当前位置:文档之家› 线性代数课后习题答案第1——5章习题详解

线性代数课后习题答案第1——5章习题详解

线性代数课后习题答案第1——5章习题详解
线性代数课后习题答案第1——5章习题详解

第一章 行列式

4.计算下列各行列式:

(1)????

?????

???71

10

025*********

4; (2)????????????-26

52321121314

1

2; (3)????????---ef cf bf de cd bd ae ac ab ; (4)?????

????

???---d c b a

1

00

110011001

(1)

71100251020214

214

34327c c c c --0

10014

2310202110

214---=3

4)1(1431022

11014+-?---=14

31022110

14-- 3

21132c c c c ++14

171720010

99-=0

(2)

260

5232112131

412-24c c -2605032122130

412-24r r -0412032122130

412- 14r r -0

000032122130412-=0

(3)ef cf bf de cd bd ae ac ab ---=e

c b e c b e

c b adf ---=111111111---adfbce =abcdef 4

(4)

d c b a 100

110011001---21ar r +d

c b a ab 1

001

100

110

10---+=12)1)(1(+--d

c a ab 1011

1--+

2

3dc c +0

10111-+-+cd c ad

a a

b =23)1)(1(+--cd

ad

ab +-+111=1++++ad cd ab abcd

5.证明: (1)1

11222

2b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3

3+;

(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2

2222222

2

2222222

=++++++++++++d d d d c c c c b b b b a a a a ;

(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?;

(5)1

22

110000

0100001a x a a a a x x x n n n +-----

n n n n a x a x a x ++++=--11

1 . 证明

(1)0

0122222221

312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=

右边=-=3)(b a

(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开

按第一列

左边

bz

ay by ax x by ax bx az z bx

az bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分

bz

ay y x by ax x z bx

az z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分

右边=-+=233)1(y

x z x z y z

y x b y x z x z y z y x a

(3) 22

2

22222

2222

2

222

)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9

644129644129

644129644122

2221

41312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 96449644964496442

22

2

2

++++++++d d d d c c c c b b b b a a a a 分成二项按第二列9

64

41964419

644196441222

2+++++++++d d d c c c b b b a a a 94

94949494642

2

22

24232423d d c c b b a a c c c c c c c c ----第二项

第一项

06416416416412

22

2=+d

d

d c c c b

b b a a a (4) 4

44444422222220

001a

d a c a b a a

d a c a b a a

d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b a

d a c a b --------- =)

()()(1

11))()((222a d d a c c a b b a d a c a

b a d a

c a b ++++++--- =?---))()((a

d a c a b )

()()()()(0

0122222a b b a d d a b b a c c a b b b

d b c a b +-++-++--+ =?

-----))()()()((b d b c a d a c a b )

()()()(1

12222b d a b bd d b c a b bc c ++++++++

=))()()()((d b c b d a c a b a -----))((d c b a d c +++-

(5) 用数学归纳法证明

.,1

,22121

22命题成立时当a x a x a x a x D n ++=+-=

=

假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D

:1列展开按第则n D

1

110

010001)1(1

1----+=+-x x

a xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.

6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得

n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11

113a a a a D n n

nn =,

证明D D D D D n n =-==-32

)1(21,)1(.

证明 )det(ij a D =

n

nn n n

n n nn n a a a a a a a a a a D 22111111111

1

1)1(

--==∴ =--=--n

nn n n

n

n n a a a a a a a a 3311

2211112

1)1()1( nn

n n n n a a a a 11112

1

)1()

1()

1(---=--D D n n n n 2)

1()

1()2(21)1()1(--+-+++-=-=

同理可证nn

n n n n a a a a D 11112

)1(2)

1(--=D D n n T n n 2)

1(2

)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2

)1(2

)1(22

)1(3)1()

1()

1()1(

7.计算下列各行列式(阶行列式为k D k ):

(1)a a

D n 1

1

=

,其中对角线上元素都是a ,未写出的元素都是0;

(2)x

a

a

a

x a

a a x D n

=

; (3) 1

1

11)()1()()1(1

1

11

n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) n

n

n

n

n d c d c b a b a D

000

01

1112=; (5)j i a a D ij ij n -==其中),det(;

(6)n

n a a a D +++=

11

11

111

112

1 ,021≠n a a a 其中.

(1) a

a a a a D n 000100000000

00001000 =

按最后一行展开)

1()1(1

0000

0000

000010000)1(-?-+-n n n a

a a

)1)(1(2)1(--?-+n n n

a a

a

(再按第一行展开)

n n n n

n a a a

+-?-=--+)

2)(2(1)1()1(

2--=n n a a )1(22-=-a a n

(2)将第一行乘)1(-分别加到其余各行,得

a

x x a a

x x a a x x a a

a a x D n ------=00

00000 再将各列都加到第一列上,得

a

x a

x a x a

a

a a n x D n ----+=00000000

0)1( )(])1([1

a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,

经2

)

1(1)1(+=

++-+n n n n 次行交换,得 n

n n n n n n n n n a a a n a a a n a a a

D )()1()()1(111

1)1(1

112)1(1

-------=---++

此行列式为范德蒙德行列式

∏≥>≥++++--+--=1

12

)1(1)]1()1[()

1(j i n n n n j a i a D

∏∏≥>≥+++-++≥>≥++-?

-?-=---=1

11

)1(2

)1(112

)1()][()

1()

1()]([)

1(j i n n n n n j i n n n j i j i

∏≥>≥+-=

1

1)(j i n j i

(4) n

n n

n

n d c d c b a b a D 0

1

1112

=

n

n n n n n

d d c d c b a b a a 0000

0000

11111111

----

展开

按第一行0

00

0)

1(111

11111

1

2c d c d c b a b a b n

n n n n n

n ----+-+

2222 ---n n n n n n D c b D d a 都按最后一行展开

由此得递推公式:

222)(--=n n n n n n D c b d a D

即 ∏=-=

n

i i i i

i

n D c b d

a D 2

22)(

而 11111

11

12c b d a d c b a D -==

得 ∏=-=n

i i i i i n c b d a D 1

2)(

(5)j i a ij -=

4

3214012331

0122

210113210)det( --------=

=n n n n n n n n a D ij n ,3221r r r r --0

432111111111111111111111 --------------n n n n

,,141312c c c c c c +++1

5242321022210

22100

02100001---------------n n n n n =212)1()1(----n n n

(6)n

n a a D a +++=

11

11111

1

12

1

,,433

221c c c c c c ---n n n n a a a a a a a a a a +-------100

001000100001000100010000114

3

3221 展开(由下往上)

按最后一列

))(1(121-+n n a a a a n

n n a a a a a a a a a --------000

000000000000000000000000224

3

3221 n

n n a a a a a a a a ----+

--00

000000000000

00

01133221 +

+ n

n n a a a a a a a a -------00

000000

0000000

00

1143322

n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---

)1

1)((1

21∑

=+=n

i i

n a a a a

8.用克莱姆法则解下列方程组:

??????

?=+++-=----=+-+=+++;01123,2532,242,5)1(4321

43214

3214321x x x x x x x x x x x x x x x x ????

?????=+=++=++=++=+.15,065,065,065,165)2(545434323212

1x x x x x x x x x x x x x

解 (1)1121

35132412

11111----=

D 8120735032101111------=145008130032

101111---=

142142

0005410032101

111-=---= 1121

05132412211151------=

D 1121

05132905

01115----=

1121023313090509151------=23

3130905011

2109151------=

120

2300461000112109151-----=14200038

100112109

151----=142-=

112035122412111512-----=D 811507312032701151-------=3139

0112300231011

5

1-=

284284

00

0191002

3101151-=----=

426110135232422115113-=----=D ; 1420

21321322

1215

1114=-----=

D

1,3,2,144332211-========

D

D

x D D x D D x D D x (2) 5

1000651000

6510

00651

0065=D 展开按最后一行

6

10005100

65100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=?-?=

(,11的余子式中为行列式a D D ',11

的余子式中为a D D ''''类推D D ''''''',) 5

1001

651000

6510

006500

0061

1=D 展开按第一列

6

51

006510

0650006+'D 46+'=D 460319+''''-'''=D 1507=

5

10106

51000

6500

006010

00152=D 展开

按第二列

510

065100650006

1-6

5100

6500

0610

005-

365510651065?-= 1145108065-=--=

5

1100

6500006010

00051001653=D 展开

按第三列51006500061000516

5000

6100

0510

065+

6100510656510650061+= 703114619=?+=

510006010000510

00651010654=D 展开

按第四列6

1000

5100

6510

0655000610005100651-

-5

106510

6565--=395-= 1

1

00510006510

00651100655=D 展开

按最后一列

D '+1

00051006

51006512122111=+= 665

212

;665

395

;665

703

;665

1145

;665

1507

44321=

-=

=

-

==

x x x x x . 9.齐次线性方程组取何值时问,,μλ???

??=++=++=++0

200321

321321x x x x x x x x x μμλ有非零解?

解 μλμμμλ

-==1

21111

13D , 齐次线性方程组有非零解,则03=D

即 0=-μλμ 得 10==λμ或

不难验证,当,10时或==λμ该齐次线性方程组确有非零解.

10.齐次线性方程组取何值时问,λ???

??=-++=+-+=+--0

)1(0)3(2042)1(321

321321x x x x x x x x x λλλ 有非零解?

λλλ----=111132421D λ

λλλ--+--=1011124

31

)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ

齐次线性方程组有非零解,则0=D 得 32,0===λλλ或

不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.

第二章 矩阵及其运算

1. 已知线性变换:

?????++=++=++=3

21332123

2113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.

解 由已知:

?

???

?????? ?

?=???? ??221321323513122y y y x x x ,

故 ???? ?????? ?

?=???? ??-3211

221323513122x x x y y y ?

???

?????? ??----=321423736947y y y , ?????-+=-+=+--=3

21332123

211423736947x x x y x x x y x x x y .

2. 已知两个线性变换

?????++=++-=+=3

21332123

11542322y y y x y y y x y y x , ?????+-=+=+-=323312211323z z y z z y z z y ,

求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.

解 由已知

???? ?????? ?

?-=???? ??221321514232102y y y x x x ???

?

?????? ??--???? ??-=32131

010

2013514232102z z z

???

?

?????? ??----=321161109412316z z z ,

所以有?????+--=+-=++-=3

21332123

2111610941236z z z x z z z x z z z x .

3. 设???? ??--=111111111A , ????

??--=150421321B , 求3AB -2A 及A T

B .

解 ???

?

??---???? ??--???? ??--=-1111111112150421321111111111323A AB

???

?

??----=???? ??---???? ??-=2294201722213211111111120926508503,

???

? ??-=???? ??--???? ??--=092650850150421321111111111B A T

.

4. 计算下列乘积:

(1)???

?

?????? ??-127075321134;

解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374????

??=49635.

(2)???

? ??123)321(;

解 ???

?

??123)321(=(1?3+2?2+3?1)=(10).

(3))21(312-???

?

??;

解 )21(312-????

?????? ???-??-??-?=23)1(321)1(122)1(2???

?

??---=6321

42. (4)????

?

??---??? ??-20

4

131

210131

43110412 ; 解 ????

?

??---??? ??-20

4

131210131

43110412??? ??---=6520876.

(5)???

? ?????? ??32133231323

2212131211321)(x x x a a a a a a a a a x x x ;

???

? ?????? ??32133231323

2212131211321)(x x x a a a a a a a a a x x x

=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)???

? ??321x x x 3223311321122

33322222111222x x a x x a x x a x a x a x a +++++=.

5. 设

??? ??=31

21A , ??

? ??=2101

B , 问:

(1)AB =BA 吗? 解 AB ≠BA .

因为??? ??=64

43AB , ??

? ??=8321

BA , 所以AB ≠BA .

(2)(A +B)2=A 2+2AB +B 2

吗? 解 (A +B)2

≠A 2

+2AB +B 2

.

因为

??? ??=+5222B A ,

??? ?

???? ?

?=+5222

52

22)(2B A ??

? ??=2914148,

??? ??+??? ??+??? ??=++43011288611483222B AB A ?

?

? ??=27151610,

所以(A +B)2≠A 2+2AB +B 2.

(3)(A +B)(A -B)=A 2

-B 2

吗? 解 (A +B)(A -B)≠A 2

-B 2

.

因为

??? ??=+52

22B A , ??? ?

?=-1020

B A ,

??

? ?

?=??? ?

???? ?

?=-+9060102052

22))((B A B A ,

??

? ??=??? ??-??? ??=-718243011148322B A ,

故(A +B)(A -B)≠A 2-B 2.

6. 举反列说明下列命题是错误的: (1)若A 2

=0, 则A =0;

解 取

??

? ?

?=00

10A , 则A 2=0, 但A ≠0. (2)若A 2

=A , 则A =0或A =E ;

解 取

??

? ??=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取

??? ??=0001A , ??? ??-=1111X , ??

? ??=1011

Y ,

则AX =AY , 且A ≠0, 但X ≠Y .

7. 设

??

? ??=101λA , 求A 2, A 3, ? ? ?, A k .

?

?

? ??=??? ????? ??=12011011012λλλA ,

?

?

? ??=??? ????? ??==1301101120123λλλA A A , ? ? ? ? ? ?,

??

? ??=101λk A k . 8. 设???

?

??=λλλ001001A , 求A k

.

解 首先观察

???? ?????? ??=λλλλλλ0010010010012A ???

? ??=222002012λλλλλ,

???? ??=?=3232323003033λλλλλλA A A ,

????

??=?=43423434004064λλλλλλA A A ,

???

?

??=?=545345450050105λλλλλλA A A ,

? ? ? ? ? ?,

?

?=k

A k k k

k k k k k k k λλλλλλ0002)1(1

21----????

?

. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,

???? ???????

? ??-=?=---+λλλλλλλλλ0010010002

)1(1211k k k k k k k k k k k k A A A

?????

?

??+++=+-+--+1

1111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:

?????

? ??-=---k k k k k k k k k k k A λλλλλλ0002)1(121.

9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T

AB 也是对称矩阵. 证明 因为A T

=A , 所以

(B T

AB)T

=B T

(B T

A)T

=B T A T

B =B T

AB ,

从而B T AB 是对称矩阵.

10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T

=A , B T

=B , 且AB =BA , 所以 (AB)T

=(BA)T

=A T B T

=AB ,

即AB 是对称矩阵.

必要性: 因为A T

=A , B T

=B , 且(AB)T

=AB , 所以

AB =(AB)T =B T A T

=BA . 11. 求下列矩阵的逆矩阵:

(1)

??

? ??5221; 解

??

? ?

?=5221A . |A|=1, 故A -1存在. 因为

??? ??--=??? ??=1225*22122111A A A A A ,

*||11A A A =-?

?

? ??--=1225.

(2)

??

? ??-θθθθcos sin sin cos ; 解

??

? ??-=θθθθc o s s i n s i n c o s A . |A|=1≠0, 故A -1存在. 因为

??? ??-=??? ??=θθθθcos sin sin cos *22122111A A A A A ,

所以

*||11A A A =-?

?

? ??-=θθθθcos sin sin cos .

(3)???

?

??---145243121;

????

??---=145243121A . |A|=2≠0, 故A -1存在. 因为

???? ??-----=???? ??=214321613024*332313322212312111A A A A A A A A A A ,

所以

*||11

A A A =-?????

?

?-----=1716213213012.

(4)????? ?

?n a a a 002

1(a 1a 2

? ? ?a n

≠0) .

????? ??=n a a a A 002

1

, 由对角矩阵的性质知

?????

??

? ??=-n a a a A 10011211 . 12. 解下列矩阵方程:

(1)

??

? ??-=??? ??12643152X ;

??? ??-??? ?

?=-126431521

X ??? ??-??? ??--=12642153??

? ??-=80232.

(2)??

? ??-=???

? ??--2343

11111012112X ; 解

1

111012112234311-?

??

? ??--?

?? ??-=X

?

??

? ??---?

?? ??-=03323210123431131 ???? ??---=3253

8122. (3)

??

? ??-=??? ??-??? ??-10131102

21

41X ;

1

1

11

02

10132141--??

?

??-??? ??-??? ??-=X

??

? ????? ??-??? ??-=210110131142121

??? ?

???? ?

?=2101

0366121?

??

? ??=04111. (4)???

? ??---=???? ?????? ??021102341010100001100001010X .

1

1010100001021102341100001010--??

?

? ?????? ??---???? ??=X

???? ?????? ??---???? ??=010100001021102341100001010???

? ??---=201431012.

13. 利用逆矩阵解下列线性方程组:

(1)?????=++=++=++3

532522132321321321

x x x x x x x x x ;

解 方程组可表示为

???

?

??=???? ?????? ??321153522321321x x x ,

故 ?

??? ??=???? ?????? ??=???? ??-0013211535223211

321x x x , 从而有 ?????===0

01321

x x x .

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

线性代数考试题库及答案(六)

线性代数考试题库及答案 第一部分 客观题(共30分) 一、单项选择题(共 10小题,每小题2分,共20分) 1. 若行列式11 121321 222331 32 33 a a a a a a d a a a =,则212223 11 121331 32 33 232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d - 2. 设123010111A ?? ? =- ? ??? ,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( ) (A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( ) (A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( ) (A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ?矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。 (A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )

(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,, ,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立 (B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=++ + 成立 (C) 存在一组数12,, s k k k ,使得1122s s k k k βααα=+++ 成立 (D) 对β的线性表达式唯一 8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( ) (A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解 9. 设110101011A ?? ? = ? ??? ,则A 的特征值是( )。 (A) 0,1,1 (B) 1,1,2 (C) 1,1,2- (D) 1,1,1- 10. 若n 阶方阵A 与某对角阵相似,则 ( )。 (A) ()r A n = (B) A 有n 个互不相同的特征值 (C) A 有n 个线性无关的特征向量 (D) A 必为对称矩阵 二、判断题(共 10小题,每小题1分,共10分 )注:正确选择A,错误选择B. 11. 设A 和B 为n 阶方阵,则有22()()A B A B A B +-=-。( ) 12. 当n 为奇数时,n 阶反对称矩阵A 是奇异矩阵。( )

线性代数课后习题答案-复旦大学出版社-熊维玲

线性代数课后习题答案-复旦大学出版社-熊维玲

第一章 3.如果排列n x x x 2 1是奇排列,则排列1 1 x x x n n 的奇偶 性如何? 解:排列 1 1x x x n n 可以通过对排列 n x x x 21经过 (1)(1)(2)212 n n n n L 次邻换得到,每一次邻换都 改变排列的奇偶性,故当2)1( n n 为偶数时,排列 1 1x x x n n 为奇排列,当2)1( n n 为奇数时,排列1 1 x x x n n 为 偶排列。 4. 写出4阶行列式的展开式中含元素13 a 且带负 号的项. 解:含元素13a 的乘积项共有13223144 (1)t a a a a ,13223441 (1)t a a a a , 13213244 (1)t a a a a ,13213442 (1)t a a a a ,13243241 (1)t a a a a ,13243142 (1)t a a a a 六项, 各项列标排列的逆序数分别为(3214)3t , (3241)4t , (3124)2 t , (3142)3 t , (3421)5t ,(3412)4 t , 故所求为13223144 1a a a a , 132134421a a a a , 13243241 1a a a a 。 5.按照行列式的定义,求行列式 n n 0 000100200100 的

值. 解:根据行列式的定义,非零的乘积项只有 1,12,21,1(1)t n n n nn a a a a L , 其中(1)(2) [(1)(2)21]2 n n t n n n L ,故行列式的值等于: (1)(2) 2 (1) ! n n n 6. 根据行列式定义,分别写出行列式x x x x x 1 11 1231112 1 2 的 展开式中含4 x 的项和含3 x 的项. 解:展开式含4 x 的乘积项为 4 11223344 (1)(1)22t a a a a x x x x x 含3 x 的乘积项为13 12213344 (1)(1)1t a a a a x x x x 8. 利用行列式的性质计算下列行列式: 解 : (1) 41 131123421 1234 1111 1 1 1 1 410234123410121 10310 ()341234120121 2412341230321 r r r r r r r r r r r

线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 勺L =力(jW'g 叫?叫 (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转宜行列式D = D r ) ② 行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③ 常数k 乘以行列 式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行 推论:行列式中某一行 ④ 行列式具有分行 ⑤ 将行列式某一行 行列式依行(列)展开:余子式M”、代数余子式州=(-1)砒 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 0 非齐次线性方程组:当系数行列式£>工0时,有唯一解:Xj= +(j = l 、2......n ) 齐次线性方程组 :当系数行列式D = 1^0时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: 5 铅 a l3 5 ?21 ①转置行列式: ?21 a 22 U 23 "12 ^22 °32 Cl 3\ Cl 32 °33 勺3 ?23如 ②对称行列式:gj = 5 ③反对称行列式:勺= ~a ji 奇数阶的反对称行列式值为零 务2 a !3 ④三线性行列式: “22 0 方法:用?“22把"21化为零,。。化为三角形行列式 0 "33 (列) (列) 成比例,则行列式值为零; 元素全为 零,行列式为零。 可加性 的k 倍加到另一行(列)上,值不变

⑤上(下)三角形行列式:

行列式运算常用方法(主要) 行列式定义法(二三阶或零元素多的) 化零法(比例) 化三角形行列式法、降阶法.升阶法、归纳法、 第二章矩阵 矩阵的概念:A 〃伤(零矩阵、负矩阵、行矩阵.列矩阵.n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵) ------- 交换、结合律 数乘kA = (ka ij )m .n ---- 分配、结合律 注意什么时候有意义 一般AB*BA,不满足消去律:由AB=O,不能得A=0或B=0 (M)r = kA T (AB)T = B T A r (反序定理) 方幕:A kl A kz =A k ^kl 对角短阵:若 AB 都是N 阶对角阵,k 是数,贝ij kA 、A+B 、 A3都是n 阶对角阵 数量矩阵:相当于一个数(若……) 单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵 阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 制是0 数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素 逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的. 力"=3(非奇异矩阵、奇异矩阵IAI=O.伴随矩阵) 初等变换1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 仔加到另一行(列)初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的(对换阵倍乘阵倍加阵) (I o\ 等价标准形矩阵r O O 乘法 转置(A T )T = A (A + B)T =A r +B 1 几种特殊的矩阵: 分块矩阵:加法,

2010-2011-2线性代数试卷及答案

东 北 大 学 考 试 试 卷(A 卷) 2010 — 2011学年 第二学期 课程名称:线性代数 (共2页) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (15分) 设三阶矩阵()321,,ααα=A , ()3323214,3,32αααααα+-+=B , 且A 的行列式1||=A ,求矩阵B 的行列式||B . 解 因为()3323214,3,32αααααα+-+=B =? ???? ??-413031002),,(321ααα, 所以,24413031002||||=-=A B 分) 设向量组????? ??-=2111α,????? ??=1122α,????? ??=a 213α线性相关,向量 ???? ? ??=b 13β可由向量组321,,ααα线性表示,求b a ,的值。 解 由于 ????? ??-=b a 1212113121),,,(321βααα????? ??---→62304330312 1b a ? ???? ??-+→210043303121b a 所以,.2,1=-=b a 三分) 证明所有二阶实对称矩阵组成的集合V 是R 2? 2 的子空间,试在 V 上定义内积运算,使V 成为欧几里得空间,并给出V 的一组正交基. 解 由于任意两个二阶实对称矩阵的和还是二阶实对称矩阵,数乘二阶实对称矩阵还是 二阶实对称矩阵,即V 对线性运算封闭,所以V 是R 2? 2 的子空间。 对任意V b b b b B a a a a A ∈??? ? ??=???? ??=2212121122121211,,定义内积:[A,B]=222212121111b a b a b a ++, 显然满足:[A,B]=[B,A], [kA,B]=k[A,B], [A,A]≥0且[A,A]=0当且仅当A=0. ???? ??=00011A ,???? ??=01102A ,???? ??=10003A 就是V 的一组正交基. 注:内积和正交基都是不唯一的. 2-1

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x y y x y x +++. 解 (1)=---3 811411 02811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??- =416824-++-=4- (2)=b a c a c b c b a cc c aaa bbb cba bac acb ---++3333c b a abc ---= (3)=2 221 11c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---= (4)y x y x x y x y y x y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=

2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0 (2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为 2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子2311a a 的项.

线性代数习题参考答案

第一章 行列式 §1 行列式的概念 1. 填空 (1) 排列6427531的逆序数为 ,该排列为 排列。 (2) i = ,j = 时, 排列1274i 56j 9为偶排列。 (3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的 n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构 成一个n 元排列。若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。 (4) 在6阶行列式中, 含152332445166a a a a a a 的项的符号为 ,含 324314516625a a a a a a 的项的符号为 。 2. 用行列式的定义计算下列行列式的值 (1) 11 222332 33 000 a a a a a 解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。 (2) 12,121,21,11,12 ,100000 0n n n n n n n n n n n n nn a a a a a a a a a a ------L L M M M M L L 解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。 3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。 证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。对于任意奇排 列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2 多,则此行列式为0,为什么? 5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少? (提示:利用3题的结果) 6. 利用对角线法则计算下列三阶行列式 (1)2 011 411 8 3 --- (2)2 2 2 1 11a b c a b c

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性代数课后习题答案

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1) 3811411 02 ---; (2)b a c a c b c b a (3) 2 2 2 111 c b a c b a ; (4) y x y x x y x y y x y x +++. 解 注意看过程解答(1)=---3 81141 1 2811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2) =b a c a c b c b a cc c aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子 2311a a 的项. 解 由定义知,四阶行列式的一般项为 43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定, 4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求. 4.计算下列各行列式: 多练习方能成大财 (1)?? ??????? ???711 00251020214214; (2)????? ? ??? ???-26 0523******** 12; (3)???? ??????---ef cf bf de cd bd ae ac ab ; (4)?? ??? ???????---d c b a 100 110011001 解 (1) 7110025102021421434327c c c c --0 1001423102 02110214--- =34)1(14 3102211014+-?---

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

同济大学线性代数第五版课后习题答案

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2 221 11c b a c b a

解 2 221 11c b a c b a bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1

解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数课后习题答案分析

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1) 3811411 02 ---; (2)b a c a c b c b a (3) 2 2 2 111 c b a c b a ; (4) y x y x x y x y y x y x +++. 解 注意看过程解答(1)=---3 81141 1 2811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2) =b a c a c b c b a cc c aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

线性代数习题及解答

线性代数习题一 说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设行列式11 121321 222331 3233a a a a a a a a a =2,则1112 13 31323321312232 2333 333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3 D .6 2.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1 B .E -A C .E +A D . E -A -1 3.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( ) A .?? ???A B 可逆,且其逆为-1-1 ?? ???A B B .?? ??? A B 不可逆 C .?? ? ??A B 可逆,且其逆为-1-1?? ??? B A D .?? ???A B 可逆,且其逆为-1-1?? ?? ? A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是 ( ) A .向量组α1,α2,…,αk 中任意两个向量线性无关 B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0 C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示 D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示 5.已知向量2(1,2,2,1),32(1,4,3,0),T T +=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)T B .(-2,0,-1,1)T C .(1,-1,-2,0)T D .(2,-6,-5,-1)T 6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( )

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

相关主题
文本预览
相关文档 最新文档