层错动并引起周围介质振动的部位为震源;震源正上方的地面位置为震 中;地面某处至震中的水平距离为震中距. 二、地震波 地震时振动以波的形式从震源向各个方向传播并释放能量,这就是地震波。它包括在地球内部传 播的体波和只限于在地球表面传播的面波。 1.体波 体波中包括有纵波和横波两种形式。 纵波是由震源向外传递的压缩波,这种波质点振动的方向与波的前进方向一致,其特点是 振幅小、传播速度快,能引起地面上下颠簸(竖向振动)。 横波是由震源向外传递的剪切波,其质点振动的方向与波的前进方向垂直,其特点是周 幅大、传播速度较慢,能引起地面水平摇晃。 2.面波 面波是体波经地层界面多次反射传播到地面后,又沿地面传播的次生波。面波的特点是 振幅大,能引起地面建筑的水平振动。面波的传播是平面的,衰减较体波慢,故能传播到很远地震波的传播以纵波最快,横波次之,面波最慢。因此,地震时一般先出现由纵波 引起的上下颠簸,而后出现横波和面波造成的房屋左右摇晃和扭动。 青岛黄海职业学院教师教案 教案内容及教学过程提示与补充

未来抗震设计发展趋势之我见(内容清晰)

未来抗震发展趋势之我见 作者:张子北发布:2015.05.29 【摘要】 随着我国城镇化道路的逐步实现,在可预见的未来,最大限度地预防和减小地震灾害所引发的损失,必将是我国未来几年最急迫的课题。因此,适合本国国情的新的地震预防和抗震设计理念,以及新兴的抗震材料应用也变得越来越急迫!本文通过比较传统的抗震方法和新兴的设防理念,介绍了新理论的优越性以及未来在我国的应用发展趋势。 【关键字】 地震抗震传统结构发展趋势 【正文】 一、引言 随着21世纪的到来,国家制定了未来几年的城镇化规划,随着人口密度的增加,伴之而来的由自然灾害而带来的损失也越大。为应对频发的自然灾害,有效提高建筑安全等级则成为了一个必须面对且更需有效解决的现实问题,这关乎生命,关乎未来,关乎国家的可持续发展。而在所有危害建筑的自然灾害当中,地震危害首当其冲。在人口密集区的一次大型地震,不仅给该地区带来了极其巨大的经济损失,也带给本地区人民无以平复的生命灾难的创伤! 地震灾害具有突发性强、破坏性大和比较难预测的特点。目前,地震的监测预报还是个世界性的难题。而且即使做到震前预报,如果建筑及其设施的抗震性能薄弱,也难以避免经济损失。因此,有效的抗震设防是建筑防震减灾的关键性任务。随着城镇化道路步伐的加快,未来抗震研究与发展则变得越来越重要,也变得极具挑战性,就此,分析未来抗震技术的发展也变得不可或缺。 二、地震的机理及破坏力 地震,俗称地动,其本质为一种自然现象。触发此种自然现象的原因极多,如:地层受到挤压而断裂错动,局部岩层的坍塌,火山喷发等。各种原因引起的震动以波的形式向上传递至地表时引起地面的运动,形成地震。震中距越小,破坏力越强。其中,以构造型地震的破坏性为最大,影响面为最广。而火山地震和陷落地震则因为成因的不同,影响较小,破坏性也较小。 类型成因影响

建筑结构抗震设计方法

谈建筑结构抗震设计方法 摘要:地震具有突发性,且可预见性低,因此应以贯彻预防为主要方针,而其最根本的就是要搞好抗震设防和提高现代高层建筑抗震能力。本文从多个角度的建筑抗震设计方法,建筑抗震概念设计两方面进行概述。 地震是自然灾害在我国比较常见的之一,它的特点是突发性强,破坏性和可预见性低,所以为了增强建筑结构的抗震性能,一定要科学合理的抗震设计,有效提高现代建筑的抗震性能,以预防为主,从根本上有效保证建筑物的抗震性能,如何尽量减少地震所造成的破坏和损失。 一、建筑抗震概念设计 地震是一种难以把握的随机振动,其自身的复杂性和不确定性对于准确预测房屋遭遇的参数和特性无非是现代建筑科技的挑战。抗震在结构分析方面仍存在许多不确定性因素,例如未充分考虑非弹性性质,空间结构作用和阻尼变化,材料实效等诸多因素,因此抗震设计不能完全依赖计算得到的结果。长期抗震经验总结的抗震工程基本概念和抗震工程的基本理论应是抗震问题的基本立足点,同时也是良好结构性能的决定因素。 1 建筑场地的选择 地震中经常出现的“轻灾区有重灾,重灾区有轻灾的现象,就是由于地震对房屋的破坏不只是在结构上还有对房屋周围场地条件的破坏。例如地基土的不均匀沉陷滑坡,粉土沙土液化,地表的错动

与地裂。抗震设防区的建筑工程场地选择应遵循以下几点原则:(1)密实均匀的中硬场地土和开阔平坦的坚硬场地土是建筑抗震有利地段的最好选择。 (2)避开对建筑抗震的不利地段,例如突出的山嘴、高耸孤立的山丘、河岸和边坡边缘、采矿区、软弱场地土、非岩质陡坡、在平面分布上岩性状态成因明显不均匀的场地土。 二、建筑结构抗震设计的主要方法 建筑结构的抗震设计所采用的方法是多样的,在抗震设计过程中不但要设计出完美的方案,还应该做好建筑物的补救措施。因此,通常建筑师在抗震设计过程中需要进行综合分析,合理的对结构的布置与材料使用进行探讨,这将直接影响到建筑结构抗震能力的效果。所以,在设计过程中要合情合理,不偷工减料,这样才能够最大程度的减轻地震带来的破坏。 1、建筑抗震结构体系的选择 建筑的抗震结构体系是建筑结构设计需要重点考虑的内容,建筑结构方案的选择是否合理对整个建筑的安全性与经济性起着至关重要的作用。具体来看,应该从以下几个方面进行设计: (1)建筑结构体系应该尽量避免由于部分结构或作建筑构件破坏而造成整个结构失去抗震能力,甚至失去其自身的承载能力。抗震结构设计的一个基本原则就是要求结构具有足够的赘余度以及内力的重分配能力,即使由于地震而使得建筑结构的部分构件丧失,其他的构件依然可以承担其建筑载荷的能力,保证整个结构的稳定性;

抗震结构设计理念的应用与设计要点分析

抗震结构设计理念的应用与设计要点分析 摘要对于一个高层结构的设计,遇到的问题可能错综复杂,只能具体问题具体分析。工程实践表明在高层结构的设计过程中,设计人员只有抗震概念清晰,构造措施得当,应用合适的结构分析软件三者有机结合才能取得比较理想的结果,在这个过程中抗震构造重于结构计算。本文对建筑抗震进行必要的理论分析,从而探索高层建筑的设计理念、方法,采取必要的抗震措施。 关键词建筑结构;抗震设计;方法 1 抗震设计思路的概述 地震具有随机性、不确定性和复杂性,要准确预测建筑物所遭遇地震的特性和参数,目前是很难做到的。而建筑物本身又是一个庞大复杂的系统,在遭受地震作用后其破坏机理和破坏过程十分复杂。且在结构分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,也存在着不确定性。按照结构的破坏过程,灵活运用抗震设计准则,全面合理地解决结构设计中的基本问题,既注意总体布置上的大原则,又顾及关键部位的细节构造,从根本上提高结构的抗震能力[1]。 2 现代抗震设计思路及关系在当前抗震理论下形成的现代抗震设计思路,其主要内容是 2.1 合理选择确定结构屈服水准的地震作用 一般先以具有统计意义的地面峰值加速度作为该地区地震强弱标志值(即中震的),再以不同的R(地震力降低系数)得到不同的设计用地面运动加速度(即小震的)来进行结构的强度设计,从而确定了结构的屈服水准。 2.2 制定有效的抗震措施使结构确实具备设计时采用的R所对应的延性能力 其中主要包括内力调整措施(强柱弱梁、强剪弱弯)和抗震构造措施。现代抗震设计理念是基于对结构非弹性性能的研究上建立起来的,其核心是关系,关系主要指在不同滞回规律和地面运动特征下,结构的屈服水准与自振周期以及最大非弹性动力反应间的关系。其中R为弹塑性反应地震力降低系数,简称地震力降低系数;而为最大非弹性反应位移与屈服位移之比,称为位移延性系数;T则为按弹性刚度求得的结构自振周期。 把结构用来做承载能力设计的地震作用取的越低,即R越大,则结构在与弹性反应时相同的地震作用下达到的非弹性位移就越大,位移延性需求就越高。这意味着结构必须具有更高的塑性变形能力。规律初步揭示出不同弹性周期的结构,当其弹塑性屈服水准取值大小不同时,在同一地面运动输入下屈服水准与所

对钢筋混凝土建筑结构现代抗震思路

对钢筋混凝土建筑结构现代抗震思路 摘要:该论文从1、抗震设计思路发展历程;2、现代抗震设计思路及关系;3、保证结构延性能力的抗震措施;4、我国抗震设计思路中的部分不足;5、常用抗震分析方法这五个方面,结全重庆大学白绍良老师的教义来对钢筋混凝土建筑结构现代抗震思路及我国设计规范抗震设计方法的理解和讨论 关键词:结构设计抗震 一。抗震设计思路发展历程 随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。 最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用(0.1 倍自重)用于结构设计。到了60年代,随着地面运动记录的不断丰富,人们通过单自由度体系的弹性反应谱,第一次从宏观上看到地震对弹性结构引起的反应随结构周期和阻尼比变化的总体趋势,揭示了结构在地震地面运动的随机激励下的强迫振动动力特征。但同时也发现一个无法解释的矛盾,当时规范所取的设计用地面运动加速度明显小于按弹性反应谱得出的作用于结构上的地面运动加速度,这些结构大多数却并未出现严重损坏和倒塌。后来随着对结构非线性性能的不断研究,人们发现设计结构时取的地震作用只是赋予结构一个基本屈服承载力,当发生更大地震时,结构将在一系列控制部位进入屈服后非弹性变形状态,并靠其屈服后的非弹性变形能力来经受地震作用。由此,也逐渐

形成了使结构在一定水平的地震作用下进入屈服,并达到足够的屈服后非弹性变形状态来耗散能量的现代抗震设计理论。 由以上可以看出,结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力的“抗”到允许结构屈服,并赋予结构一定的非弹性变形性能力的“耗”的一系列转变。 二。现代抗震设计思路及关系 在当前抗震理论下形成的现代抗震设计思路,其主要内容是: 1.合理选择确定结构屈服水准的地震作用。一般先以一具有统计意义的地面峰值加速度作为该地区地震强弱标志值(即中震的),再以不同的R(地震力降低系数)得到不同的设计用地面运动加速度(即小震的)来进行结构的强度设计,从而确定了结构的屈服水准。 2.制定有效的抗震措施使结构确实具备设计时采用的R所对应的延性能力。其中主要包括内力调整措施(强柱弱梁、强剪弱弯)和抗震构造措施。 现代抗震设计理念是基于对结构非弹性性能的研究上建立起来的,其核心是关系,关系主要指在不同滞回规律和地面运动特征下,结构的屈服水准与自振周期以及最大非弹性动力反应间的关系。其中R为弹塑性反应地震力降低系数,简称地震力降低系数;而为最大非弹性反应位移与屈服位移之比,称为位移延性系数;T则为按弹性刚度求得的结构自振周期。 60年代开始,研究者在滞回曲线为理想弹塑性及弹性刚度始终

抗震设计方法综述

抗震设计方法综述 作者:佚名文章来源:不详 抗震设计方法一:基于承载力设计方法 基于承载力设计方法又可分为静力法和反应谱法。静力法产生于二十世纪初期,是最早 的结构抗震设计方法。上世纪初前后日本浓尾、美国旧金山和意大利Messina的几次大地震 中,人们注意到地震产生的水平惯性力对结构的破坏作用,提出把地震作用看成作用在建筑 物上的一个总水平力,该水平力取为建筑物总重量乘以一个地震系数。意大利都灵大学应用 力学教授M.Panetti建议,1层建筑物取设计地震水平力为上部重量的1/10,2层和3层取 上部重量的1/12。这是最早的将水平地震力定量化的建筑抗震设计方法。日本关东大地震后, 1924年日本都市建筑规范"首次增设的抗震设计规定,取地震系数为0.1。1927年美国UBC 规范第一版也采用静力法,地震系数也是取0.1。用现在的结构抗震知识来考察,静力法没 有考虑结构的动力效应,即认为结构在地震作用下,随地基作整体水平刚体移动,其运动加 速度等于地面运动加速度,由此产生的水平惯性力,即建筑物重量与地震系数的乘积,并沿 建筑高度均匀分布。考虑到不同地区地震强度的差别,设计中取用的地面运动加速度按不同 地震烈度分区给出。根据结构动力学的观点,地震作用下结构的动力效应,即结构上质点的 地震反应加速度不同于地面运动加速度,而是与结构自振周期和阻尼比有关。采用动力学的 方法可以求得不同周期单自由度弹性体系质点的加速度反应。以地震加速度反应为竖坐标, 以体系的自振周期为横坐标,所得到的关系曲线称为地震加速度反应谱,以此来计算地震作 用引起的结构上的水平惯性力更为合理,这即是反应谱法。对于多自由度体系,可以采用振 型分解组合方法来确定地震作用。反应谱法的发展与地震地面运动的记录直接相关。1923年, 美国研制出第一台强震地震地面运动记录仪,并在随后的几十年间成功地记录到许多强震记 录,其中包括1940年的El Centro和1952年的Taft等多条著名的强震地面运动记录。1943 年M.A.Biot发表了以实际地震纪录求得的加速度反应谱。二十世纪50到70年代,以美国的 G. W. Housner、N. M. Newmark和R. W. Clough为代表的一批学者在此基础上又进行了大 量的研究工作。对结构动力学和地震工程学的发展作出了重要贡献,奠定了现代反应谱抗震 设计理论的基础。然而,静力法和早期的反应谱法都是以惯性力的形式来反映地震作用,并 按弹性方法来计算结构地震作用效应。当遭遇超过设计烈度的地震作用,结构进入弹塑性状 态,这种方法显然无法应用。同时,在由静力法向反应谱法过渡的过程中,人们发现短周期 结构加速度谱值比静力法中的地震系数大1倍以上。这使得地震工程师无法解释以前按静力 法设计的建筑物如何能够经受得住强烈地震作用。 抗震设计方法二:基于承载力和构造保证延性设计方法 为解决由静力法向反应谱法的过渡问题,以美国UBC规范为代表,通过地震力降低系数 R将反应谱法得到的加速度反应值am降低到与静力法水平地震相当的设计地震加速度ad, ad=am/R地震力降低系数R对延性较差的结构取值较小,对延性较好的结构取值较高。尽管 最初利用地震力降低系数R将加速度反应降下来只是经验性的,但人们已经意识到应根据结 构的延性性质不同来取不同的地震力降低系数。这是考虑结构延性对结构抗震能力贡献的最 早形式。然而对延性重要性的认识却经历了一个长期的过程。在确定和研究地震力降低系数 R的过程中,G. W. Housner和N. M. Newmark分别从两个角度提出了各自的看法。G. W. Housner认为考虑地震力降低系数R的原因有:每一次地震中可能包括若干次大小不等的较 大反应,较小的反应可能出现多次,而较大的地震反应可能只出现一次。此外,某些地震峰 值反应的时间可能很短,震害表明这种脉冲式地震作用带来的震害相对较小。基于这一观点, 形成了现在考虑地震重现期的抗震设防目标。随着研究的深入,N. M. Newmark认识到结构

《结构抗震设计》简答题及名词解释答案

《结构抗震设计》简答题及名词解释答案 1、简述两阶段三水准抗震设计方法。 答:我国《建筑抗震设计规范》 (GB50011-2001)规定:进行抗震设计的建筑,其抗震设防目标是:当遭受低于本地区抗震设防烈度的多遇地震影响时,一般不受损坏或不需修理可继续使用,当遭受相当于本地区抗震设防烈度的地震影响时,可能损坏,经一般修理或不需修理仍可继续使用,当遭受高于本地区抗震设防烈度预估的罕遇地震影响时,不致倒塌或发生危及生命的严重破坏。 具体为两阶段三水准抗震设计方法: 第一阶段是在方案布置符合抗震设计原则的前提下,按与基本烈度相对应的众值烈度的地震动参数,用弹性反应谱求得结构在弹性状态下的地震作用效应,然后与其他荷载效应组合,并对结构构件进行承载力验算和变形验算,保证第一水准下必要的承载力可靠度,满足第二水准烈度的设防要求(损坏可修) ,通过概念设计和构造措施来满足第三水准的设防要求; 对大多数结构,一般可只进行第一阶段的设计。 对于少数结构,如有特殊要求的建筑,还要进行第二阶段设计,即按与基本烈度相对应的罕遇烈度的地震动参数进行结构弹塑性层间变形验算,以保证其满足第三水准的设防要求。 2、简述确定水平地震作用的振型分解反应谱法的主要步骤。 (1)计算多自由度结构的自振周期及相应振型; (2)求岀对应于每一振型的最大地震作用(同一振型中各质点地震作用将同时达到最大值) ; (3)求出每一振型相应的地震作用效应; (4)将这些效应进行组合,以求得结构的地震作用效应。 3、简述抗震设防烈度如何取值。 答:一般情况下,抗震设防烈度可采用中国地震动参数区划图的地震基本烈度(或与本规范设计基本地震加速度值对应 的烈度值)。对已编制抗震设防区划的城市,可按批准的抗震设防烈度或设计地震动参数进行抗震设防。 4、简述框架节点抗震设计的基本原则。 节点的承载力不应低于其连接构件的承载力; 多遇地震时节点应在弹性范围内工作; 罕遇地震时节点承载力的降低不得危及竖向荷载的传递; 梁柱纵筋在节点区内应有可靠的锚固; 节点配筋不应使施工过分困难。 5、简述钢筋混凝土结构房屋的震害情况。 答:1.共振效应引起的震害; 2.结构布置不合理引起的震害; 3.柱、梁和节点的震害; 4.填充墙的震害; 5.抗震墙的震害。 6.采用底部剪力法计算房屋建筑地震作用的适用范围?在计算中,如何考虑长周期结构高振型的影响? 答:剪力法的适用条件: (1)房屋结构的质量和刚度沿高度分布比较均匀; 2)房屋的总高度不超过40m; (3)房屋结构在地震运动作用下的变形以剪切变形为主; (4)房屋结构在地震运动作用下的扭转效应可忽略不计; T >1 4T 为考虑长周期高振型的影响,《建筑抗震设计规范》规定:当房屋建筑结构的基本周期1■ g时, 在顶部附加水平地震作用,取^F n二rF Ek 再将余下的水平地震作用(1一7 )F Ek分配给各质点: F i (1_、:n)F Ek ' G j H j j吐 结构顶部的水平地震作用为F n和■F n之和。

抗震设计方法的发展

XKAN TECHNOLOGICAL UNIVERSITY 建筑工程学院 2013—2014学年第二学期 研究生课程读书报告题目:抗震设计方法的发展 考核科目:高层建筑结构设计与分析 所在院系:建筑工程学院 专业:结构工程_____________ 姓名:刘继龙_______________ 学号:1307210443 _______

目录 摘要: (2) 1 引言 (2) 2 基于承载力的抗震设计方法 (2) 3 基于延性的抗震设计方法 (2) 4 基于位移的抗震设计方法 (3) 4.1 按延性系数设计方法 (3) 4.2 能力谱方法 (3) 4.3 直接基于位移的方法 (4) 5 基于性能的抗震设计方法 (4) 6 结论 (6) 参考文献 (7)

抗震设计方法的发展 摘要:介绍了抗震设计概念的发展过程,分析了近100 年来提出的五种主要抗震设计方法的优缺点,并重点论述了基于性能的抗震设计方法,以促进结构抗震性能的研究,更好地做好结构设计。 Abstract:It introdueces the development of aseismatic design,analyzes advantages and disadvantages of five aseismatic design methods of recent one hundred years,puts great emphasis on the designing method based on performance in order to promote the research of structural anti-quake capability and make better job of structure design. Key words : aseismatic design,structural component,ductile index 1 引言 对应于地震动和结构反应分析研究的发展,人们的抗震设计概念经历了基于承载力—基于延性+承载力—基于性能的过程。这个过程从以结构承载力分析为主,发展到兼顾承载力和结构变形,再到全面分析结构的承载力、变形、损伤和耗能。这些设计方法在实际结构的设计当中常常融合在一起,下面按照他们侧重点的不同分类,虽有偏颇,但能体现出随着科技水平的发展,人们对于结构抗震性能的认识水平和要求的逐步提高。在100 多年的发展过程中,大致提出了以下几种主要抗震设计方法。 2 基于承载力的抗震设计方法 20 世纪70 年代以前的抗震设计采用基于承载力的抗震设计方法,地震分析属于等效静力分析阶段,以结构构件的强度或刚度是否达到特定的极限状态作为结构是否失效的准则。基于承载力的抗震设计方法建立在静力分析理论之上。静力法和早期的反应谱法都是以惯性力的形式来反映地震作用,并按弹性方法来计算结构地震作用效应。该方法的缺点在于无法准确描述结构进入弹塑性阶段的表现,对结构在地震作用下的破坏程度控制不够。 3 基于延性的抗震设计方法 20 世纪60 年代,人们认识到对于一般的房屋结构、土体结构以及地基等,需要利用结构体系的非线性变形来充分考虑结构物的抗震性能。1973年—1976 年,纽马克和霍尔总结当时的经验,提出了用延性概念来概括结构超过弹性结构时的抗震能力。他们认为在抗震设计中除了重视强度和刚度外,还必须重视加强延性;并提出了延性系数将弹性反应谱修改成弹塑性反应谱的方法,并建议用于实际结构的抗震计算。 1979年,他们计算了10个地震动作用下的非线性反应谱,从而归纳出确定非线性反应谱原则、方法和数据,以及相应的机构地震反应分析方法。 非线性的大小用延性系数U二;max/;y来表示;max和鋼分别为所考虑的整体结构或部分结构的最

《建筑结构抗震设计》课程课后练习题及解答

《建筑结构抗震设计》课后练习题及解答 第1章绪论 1、震级和烈度有什么区别和联系? 震级是表示地震大小的一种度量,只跟地震释放能量的多少有关,而烈度则表示某一区域的地表和建筑物受一次地震影响的平均强烈的程度。烈度不仅跟震级有关,同时还跟震源深度、距离震中的远近以及地震波通过的介质条件等多种因素有关。一次地震只有一个震级,但不同的地点有不同的烈度。 2.如何考虑不同类型建筑的抗震设防? 规范将建筑物按其用途分为四类: 甲类(特殊设防类)、乙类(重点设防类)、丙类(标准设防类)、丁类(适度设防类)。 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安全的严重破坏的抗震设防目标。 2 )重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。同时,应按本地区抗震设防烈度确定其地震作用。 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施。同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其地震作用。 4 )适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为6度时不应降低。一般情况下,仍应按本地区抗震设防烈度确定其地震作用。 3.怎样理解小震、中震与大震? 小震就是发生机会较多的地震,50年年限,被超越概率为63.2%; 中震,10%;大震是罕遇的地震,2%。 4、概念设计、抗震计算、构造措施三者之间的关系? 建筑抗震设计包括三个层次:概念设计、抗震计算、构造措施。概念设计在总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。他们是一个不可割裂的整体。 5.试讨论结构延性与结构抗震的内在联系。 延性设计:通过适当控制结构物的刚度与强度,使结构构件在强烈地震时进入非弹性状态后仍具有较大的延性,从而可以通过塑性变形吸收更多地震输入能量,使结构物至少保证至少“坏而不倒”。延性越好,抗震越好.在设计中,可以通过构造措施和耗能手段来增强结构与构件的延性,提高抗震性能。 第2章场地与地基 1、场地土的固有周期和地震动的卓越周期有何区别和联系? ;由于地震动的周期成分很多,而仅与场地固有周期T接近的周期成分被较 大的放大,因此场地固有周期T也将是地面运动的主要周期,称之为地震动的卓越周期。 2、为什么地基的抗震承载力大于静承载力? 地震作用下只考虑地基土的弹性变形而不考虑永久变形。地震作用仅是附加于原有静荷载上的一种动力作用,并且作用时间短,只能使土层产生弹性变形而来不及发生永久变形,其结果是地震作用下的地基变形要比相同静荷载下的地基变形小得多。因此,从地基变形的角度来说,地震作用下地基土的承载力要比静荷载下的静承载力大。另外这是考虑了地基土在有限次循环动力作用下强度一般较静强度提高和在地震作用下结构可靠度容许有一定程度降低这两个因素。 3、影响土层液化的主要因素是什么?

建筑结构抗震设计(高起专)

河南工程学院 2017年秋《建筑结构抗震》期末试题 批次专业:2016年春季-建筑工程技术(高起专)课程:建筑结构抗震 设计(高起专)总时长:180分钟 1. ( 单选题 ) 下列哪种不属于地震波的传播方式()(本题 2.5分) A、P波 B、S波 C、L波 D、M波 学生答案: 标准答案:D 解析: 得分:0 2. ( 单选题 ) 罕遇烈度50年的超越概率为(本题2.5分) A、2-3% B、20% C、10% D、5% 学生答案: 标准答案:A 解析:

得分:0 3. ( 单选题 ) 震级相差一级,能量就要相差()倍之多(本题2.5分) A、 2 B、10 C、32 D、100 学生答案: 标准答案:C 解析: 得分:0 4. ( 单选题 ) 下面哪个不属于影响土的液化的因素?()(本题2.5分) A、土中黏粒含量 B、上覆非液化土层厚度和地下水位深度 C、土的密实程度 D、地震烈度和震级 学生答案: 标准答案:D 解析: 得分:0 5. ( 单选题 ) 抗震设计原则不包括:()(本题2.5分)

A、小震不坏 B、中震可修 C、大震不倒 D、强震不倒 学生答案: 标准答案:D 解析: 得分:0 6. ( 单选题 ) 框架结构中布置填充墙后,结构的基本自振周期将(本题2.5分) A、增大 B、减小 C、不变 D、说不清 学生答案: 标准答案:B 解析: 得分:0 7. ( 单选题 ) 钢筋混凝土房屋的抗震等级应根据那些因素查表确定()(本题2.5分) A、抗震设防烈度、结构类型和房屋层数 B、抗震设防烈度、结构类型和房屋高度

C、抗震设防烈度、场地类型和房屋层数 D、抗震设防烈度、场地类型和房屋高度 学生答案: 标准答案:B 解析: 得分:0 8. ( 单选题 ) 下列哪项不属于地震动的三要素(本题2.5分) A、震幅 B、震级 C、频谱 D、持时 学生答案: 标准答案:B 解析: 得分:0 9. ( 单选题 ) 体波可以在地球内部和外部传播。()(本题2.5分) A、 B、 学生答案: 标准答案:B 解析: 得分:0 10. ( 单选题 ) 钢筋混凝土构造柱可以先浇柱,后砌墙。()(本题2.5分)

【干货】多高层木结构抗震性能研究与设计方法综述

概述 木材由于具有资源易于再生、绿色环保、保温隔热性好等优点,与可持续发展的目标相互协调,其在建筑业中的应用发展越来越受到重视。此外,随着近十年来材料技术的发展,诸如正交胶合木(cross laminated timber, 简称CLT)等新型工程木产品的诞生使得建造多高层木结构建筑成为可能。为了建筑业的可持续发展,也为了解决大城市人口密度不断增长的问题,木材不能局限于以往三层及三层以下的低矮建筑,近些年,多高层木结构建筑取得了快速发展。 基于上述背景,本文首先枚举了一批全球新建的典型多高层木结构建筑,以期通过具体建筑案例分析来洞悉当前多高层木结构建筑的发展趋势,然后总结了当前多高层木结构建筑常用的结构体系类型及存在的相关问题;基于上述在节点及结构体系两个层面的问题,对多高层木结构建筑开展了一系列试验和理论研究,揭示了部分结构体系的抗震机理;最后,概括了适用于多高层木结构建筑的抗震设计方法。 1 多高层木结构建筑发展概况 1.1 典型建筑案例介绍

自2008年建起第一幢木结构CLT高层后,世界各国纷纷响应这个理念,各地建起了一些示范建筑。最早于2009年,伦敦建成了一幢名为“Stadthaus”的9层公寓式建筑(图1)[1],该建筑底层为混凝土剪力墙结构,上部8层的墙板、楼板、包括电梯和楼梯井道均采用CLT板建造。该工程中,绝大多数构件经工厂预制后现场拼装而成,施工周期仅9周,且施工误差仅为混凝土结构的一半。此外,施工过程绿色环保,碳排放少,所用建材本身兼有碳贮存功能。2012年,墨尔本建成了一幢名为“Forte”的10层公寓式建筑(图2)[2],该建筑同样采用了底层混凝土框架-上部楼层CLT剪力墙的上下组合结构体系。“Forte”的施工周期约10个月,与同体积的混凝土或钢结构建筑相比,其在保温隔热方面能够节约25%的能源,且兼有抗震性能优良的特点。

相关主题
文本预览
相关文档 最新文档