当前位置:文档之家› 传动带可分为三角带、同步带(齿形带、时规带)、平皮带(

传动带可分为三角带、同步带(齿形带、时规带)、平皮带(

传动带可分为三角带、同步带(齿形带、时规带)、平皮带(
传动带可分为三角带、同步带(齿形带、时规带)、平皮带(

传动带可分为三角带、同步带(齿形带、时规带)、平皮带(片基带、龙带)、农用机皮带、高速防油带、圆形带(圆带)、扁形带、水塔带(广角带)、变速带、摩托车变速带、V型带(V带)、并联皮带、多沟带、六角带、活络带、牵引带、汽车皮带。

高速防油三角带SPA、SPB、SPC、SPZ

高速防油V带主要型号有:SPA、SPB、SPC、SPZ、3V、5V、8V等。

普通三角带:主要型号有:A(13*8)、B(17*11)、C(22*14)、D(32*20)、Y(6*4)、Z(10*6)、K、M、O、5(5*3)、8(8*5)、20(20 *12.5)等。

齿型三角带主要型号有:AX、BX、CX、DX、YX、ZX、8X、XPA、XPB、XPC、XPZ、3VX、5VX、8VX等。

联体三角带主要有:A、B、C、D、SPA、SPB、SPC、SPZ、3V、5V、8V、3VX、5VX、8VX,从二联组到五联组

三角皮带的规格是由背宽(顶宽)与高(厚)的尺寸来划分的,根据不同的背宽(顶宽)与高(厚)的尺寸,国家标准规定了三角带的O 、A、B、C、D、E等多种型号,每种型号的三角带的节宽、顶宽、高度都不相同,所以皮带轮也就必须根据三角带的形状制作出各种槽型;这些不同的槽型就决定了皮带轮的O 型皮带轮、A型皮带轮、B型皮带轮、C型皮带轮、D型皮带轮、E型皮带轮等多种型号。

三角带的型号有:普通型O A B C D E 3V 5V 8V,普通加强型AX BX CX DX EX 3VX 5VX 8 VX,窄V带SPZ SPA SPB SPC,强力窄V带XPA XPB XPC;三角带的每一个型号规定了三角带的断面尺寸,A型三角带的断面尺寸是:顶端宽度13mm、厚度为8mm;B型三角带的断面尺寸是:顶端宽度17MM,厚度为10.5MM;C型三角带的断面尺寸是:顶端宽度22MM,厚度为13.5MM;D型三角带的断面尺寸是:顶端宽度21.5MM,厚度为19MM;E型三角带的断面尺寸是:顶端宽度38MM,厚度为25.5 MM。对应尺寸(宽*高):O(10*6)、A(12.5*9)、B(16.5*11)、C(22*14)、D(21.5*19)、E(38*25.5)。

国家标准规定了三角皮带的型号有O、A、B、C、D、E、F七种型号,相应的皮带轮轮槽角度有三种34°、36°、38°,同时规定了每种型号三角带对应每种轮槽角度的小皮带轮的最小直径,大皮带轮未作规定。皮带轮的槽角分为32度34度36度38度,具体的选择要根据带轮的槽型和基准直径选择;皮带轮的槽角跟皮带轮的直径有关系,不同型号的皮带轮的槽角在不同直径范围下的推荐皮带轮槽角度数如下:O型皮带轮在带轮直径范围在50mm~71mm时为34度;在71mm~90mm时为36度,>90mm时为38度;A 型皮带轮在带轮直径范围在71mm~100mm时为34度,100mm~125mm时为36度;>125mm时为38度;B型皮带轮在带轮直径范围在125mm~160mm时为34度;160mm~200mm时为36度,>200mm时为3 8度;C型皮带轮在带轮直径范围在200mm~250mm时为34度,250mm~315mm时为36度,>315mm 时为38度;D型皮带轮在带轮直径范围在355mm~450mm时为36度,>450mm时为38度;E型500m m~630mm时为36度,>630mm时为38度

切割式普通V带和窄V带

单位:(mm)

同步带分类

同步带齿有梯形齿和弧齿两类,弧齿又有三种系列:圆弧齿(H系列又称HTD带)、平顶圆弧齿(S系列又称为STPD带)和凹顶抛物线齿(R系列)。

梯形齿同步带

梯形齿同步带分单面有齿和双面有齿两种,简称为单面带和双面带。双面带又按齿的排列方式分为对称齿型(代号DA)和交错齿型(代号DB〕。

梯形齿同步带有两种尺寸制:节距制和模数制。我国采用节距制,并根据ISO 5296制订了同步带传动相应标准GB/T 11361~11362-1989和GB/T 11616-1989。

弧齿同步带

弧齿同步带除了齿形为曲线形外,其结构与梯形齿同步带基本相同,带的节距相当,其齿高、齿根厚和齿根圆角半径等均比梯形齿大。带齿受载后,应力分布状态较好,平缓了齿根的应力集中,提高了齿的承载能力。故弧齿同步带比梯形齿同步带传递功率大,且能防止啮合过程中齿的干涉。

弧齿同步带耐磨性能好,工作时噪声小,不需润滑,可用于有粉尘的恶劣环境。已在食品、汽车、纺织、制药、印刷、造纸等行业得到广泛应用。

工业同步带的型号

“T”型齿工业用同步带

型号节距(mm) 齿高(mm) 带厚(mm) 角度β°

MXL 2.032 0.51 1.14 40

XL 5.080 1.27 2.30 50

L 9.525 1.91 3.60 40

H 12.70 2.29 4.30 40

XH 22.225 6.35 11.20 40

XXH 31.750 9.53 15.70 40

T2.5 2.5 0.7 1.30 40

T5 5 1.20 2.20 40

型号节距(mm) 齿高(mm) 带厚(mm) 角度β°

T10 10 2.50 4.50 40

T20 20 5.00 8.00 40

AT5 5 1.20 2.70 50

AT10 10 2.50 5.00 50

AT20 20 5.00 8.00 50

圆弧齿工业用同步带

齿型代号型号节距(mm) 齿高(mm) 带厚(mm)

HTD圆弧齿

2M 2 0.75 1.36

3M 3 1.17 2.4

5M 5 2.06 3.8

8M 8 3.36 6.00

14M 14 6.02 10.00

20M 20 8.4 13.20

STPD/STS平顶圆弧齿

S2M 2 0.76 1.36

S3M 3 1.14 1.9

S4.5M 4.5 1.71 2.81

S5M 5 1.91 3.4

S8M 8 3.05 5.3

S14M 14 5.3 10.2

RPP/HPPD 凹顶抛物线齿

2M 2 0.76 1.36

3M 3 1.15 1.9

5M 5 1.95 3.5

8M 8 3.2 5.5

14M 14 6.00 10

双面齿同步带的产品介绍:

双面齿同步带的节距和齿形等同于单面齿同步带的齿形和节距。

双面齿同步带按带齿的排布可分为两种标准型式:DA型双面齿同步带,其两面带齿呈对称排

列,见图(a);DB型双面齿同步带,其两面带齿呈交错位置排列,见图(b)

双面齿同步带的规格、型号、尺寸表

双面齿同步带的节距和齿形等同于单面齿同步带的齿形和节距。汽车用同步带技术参数

变速带

窄型和宽型三角带

普通三角带的宽高比为1:1.5~1.6,而窄型和宽型的三角带分别为1:1.2和1:2。窄型V带的结构尺寸比普通V带可以减少约50%,能节省大量原材料,同时强力均匀,有效接触面积大,弯曲应力小,可大大延长使用寿命。窄型v带的传动效率可达90%一97%,极限速度达4 0-50m/s,传动能力提高0.5~1.5倍,最适于短距离、小带轮于变速传动,故又称之为变速带。其特点是在带的上下表面,大多制成单面或双面的弧形或齿形状态,使之易于调速,主要用在低速的圆锥式和圆盘式无级变速器方面。

工业用变速宽 V 带

注:除表中型号外,其它各种型号尺寸的变速带都可生产。

变速带的节线长请参阅《变速带节线周长选用表》

普通V带,若取m =0.3,则平均mv =0.51=1.7m 。在其他条件相同的情况下,V带传动较平带传动的工作能力提高了很多。

窄V 带传动是近年来国际上普遍应用的一种V 带传动。带的承载层采用合成纤维绳或钢丝绳。普通V 带高与节宽比为0.7,窄V 带高与节宽比为0.9。窄V 带有SPZ、SPA、SPB和SPC四种型号,其结构和有关尺寸已标准化。窄V 带承载能力高,滞后损失少。窄V 带传动的最高允许速度可达40~50m/s,适用于大功率且结构要求紧凑的传动。

联组V带传动

其特点是几条相同的V 带在顶面联成一体的V 带。它克服了普通V 带二带间的受力不均匀,减少了各单根带传动的横向振动,因而使带的寿命提高。其缺点是要求较高的制造和安装精度。

多楔带

多楔带产品的特点如下:

多楔带传动功率大,空间相同时比普通V带的传动功卒的高30%。

多楔带传动系统结构紧凑,在相同的传动功率情况下,传递装置所占空间比普通V带小25%;

多楔带带体薄,富有柔软性,适应带轮直径小的传动,也适应高速传动,带速可达40m/s;振动小,发热少,运转平稳;

多楔带耐热、耐油、耐磨,使用伸长小,寿命长。

多楔带各型号参数

多楔带产品中使用的原料

氯丁橡胶多楔带具有一定的耐寒与耐热性能,不但耐屈挠性能良好,其耐老化性、耐臭氧老化性也比一般不饱和橡胶好,而且其有良好的耐油、耐溶剂及化学稳定性,加入短纤维补强可承受较高的

横向压力,增加带楔耐压性能,减少受力后变形。

?三元乙丙橡胶多楔带在耐老化特别是抗臭氧老化性、耐气候性、耐热老化性方面更为优良,而且其电绝缘性能、耐化学腐蚀、冲击弹性较好(在低温下弹性保持性能较好)。

多楔带的特性

?橡胶多楔带兼有v带和平带二者的优点,既有平带的柔软、强韧的特点,又有v带紧凑、高效等优点。多楔带主要特点如下:

多楔带传动功率大,空间相同时比普通V带的传动功卒的高30%。

?多楔带传动系统结构紧凑,在相同的传动功率情况下,传递装置所占空间比普通V带小25%。

?多楔带带体薄,富有柔软性,适应带轮直径小的传动,也适应高速传动,带速可达40m/s;振动小,发热少,运转平稳。

?多楔带耐热、耐油、耐磨,使用伸长小,寿命长。

多楔带选购时注意事项:

?多楔带按皮带轮直径、楔槽选用适当规格型号和楔数的皮带。

多楔带产品使用时注意事项:

?多楔带皮带在使用中沾有油污或水,应及时清除或擦干;

?多楔带包角过小,应改变背面带轮的位置以加大包角;

?多楔带皮带张力过小,应适当加大皮带张力;

多楔带在使用中出现噪音:

?多楔带由于打滑而产生,应及时将皮带擦干;

?多楔带楔槽中嵌入异物,应该为皮带运转设置防护罩;

?多楔带带轮是否偏斜,调整带轮位置;

?多楔带在产品使用中出现振动大:

?可能是皮带张力过小,应适当加大张力;

多楔带产品使用中出现楔损坏:

?多楔带带轮和皮带的规格型号不匹配;

?多楔带带楔沾上溶剂或其它化学药品;

?多楔带皮带使用环境温度太高,应改善冷却方法;

?多楔带带轮的工艺参数不符合标准或带轮生锈。

平带

"

本公司生产的高速环形橡胶平带采用高强度、伸长率小、耐屈挠性能良好的骨架材料为强力层,传动能力强,抗拉强度高,可采用较大的初张紧力;胶料采用高质量的进口氯丁橡胶,耐热、耐油、耐疲劳、耐磨性能良

好,使用寿命长,是应用最多最理想的一种高速传动平带。

型号可按厚度分为:

1mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm。

联组V

联组V带是由具有高模量线绳和特殊配方的氯丁胶化合物组成,一次成型硫化,具有良好的整

体性。

各条带受力均匀、运行平稳、承载传力高、使用寿命长不易抖动和翻带。适用于脉动负荷和有

冲击振动的场合。特别适用于高直地面的平行轴传动。

结构

1. 连接条带

2. 氟丁二烯绝缘橡皮

3. 氟丁二烯压缩橡皮

4. 聚酯纤维张力构件

5. 注入橡皮特别的布质帆面

示意图

特征

1、固定配件

2、不会横向拍击,旋转或跳出来

示意图

3、 即使在平面驱动时也不需要深凹的齿轮坡口

4、 抗热和油

5、 高传动效率,在高速传动中,无颗粒杂物影响,只需普通V 带2/3的传动空间。

6、 寿命长

7、低伸长

用途:特别适用于大功率、传动装置严密、紧凑的高强力传动机构。广泛应用于平掘类、基建类、行业。

型号

一肋的上层宽度

a

厚度

b

角度

θ

带子之间的节距长度

e

3V

0.38"

(9.5mm)

0.39"

(10.0mm)

40°

0.41" (10.3mm)

5V

0.62"

(15.9mm)

0.61"

(15.5mm)

40°

0.69" (17.5mm)

8V

1.0"

(25.4mm)

0.98"

(25.0mm)

40°

1.13" (28.6mm)

尺寸标志

如有需求,可提供其他尺寸

广角带(联组带)PGGT齿形同步带

型号宽*高(mm)

3M 3*2

5M 5*3

7M 7*5

11M 11*7

皮带输送机-毕业设计参考

毕业设计说明书

摘要 皮带输送机是现代散状物料连续运输的主要设备。随着工业和技术的发展,采用大运量、长距离、高带速的大型带式输送机进行散状物料输送已成为带式输送机的发展主流。越来越多的工程技术人员对皮带输送机的设计方法进行了大量的研究。本文从胶带输送机的传动原理出发利用逐点计算法,对皮带输送机的张力进行计算。将以经济、可靠、维修方便为出发点,对皮带输送机进行设计计算,并根据计算数据对驱动装置、托辊、滚筒、输送带、拉进装置以及其他辅助装置进行了优化性选型设计。张紧系统采用先进的液控张紧装置,即流行的液压自动拉进系统。带式输送机是煤矿最理想的高效连续运输设备,与其他运输设备相比,不仅具有长距离、大运量、连续输送等优点,而且运行可靠,易于实现自动化、集中化控制,特别是对高产高效矿井,带式输送机已成为煤炭高效开采机电一体化技术与装备的关键设备。 关键词:皮带输送机;设计;拉紧装置

ABSTRACT Belt conveyor is the main component which is used to carry goods continued nowadays. With the development of the industry and technology, adopting to lager-amount long-length high –speed, the design method of large belt conveyor which is used to carry goods continued has been mostly studied. According to the belt conveyor drive principle, the paper uses point by point method to have a design, and with the given facts, magnize the model chose drive installment、roller roll belt pulling hydraulic. The drive installment adopts the advanced hydraulic soft drive system and hydraulic pull automatic system.Belt conveyor is the most ideal efficient coal for transport equipment, and other transport equipment, not only has compared long-distance large-capacity, continuous conveying wait for an advantage, and reliable operation, easy to realize automation, centralized control, especially for high yield and high efficiency mine, belt conveyor has become coal high-efficient exploitation mechatronics technology and equipment the key equipment. Key W ords: Belt conveyor;Design;Tensioning device

皮带输送机计算公式

一条平皮带输送机,皮带两侧辊子,中间搭在托板上运行,输送工件4KG,满载20件,皮带宽0.7米,输送速度16m/min,请问电机功率如何计算得出呀? 方法如下: 1、先计算传动带的拉力=总载重量*滚动摩擦系数 2、拉力*驱动轮的半径=驱动扭矩 3、根据传送速度,计算驱动轮的转速=传送速度/驱动轮的周长 4、电机的功率(千瓦)=扭矩(牛米)*驱动轮转速(转/分)/9550 5、计算结果*安全系数*减速机构的效率,选取相应的电动机。 追问 【一】公式 1. p=(kLv+kLQ+_0.00273QH)K KW 其中第一个K为空载运行功率系数,第二个K为水平满载系数,第三个K为附加功率系数。L为输送机的水平投影长度。Q为输送能力T/H.向上输送取加号向下取负号。 2. P=[C*f*L*( 3.6Gm*V+Qt)+Q t*H]/367 公式中P-电动滚筒轴功率(KW) f-托辊的阻力系数,f=0.025-0.03 C-输送带、轴承等处的阻力系数,数值可从表1中查到;

L-电动滚筒与改向滚筒中心的水平投影(m) Gm-输送带、托辊、改向滚筒等旋转零件的重量,数值可从表2中查到; V-带速(m/s); Qt-输送量(t/h),Qt=IV*输送物料的密度,有关数值可从表3中查到; IV-输送能力,数值可从表4中查到; H-输送高度(m); B-带宽(mm) 【二】皮带输送机如何选择适合的电机功率 电机功率,应根据所需要的功率来选择,尽量使电机在额定负载下运行。 1、如果皮带输送机电机功率选得过小,就会出现“小马拉大车”现象,造成电机长期过载。 2、如果皮带输送机电机功率选得过大。就会出现“大马拉小车”现象,其输出机械功率不能得到充分利用,造成电能浪费。 3、一般情况下是根据皮带带宽、输送距离、倾斜角度、输送量、以及物料的特性、湿度来综合计算的。如果不知道皮带输送机该如何选择电机功率,可拨打机械服务热线。

全面同步带选型步骤及计算

同步带选型步骤及计算 一、同步带传动特点 同步带传动是由一根周表面设有等间距齿的环形带和具有相应齿的带轮组成,它是综合了带传动、链传动和齿轮传动各自优点的新型带传动,运动时,带齿与带轮的齿槽相啮合传递运动和动力。 1、传动带传动具有准确的传动比,无滑差,可获得恒定的速比,传动平稳,噪音小; 2、传动比围大,一般可达 1: 10 ,允许线速度可达 40M/S ,传动功率从几瓦到数百千瓦; 3、传动效率高,结构紧凑,还适于多轴转动,不需润滑,无污染,因而可在不允许有污染和工作环境较为恶劣的场合下正常工作; 4、广泛应用于汽车、五金、纺织、机床、办公机械、电动工具、电动门窗、家用电器、仪表仪器、食品包装机械、矿山、石油化工及其它类型的传动。

二、同步带分类及各种形式的同步带应用说明 1、模数制:同步带主要参数是模数 m( 与齿轮相同 ),根据不同的模数数值来确定带的型号及结构参数。在 60 年代该种规格制度曾应用于日、意、等国,后随国际交流的需要,各国同步带规格制度逐渐统一到节距制。目前仅前联及东欧各国仍采用模数制。 2、周节制:即同步带的主要参数是带齿节距,按节距大小不同,相应带、轮有不同的结构尺寸。该种规格制度目前被列为国际标准。 3、特殊节距制(公制 T 型齿同步带):又称特殊节距制同步带轮,除具有一般同步带传动的优点以外,由于其齿形为方形的特点,于圆弧齿形带轮相比较,则可以允许更大的线速度,也就是说公制 T 型齿同步带轮可以满足较高转速的

传动。 4、圆弧齿:近年来又发展了圆弧齿形同步带,圆弧齿形的同步带传动性能和承载能力比梯形齿好,圆弧齿同步带的问世,扩大了同步带的传动围,该同步带不但能适用于高速低扭矩的场合,也能适用于低速高扭矩的场合。 备注:汽车同步带和圆弧齿同步带也分别采用特定的节距;齿形带的工作面目前用得最多的是梯形齿。 三、同步带选型计算步骤

皮带输送机得设计计算汇总情况

皮带输送机的设计计算 1总体方案设计 1.1皮带输送机的组成 皮带输送机主要由以下部件组成:头架、驱动装置、传动滚筒、尾架、托辊、中间架、尾部改向装置、卸载装置、清扫装置、安全保护装置等。 输送带是皮带输送机的承载构件,带上的物料随输送带一起运行,物料根据需要可以在输送机的端部和中间部位卸下。输送带用旋转的托棍支撑,运行阻力小。皮带输送机可沿水平或倾斜线路布置。 由于皮带输送机的结构特点决定了其具有优良性能,主要表现在:运输能力大,且工作阻力小,耗电量低,皮带输送机的单机运距可以很长,转载环节少,节省设备和人员,并且维护比较简单。由于输送带成本高且易损坏,故与其它设备比较,初期投资高且不适应输送有尖棱的物料。 输送机年工作时间一般取4500-5500小时。当二班工作和输送剥离物,且输送环节较多,宜取下限;当三班工作和输送环节少的矿石输送,并有储仓时,取上限为宜。 1.2布置方式 电动机通过联轴器、减速器带动传动滚筒转动或其他驱动机构,借助于滚筒或其他驱动机构与输送带之间的摩擦力,使输送带运动。通用固定式输送带输送机多采用单点驱动方式,即驱动装置集中的安装在输送机长度的某一个位置处,一般放在机头处。 单点驱动方式按传动滚筒的数目分,可分为单滚筒和双滚筒驱动。对每个滚筒的驱动又可分为单电动机驱动和多电动机驱动。单筒、单电动机驱动方式最简

单,在考虑驱动方式时应是首选方式。皮带输送机常见典型的布置方式如图1-1所示。 此次选择DTⅡ(A)型固定式皮带输送机作为设计机型。单电机驱动,机长10m,带宽500mm,上托辊槽角35°,下托辊槽角0°。DTⅡ(A)型固定式皮带输送机是通用型系列产品,可广泛用于冶金、煤炭、交通、电力、建材、化工、轻工、粮食、和机械等行业。输送堆积密度为500~2500kg/m3的各种散状物料和成件物品,适用环境温度为-20~40℃。 图1-1 皮带输送机典型布置方式 1.3皮带输送机的整体结构 图1-2为此次设计的皮带输送机的整体结构

皮带机简易计算

带式输送机简易计算 1.煤炭工业部MT23-75矿用带式输送机参数标准(表1) 2.带式输送机的功率简单计算 功率 式中: N ——电动机输出功率 千瓦 p ——所需动力 千瓦 η——机械效率 ( 0.75~0.85) m ——电动机功率备用系数 1.2 所需动力计算: t t P hQ L L fQ L L V W P P P P P +± +++??=+±+=367 367 367 06.00101321 式中: P 1——空载动力千瓦; P 2—-水平载荷动力 千瓦; P 3——垂直载荷动力,千瓦;向上运输为“+”号,向下运输为“-”号。 F ——托辊转动摩擦系数(按表2选取) W ——运输物品以外的运动部分重量(按表3) 公斤/米 V ——运输速度米/分钟。 L 1——输送机水平投影长度米;L1=cos β L ——运输长度米 L 0——中心距修正值(按表2) H ——运输机高度投影长度米;h=L .sin β β——输送机安装倾角度 Q ——运输量吨/小时 Pt ——卸载器所需动力千瓦。 表2

表3 计算举例:计算输送机所需功率 原始数据:运输量Q= 400吨/小时,带速v=2米/秒=120米/分钟, 带宽B= 800毫米, 运输长度300米,安装倾角p=8°,L 1=300×cos8°=297米,h= 300×sin8°=41.75米 所需动力计算: ) 千瓦(384.7135.45304.1158.113 367 400 75.41367 49 29740003.0367 492971205703.006.0367367367 06.0P +P +P +P =P 0 10 1t 321=+++=+?+ +? ?++? ???=++ +++??=t P hQ L L fQ L L V W f 所需电动机功率: )(107 218 038471千瓦=?= ?= 。。。m P N η 3.上、下山带式输送机运输长度的选择 在输送机主要技术参数以及额定功率不变的情况下,运输长度随着实际安装倾角加大 而减小(这里不包括因运输量变化而引起的运输长度的变化)。为了方便用户选择,了 解,这里汇编了各种带宽不同倾角下的运输长度,附表5、6、7、8、9、10、11,供参考. 带宽B=1000毫米 运输量Q=630吨/小时 带速V=2米/秒 功率N=75千瓦、150千瓦 表5 向上(下山)运输长度选择表

最新同步带及带轮选型计算资料

一,竖直同步带及带轮选型计算: 竖直方向设计要求:托盘及商品自重20kg (196N ),滑块运动1250mm 所需时间6s 。 1,设计功率P K P A ?=d w w s m kg N kg kw Fv P 4.45)(9 .0625.1/8.920)(103=÷??=?=-η A K 根据工作情况查表取1.5 w w P K P A 1.684.455.1d =?=?= 2,带型选择 根据w P 1.68d =和带轮转速r/min 100=n 查询表格选择5M 圆弧带 3,带轮齿数z 及节圆直径1d 根据带速,和安装尺寸允许,z 尽可能选择较大值,通过查表选择 5M 带,齿数z=26,节圆直径m m 38.411=d ,外圆直径m m 24.400=d 4,带速v m a x 1/22.0100060v s m n d v <=?=π 5,传动比

主动从动带轮一致,传动比i=1,主动轮与从动轮同一个型号 6,初定中心距0a mm 1644a 0= 7,初定带的节线长度p 0L 及其齿数p z mm a d d d d a L p 34184)()(2202 212100=-+++≈π 8,实际中心距a mm L L op 16452a a p 0≈-+= 9,基准额定功率0P 可查表得w 50P 0= 10,带宽S b mm 06.10b 14.10 0S =≥P K K P b Z L d S (基准带宽9b S0=时) 11,挡圈的设置 5M 带轮,挡圈最小高度K=2.5~3.5 R=1.5 挡圈厚度t=1.5~2 挡圈弯曲处直径mm R d 24.432d 0w =+= 挡圈外径m m 24.482d f =+=K d w

皮带运输机传动装置设计计算说明书

机械设计基础课程设计2资料 设计题目:皮带运输机传动装置 学生姓名 学院名称 专业 学号 指导教师 内装资料:1计算说明书 1 份 2设计装配图 1 张 3 零件图 1 张 4 设计草图 1 张 2013年8月28日

机械设计基础课程设计2 计算说明书 设计题目:皮带运输机传动装置 学生姓名 学院名称 专业 学号 指导教师 2013年8月28日

《《机械设计基础课程设计2》任务书 编号2—1— 3 姓名专业年级班级 设计完成日期指导教师 设计题目:皮带运输机传动装置 1—电动机2—三角带传动 3—圆柱齿轮减速器 4—开式齿轮传动 5—运输带 6—滚筒 原始数据 设计工作量:设计说明书1份,减速器装配图1张,减速器零件图1 张

目录 一、传动方案的拟定及说明 (3) 二、电动机的选择 (3) 三、传动比的分配 (4) 1、总传动 (4) 2、各级传动比 (4) 四、传动件运动参数及动力参数计算 (4) 1、计算各轴转速 (4) 2、计算各轴的输入功率 (4) 3、计算各轴扭矩 (4) 五、传动零件的设计计算 (5) 1、皮带轮传动的设计计算 (5) 2、开式齿轮传动计算 (6) 3、减速器内齿轮传动计算 (8) 六、校验总传动比 (10) 七、轴的设计与强度校核计算 (10) 1、输入轴的尺寸设计 (10)

2、输出轴的尺寸设计 (11) 3、输出轴强度校核 (12) 八、输出轴轴承的寿命计算 (14) 九、键的强度校核计算 (14) 1、减速器内大齿轮联接键强度校验 (14) 2、减速器外小齿轮联接键强度校验 (14) 十、减速器的部分结构尺寸 (15) 1、箱体结构设计 (15) 2、箱体附件的设计选择 (16) 十一、润滑与密封 (16) 十二、参考资料目录 (16)

皮带输送机传动装置

滚筒圆周率F=1000N,带速v=2.0m/s,滚筒直径D=500mm 滚筒圆周率F=900N,带速v=2.5m/s,滚筒直径D=400mm 一、传动方案拟定 第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器 (1)工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。 (2)原始数据:滚筒圆周力F=;带速V=1.4m/s; 滚筒直径D=220mm。 运动简图 二、电动机的选择 1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用 Y系列三相异步电动机。 2、确定电动机的功率: (1)传动装置的总效率: η总=η带×η2轴承×η齿轮×η联轴器×η滚筒 =×××× = (2)电机所需的工作功率: Pd=FV/1000η总 =1700×1000× = 3、确定电动机转速: 滚筒轴的工作转速: Nw=60×1000V/πD =60×1000×π×220 =min 根据【2】表中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×=729~2430r/min 符合这一范围的同步转速有960 r/min和1420r/min。由【2】表查出有三种适用的电动机型号、如下表 方案电动机型号额定功率电动机转速(r/min)传动装置的传动比 KW 同转满转总传动比带齿轮 1 Y132s-6 3 1000 960 3 2 Y100l2-4 3 1500 1420 3 综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。 4、确定电动机型号 根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为 Y100l2-4。 其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩。 三、计算总传动比及分配各级的传动比 1、总传动比:i总=n电动/n筒=1420/= 2、分配各级传动比

下运皮带机计算实例

普通带式输送机的设计 摘要本文在参考常规下运带式输送机设计方法的基础上,分析了常见驱动方式和制动方式用于长运距、大运量下运带式输送机上的优缺点,提出该运输机可采用的驱动和制动方式;分析了常见软起动装置及其选型方法,归纳总结出长运距、大运量变坡输送下运带式输送机设计中的关键问题和可靠驱动方案和制动方式优化组合的可行方案;通过常规设计计算,提出了合理确定张紧位置、张紧方式及张紧力大小的方法;对驱动装置及各主要部件进行了选型并校核。 长距离变坡下运带式输送机运行工况复杂,在设计方面需考虑各种可能的工况,并计算最危险工况下输送机的各项参数,同时为保证运行过程中输送机各组成部分能适应载荷及工况的变化需将拉紧力统一,然后重新计算各工况下输送机参数,最终 确定整机参数。 本论文对长运距、大运量变坡下运带式输送机,综合考虑各方面的因素,采用合理的驱动方案、制动方式和软启动装置组合,有效保证长运距、大运量变坡下运带式 输送机的可靠运行。 关键词:带式输送机下运长距离变坡目录 1 绪论 (1) 2.输送机的发展与现状 (2) 2.1国内外带式输送机的发展与现状 (2) 2.1.1国外煤矿用带式输送机技术现状和发展趋势 (2) 2.1.2国内煤矿用带式输送机的技术现状及存在的问题 (3) 2.1.3我国煤矿用带式输送机的发展 (3) 2.2选题背景 (4)

2.2.1主要技术参数 (4) 2.2.2线路参数 (5) 2.2.3物料特性 (5) 2.2.4带式输送机工作环境 (5) 2.3本课题的研究内容 (6) 2.3.1长运距、大运量下运带式输送机关键技术分析研究 (6) 2.3.2带式输送机的设计及驱动、制动方案的分析 (6) 3长距离、大运量下运带式输送机关键技术的分析 (7) 3.1下运带式输送机基本组成 (7) 3.2驱动方案的确定 (7) 3.3带式输送机制动技术 (8) 4 长距离大运量下运带式输送机的设计 (11) 4.1 带式输送机原始参数 (11) 4.2 带式输送机的设计计算 (11) 4.2.1输送带运行速度的选择 (11) 4.2.2输送带宽度计算 (12) 4.2.3初选输送带 (12) 4.3输送机布置形式及基本参数的确定 (13) 4.3.1输送带布置形式 (13) 4.3.2输送机基本参数的

皮带机运输机计算

动筛产品仓至新增原煤仓 1、原始设计参数: 1) 运量: 1400/Q t h = 2) 带宽: 1400B mm = 3) 带速: 2.5/V m s = 4) 运输距离和运输倾角: 92.206,8.7 L m α== 2、设计计算 2.1 主要技术参数: 1)输送机承载分支的托辊间距:0a 1.2m = 2) 输送机回程分支的托辊间距: u a 3.0m = 3)托辊直径:159d mm = 4)输送机承载分支每米机长托辊旋转部分质量: 11.643/1.229.1(/)RO q kg m =?= 5)输送机回程分支每米机长托辊旋转部分质量: 29.11/39.75(/)RU q kg m =?= 6)输送机每米输送带每米质量: (1.226 3.40 1.7 1.4=17.4kg/m B q =?++?) 7)每米输送物料的质量: 1400 155.56/3.6 3.6 2.5G Q q kg m V ===? 8)模拟摩擦系数f : 根据《DT Ⅱ型固定带式输送机设计选用手册》表34,选模拟摩擦系数0.03f = 2.2 计算圆周力:

1)承载分支的运行阻力1F 1(=(29.1+155.56+17.4)0.0392.206=559(kg) RO G B F q q q f L =++????) 2)回程分支的运行阻力2F : 2(=(9.75+17.4)0.0392.206=75.1(kg) RU B F q q f L =+????) 3)物料提升阻力3F 3sin =155.5692.206sin8.75=2182(kg) G F q L α =???? 4)特种主要阻力: 1、输送带与导料槽摩擦力gl F : 2222222 10.70.43900377.4()2.50.85V gl u I l F Kg V b ρ???===? 2μ,物料和导料挡板之间的摩擦系数,20.7μ= V I :输送能力, 314000.43(/)0.93600V I m s = =? ρ:输送物料的松散密度,3900/Kg m ρ=。 l :导料槽长度,3l m =。 1b :导料挡板内部宽度,10.85b m = 2、输送带清扫器摩擦阻力r F 123061.391.3()r r r F F F kg =+=+= 1r F :头部清扫器与输送带与摩擦阻力

皮带输送机计算

目录 普通皮带输送机毕业设计计算说明书f 上传时间:2011-10-30 9:38:04 我要下载: 文件描叙:4.8 软起动装置的选择 由电动机自身特性可知,电动机直接启动时会产生很大的起动电流,从而对电网冲击很大;而在电动机和减速器之间加可控软起动装置则会大大改善电动机的启动性能,从而延长电动机使用寿命。调速型液力偶合器是一种无级调速装置,它通常安装于电机和减速器之间,具有起动时保护电机,起动加速度可控、过载保护等功能,是目前性能较优越的可控软起动装置之一。 4.8.1 目前主要的软起动装置原理与性能 常用的下运皮带输送机软起动装置主要有以下几种:液体粘性软起动装置、CST、液力偶合器、变频器等。(1)液体粘性软起动装置液体粘性软起动系统是利用液体的粘性即油膜剪切力来传递扭矩的,其结构如图4.3所示,由主、从动轴,主、从动摩擦片,控制油缸、弹簧、壳体及密封件等组成。当主动轴带动主动摩擦片旋转时, 通过摩擦片之间的粘擦片的旋转,当 擦片的旋转,当改变控制油缸中的油图4.3 液体粘性软启动系统机械结构图

压大小来调节主、从动摩擦片之间的 1-输入轴 2-壳体 3-控制油缸 4-弹簧 油膜厚度,可以改变从动摩擦片输出 5-主动摩擦片 6-从动摩擦片 7-输出轴 的转速和扭矩的大小,从而实现皮带输送机各项驱动要求和可控软起动功能。 (2)液力偶合器 图4.4 调速型液力偶合器原理图 1-油冷却池 2-滤油器 3-滚动轴承 4-电动执行其 5-油箱 6-齿轮泵 液力偶合器主要分限矩型液力偶合器和调速型液力偶合器两种,主要是以液体为介质传递功率的软起动装置。主要由泵轮、涡轮、外壳等组成。 泵轮输入轴与电机相连,为功率输入端;涡轮经输出轴与减速器相连,为功率输出端,两者结构形状相似,成轴向对称排列,共同组成液流循环圆。 工作时,由供油泵向循环圆中充入工作油,当电动机驱动泵轮旋转时,进入泵轮的工作油在叶片的带动下,因离心力的作用由泵轮内侧流向外缘,形成高压高速液流冲击涡轮叶片,使涡轮与泵轮同向旋转,工作油在涡轮中由外缘流向内侧,将流入涡轮中的高能液流转变成输出轴的机械能,从而实现能量的柔性传递。 限矩型液力偶合器的充液量不变,起到柔性联轴节的作用,能实现电机空载起动、过载保护等作用,但起动加速度不可控,通常被用在小型输送机上。调速型液力偶合器通过电动执行器来调节勺管的插入深度实现调节循环圆内工作液体的充液量的。因此起动力矩可控,通常被用于中大型输送机上或倾角较大的场合。 采用调速型液力偶合器作为软起动传动装置可以做到延长起动时间、改善输送机满载起动性能。主要优点如下: ①实现软起动(可控起动) 起动时偶合器中无油,电动机带动泵轮空载起动,起动时间短,大电流冲击时间短。待电动机起动完毕,控制系统才控制勺管外移,向偶合器供油,涡轮力矩逐渐增大,当涡轮力矩大于负载力矩时,输送机开始起

皮带机计算说明

带式输送机选择设计 火力发电厂广泛采用DTII 型带式输送机。 1基本参数确定 (1)输送带速度v s m v /15.3;5.2;0.2;6.1=。带速选为s m /5.2。 (2)三节托滚槽角λ ?=35λ; (3)倾角α 根据任务书取?=15α (4)输送带宽度B B 由下式计算并圆整到标准值: )/(20h t v KB Q ρ= (2-16) 式中:K ——断面系数,查表可得; ρ——煤的堆密度,取3/9.0m t =ρ。 由下表:带宽与适用的最大物料粒度(单位均为mm ) 带宽 650 800 1000 1200 1400 1600 1800 2000 已筛分全为块料 130 160 200 240 280 320 360 400 未筛分全(10%)为块 料 200 270 330 400 460 530 600 670 任务书中给定的原煤粒度最大为300mm ,储煤场到原煤仓有筛分,故可初选带宽为 mm B 10000=,则断面系数可查表得530=K 所以)(97.09 .05.2530900 0m Kv Q B =??== ρ 圆整为标准值,则mm B 1000=,根据相关标准,选定上托辊间距为mm a 12000=,下托辊间距mm a u 3000=。 由《物流系统自动化专业课程设计指导书》中表2-13 DTII 型带式输送机槽型托辊参数可查得选用的带式输送机的槽型托辊参数如下: 带 宽 辊 子 槽型托辊 D (mm ) L (mm ) 轴 承 重 量(kg ) 旋转部分质量(kg) 1000 108 380 4G205, 4G305, 24.3,26.2 4.07,4.19 由《物流系统自动化专业课程设计指导书》中表2-14 DTII 型带式输送机平形托辊参数可查得选用的带式输送机的平形托辊参数如下: 带 宽 辊 子 槽型托辊 D (mm ) L (mm ) 轴 承 重 量(kg ) 旋转部分质量(kg) 1000 108 1150 4G205,4G305 19.2,20.8 8.4,10.56 至此,皮带参数已经确定。

皮带输送机计算书

目录 一、引言 二、胶带机工作环境 三、胶带机技术规范 四、根据给定条件设计计算胶带机 1.名词解释 2.设计计算。 3.验算驱动力及所需电机传动功率 4.电机功率及主要参数 5.胶带机驱动部传动框图 6. 胶带机整机传动简图 7.计算自由停车时间确定胶带机的主驱电控 五、结束语 一、引言 我国是一个多煤少油的国家,已探明的煤炭储量占世里煤炭储量的33.8%,可采量位居第二,产量位居世界第一位。可以预见,煤炭工业在国民经济中的基础地位,将是长期的和稳固的,具有不可替代性。能源是战略资源,是全面建设小康社会的重要物质基础。 当今世界,科技进步日新月异,伴随着全球石油资源需求与价格的波动及国际产业和技术转移加速进行。“十二五”规划又确定今后五年国内生产总值年均增长7%,宏观经济特别是主要用煤行业的快速发

展必将拉动煤炭需求持续增加,一个以大型重点煤矿为支撑的新型煤炭工业体系早已明晰。近年来,随着众多企业的从组兼并经济总量和生产经营规模的不断扩张,加工中心、磨齿机、大型落地镗床、数显镗铣床等一批关键加工设备的投入和使用,加之ERP信息管理系统和三维辅助设计系统等,全面提升了企业的竞争力,为制作高标质量、优质产品和拓展市场奠定了坚实的基础。 由此,给煤矿机械及煤化工设备制造业的发展带来了千载难逢的机遇,而本企业的主打产品担负矿井主要输送任务的胶带机即为其一。在煤矿综合机械化采煤及掘进过程中,作为较好的顺槽运输设备,它能随着工作面的不断推移长度不断的发生变化,从而能有效地提高顺槽运输能力,加快回采和掘进速度。加之功率小,运量大,带储长,安装拆卸快捷方便,重量轻等优点使之迅速成为诸多客户的首选。 目前同煤集团各矿常备的顺槽胶带输送机因其结构简单便于拆装,且在使用和维护保养方面易于操作;而随机配件和易损件品种少好管理、随机工具又具通用性,尤其是在设备故障的判断和处置上较其他设备更准确,更便捷。但节能是我国经济和社会发展的一项长远战略方针,也是当前一项极为紧迫的任务。为推动全社会开展节能降耗,缓解能源瓶颈制约,建设节能型社会,促进经济社会可持续发展,实现全面建设小康社会的宏伟目标,就在整个煤炭开采中担负主要输送任务的胶带机而言亦是如此,所以对其的准确计算定型和合理控制尤显极为重要。 本论文以下就新近招标的同煤集团塔山某型顺槽胶带输送机给

同步带轮的选型和设计要求

查表及定制带轮须知: 1、本公司生产的带轮既为国产化设备的同步带配套,又能代替进口带轮使用。 2、用户定制同步带轮,请提供带轮图纸(图在可不必绘制带轮的齿型尺寸),本公司也可按用户提供的型号,带轮内孔,键槽宽度等尺寸为用户绘制带轮图纸;也可为用户提供测绘带轮等服务。 3、带轮的外径公差、端面跳动量、径向跳动量符合表1、表2、表3规定。 4、各种规格型号的同步带选用带轮齿面宽度须符合表4规定要求。 5、带轮外径、档边尺寸按附表规定选用。 6、附表中没有列出的带轮规格,本公司也可生产。 7、制造带轮用材质以碳素钢为主,如需要也可用铝合金、尼龙等材料加工;带轮外径大与250mm,采用铸铁。 梯形齿同步带轮表示方法圆弧齿同步带轮表示方法西德T型齿同步带轮表示方法 同步带轮的型式 AS型BS型AF型BF型W型 同步带轮节距公差 带轮节距公差(单位:MM) 外径 允许偏差 任意两相邻齿间90o弧内允差 ≤25.400.03 0.05 >25.40~50.80 0.03 0.08 >50.80~101.60 0.03 0.1 >101.60~177.80 0.03 0.13

>177.80~304.80 0.03 0.15 >304.80~508.00 0.03 0.18 >508.00 0.03 0.2 同步带轮外径公差(表1) 带轮外径公差(单位:MM)表1 带轮外径公差 ≤25.40+0.05/0 ≤25.40~50.80 +0.08/0 ≤50.80~101.60 +0.1/0 ≤101.60~177.80 +0.13/0 ≤177.80~304.80 +0.15/0 ≤304.80~508.00 +0.2/0 >508.00 +0.2/0 同步带轮端面允许跳动量公差(表2) 带轮端面允许跳动量公差(单位:MM)表2 带轮外径允许跳动量 ≤101.600.1 >101.60~254.00 带轮外径x0.001 >254.00 0.25+[(带轮外径-254.00)x0.005] ≤203.20300.13 >1203.20 0.13+[(带轮外径-203.20)x0.005] 同步带轮直边齿形尺寸和公差 带轮直边齿型尺寸和公差(单位:MM) 节 线代号bw h g + 1 . 5 r b rt 2δ M X L 0.84 ±0.0 5 . 6 9 2 0. 3 5 . 1 3 0.508 X 1.14020.00.508

皮带输送机输送带张紧力的计算方法

皮带输送机输送带张紧力的计算方法 皮带输送机是一种在国民经济的许多领域都得到应用的连续输送设备。在皮带输送机的设计使用中,张紧力的研究和张紧装置的选用是极其重要的。输送带张力是一个沿输送区段变化的参数。它受各种因素的影响,如皮带输送机长度和局部区段的倾角正负、传动滚筒的数量和布置、驱动装置和制动装置的性能、输送带拉紧装置的类型及布置、载荷及运动状态等。 1、张紧力的计算 在带式输送机设计过程中,通常用逐点法计算张紧力。计算公司式为: S1=KS2+W (1) S1=S2eμα(2) 式中S1——输送带最大张力; K——改向滚筒阻力系数之积; S2——输送带与传动滚筒分离点的张力; W——输送机运行总阻力; α——围包角; μ——传动滚筒摩擦系数。 由式(1)式(2)可求解出S1和S2。从式(2)中看出围包角α与S1有着密切关系,因此传动滚筒围包角的选取对输送带最大张力影响是较大的。在设计过程中应选取最优的围包角,使输送带最大张力最小。 2、最小张紧力的限制条件 虽然对于输送带张力来说应尽可能地小,但它的最小张力也是具有限制条件的。首先最小张力就要受到启动张力的限制,因为对于皮带输送机而言,一般启动张力的确定非常重要,启动张力选小了,皮带在满载启动时就要打滑,造成启车困难。启动张力选大了,则输送带张力较大,就必须提高输送带的强度,同时也要增大传动滚筒的直径,这样就增加输送机的制造和使用成本。通常启动张力取正常运转时的1.2~1.6倍,这样既能满足输送机的启动要求,也不会过于增大输送带的最大张力。通常输送带的最小张紧力一般会受到如下限制: (1)在传动滚筒和制动滚筒上,为了通过摩擦力传递启动、制动或稳定工况下出现的总的滚筒圆周力F max,需要一定的最小输送带绕入张力和绕出张力。 (2)输送带相对垂度h r的最大值与托辊间距有关,在输送机稳定工况下应限制在1%以下;在非稳定工况下可允许有较大垂度。输送速度越高,物料块度越大,垂度应该越小。因此需要限制垂度的最小输送带张力。 (3)对于皮带输送机而言,初张力值的确定非常重要,初张力值选小了,皮带输送机在满载启动时就要打滑,造成起车困难。 (4)较长皮带输送机因区段的倾角和负荷变化,输送带张力在输送机上的分布也不相同,因此应将皮带机划分区段进行计算。找出输送带张力在皮带机上的分布规律,以便确定皮带输送机的张紧力和最小张力点。 3、张紧装置的作用 (1)保证输送带在传动滚筒分离点具有足够的张力,满足传动滚筒的摩擦传动要求。 (2)保证输送带最小张力点的张力,满足输送带的垂度限制条件。 (3)满足输送带张力引起的弹性伸长要求的拉紧行程。

皮带输送机传动装置

机械设计课程设计任务皮带输送机传动装置一一单级圆柱齿轮减速器 滚筒圆周率F=1000N,带速v=2.0m/s,滚筒直径D=500mm 滚筒圆周率F=900N,带速v=2.5m/s,滚筒直径D=400mm 一、传动方案拟定 第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器 (1)工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。 (2)原始数据:滚筒圆周力F=1.7KN ;带速V=1.4m/s ; 滚筒直径D=220mm。 运动简图 二、电动机的选择 1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用Y系列三相异步电动机。 2、确定电动机的功率: (1)传动装置的总效率: n总=耳带x“2由承Xq齿轮xn联轴器xn衮筒 =0.96 X0.992 X0.97 X0.99 X0.95 =0.86 (2)电机所需的工作功率: Pd=FV/1000 n 总 =1700X1.4/1000 X0.86 =2.76KW 3、确定电动机转速: 滚筒轴的工作转速: Nw=6C X 1000V/ nD =60 X 1000 X 1.4/ nX 220 =121.5r/min 根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6?20,故电动机转速的可选范围为nd=i Xnw= (6~20 )X21.5=729?2430r/min 符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表 方案电动机型号额定功率电动机转速(r/min )传动装置的传动比 KW同转满转总传动比带齿轮 1 Y132S-6 3 1000 960 7.9 3 2.63 2 Y10012-4 3 1500 1420 11.68 3 3.89 综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y10012-4。 4、确定电动机型号 根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为 Y10012-4。

同步带及带轮选型计算

同步带及带轮选型计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

一,竖直同步带及带轮选型计算: 竖直方向设计要求:托盘及商品自重20kg (196N ),滑块运动1250mm 所需时间6s 。 1,设计功率P K P A ?=d A K 根据工作情况查表取 2,带型选择 根据w P 1.68d =和带轮转速r/min 100=n 查询表格选择5M 圆弧带 3,带轮齿数z 及节圆直径1d 根据带速,和安装尺寸允许,z 尽可能选择较大值,通过查表选择 5M 带,齿数z=26,节圆直径m m 38.411=d ,外圆直径m m 24.400=d 4,带速v 5,传动比 主动从动带轮一致,传动比i=1,主动轮与从动轮同一个型号 6,初定中心距0a 7,初定带的节线长度p 0L 及其齿数p z 8,实际中心距a 9,基准额定功率0P 可查表得w 50P 0= 10,带宽S b mm 06.10b 14.10 0S =≥P K K P b Z L d S (基准带宽9b S0=时) 11,挡圈的设置

5M 带轮,挡圈最小高度K=~ R= 挡圈厚度t=~2 挡圈弯曲处直径mm R d 24.432d 0w =+= 挡圈外径m m 24.482d f =+=K d w 竖直方向同步带轮: 带轮型5M 圆弧齿,节径,齿数26,外径,带轮总宽,挡圈外径,带轮孔10mm ,固定方式紧定螺钉(侧边紧定螺钉固定台宽7mm ,螺纹孔m3,两个成90度) 竖直方向同步带: 带型5M 圆弧带,带宽,节线长度约3418mm 二,电机输出同步带轮选型计算: 功率,转速,带轮选择与竖直方向相同 1,初定中心距0a 2,初定带的节线长度p 0L 及其齿数p z 3,实际中心距a 电机输出同步带: 带型5M 圆弧带,带宽,节线长度约426mm 三,水平同步带及带轮选型计算: 水平方向设计要求:滑块行程1350mm ,移动负载20N ,滑块运动1350mm 所需时间4s 。 1,设计功率P K P A ?=d A K 根据工作情况查表取 2,带型选择 根据w P 25.11d =和带轮转速r/min 300=n 查询表格选择3M 圆弧带

皮带运输机总体及传动设计

摘要 带式输送机是广泛应用于煤炭、港口、建设、电厂等工业领域的连续输送设备,它具有运输效率高、运营成本低等优点。随着国民经济的发展,带式输送机的应用越来越广泛。近年来,随着工业技术的发展,带式输送机也不断朝着大运量、长距离、大倾角、高带速、投资费用少、运营费用低、工作可靠、维护方便等方向发展,对其设计技术的要求也越来越高。为适应地形的要求,用输送带输送一定高度的带式输送机在很多方面有应用。本文着重讨论了带式输送机的结构原理、传动原理、设计计算法则、运行阻力的计算、各点张力的计算等内容,以及各种计算参数的设计计算和校核,尤其对输送带的选用、托辊的选用进行了详细的分析,使设计更加贴切接近实际问题。本文还分析了国内外带式输送机的现状及发展趋势,说明在现代高科技发展的情况下,带式输送机的发展潜力还是很大的。 本文研究了一般固定式带式输送机的设计理论,并根据所设计的要求再结合目前国内的目前的技术要求组装了一套倾角为0度的固定式带式输送机,说明了这套设计符合设计参数的要求 关键字:输送机发展结构原理计算和校核

Abstract Taking style to transport machine is broad apply to industry field continuation such as coal , port construction, electric power plant transports equipment , that it has transportation is efficient , is in motion and do business cost low grade merit. The application with the development of national economy, taking style to transport machine is more and more broad. In recent years , with the development of industrial technology,the cost direction such as low , working reliably , defending to go to the lavatory taking style to transport machine bringing speed along also unceasingly to grand fortune amounts , long distance , big dip angle , height , investing in cost stopping being in motion and doing business, develops , designs that the technology request is also more and more high to the person. For the request adapting to landform's, use conveyer belt to transport certain altitude's taking style to transport machine having in many aspects applying. Content such as the main body of a book being emphasized having discussed structure principle , drive principle taking style to transport machine , being designing the calculation calculating a law , running resistance's , every tension calculation, calculating and proofreading the parametric design secretly scheming against as well as various, has carried out detailed analysis on the conveyer belt selecting and using , selecting and using supporting a roller especially , has used the problem designing especially appropriate approximation reality. The main body of a book has been analysed taking style to transport machine current situation and developing trend at home and abroad, the potential taking style to transport is still very big under explanation condition developing in modern high technology. The general stationary type the main body of a book has been studied takes style to transport the machine design theory , in the light of designed that together request still be tied in wedlock is at present domestic at present the technology has demanded assembling to copy a dip angle once for 14 degree of stationary type takes style to transport machine , the cover having explained this has designed that according with the request designing a parameter's. Key words: Transport machine Develop Structure principle Secretly scheme against and school core

相关主题
文本预览
相关文档 最新文档