当前位置:文档之家› 大学物理第五章机械振动习题解答和分析

大学物理第五章机械振动习题解答和分析

大学物理第五章机械振动习题解答和分析
大学物理第五章机械振动习题解答和分析

5-1 有一弹簧振子,振幅m A 2

100.2-?=,周期s T 0.1=,初相.4/3π?=试写出它的振动位移、速度和加速度方程。

分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。

解:振动方程为:]2cos[]cos[

?ω+=+=t T

A t A x 代入有关数据得:30.02cos[2]()4

x t SI π

π=+ 振子的速度和加速度分别是:

3/0.04sin[2]()4

v dx dt t SI π

ππ==-+ 2223/0.08cos[2]()4

a d x dt t SI π

ππ==-+

5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度.

分析 通过与简谐振动标准方程对比,得出特征参量。

解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππ?ω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1

/210s νωπ-==, 周期1/0.1T s ν==,/4rad ?π=

(2)2t s =时,振动相位为:20/4(40/4)t rad ?ππππ=+=+ 由cos x A ?=,sin A νω?=-,2

2

cos a A x ω?ω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-

5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小;

(2)作用于质点的力的最大值和此时质点的位置.

分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。 解:(1)跟据x m ma f 2

ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N =

(2)由x m f 2

ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N =

5-4为了测得一物体的质量m ,将其挂到一弹簧上并让其自由振动,测得振动频率

Hz 0.11=ν;而当将另一已知质量为'm 的物体单独挂到该弹簧上时,测得频率为

Hz 0.22=ν.设振动均在弹簧的弹性限度内进行,求被测物体的质量.

分析 根据简谐振动频率公式比较即可。 解:由m k /21π

ν=

,对于同一弹簧(k 相同)采用比较法可得:

m

m '

21=

νν 解得:'4m m =

5-5一放置在水平桌面上的弹簧振子,振幅m A 2

100.2-?=,周期T=0.5s ,当t=0时, (1)物体在正方向端点;

(2)物体在平衡位置,向负方向运动;

(3)物体在m x 2

100.1-?=处,向负方向运动; (4)物体在m x 2100.1-?-=处,向负方向运动. 求以上各种情况的振动方程。

分析 根据旋转矢量图由位移和速度确定相位。进而得出各种情况的振动方程。 解:设所求振动方程为:]4cos[02.0]2cos[?π?π

+=+=t t T

A x 由A 旋转矢量图可求出

3/2,3/,2/,04321π?π?π??====

(1)0.02cos[4]()x t SI π=(2)0.02cos[4]()2

x t SI π

π=+ (3)0.02cos[4]()3

x t SI π

π=+

(4)20.02cos[4]()3

x t SI π

π=+

题图5-5

5-6在一轻弹簧下悬挂0100m g =砝码时,弹簧伸长8cm.现在这根弹簧下端悬挂250m g =的物体,构成弹簧振子.将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程.

分析 在平衡位置为原点建立坐标,由初始条件得出特征参量。 解:弹簧的劲度系数l g m k ?=/0。

当该弹簧与物体m 构成弹簧振子,起振后将作简谐振动,可设其振动方程为:

]cos[?ω+=t A x

角频率为m k /=

ω代入数据后求得7/rad s ω=

以平衡位置为原点建立坐标,有:000.04,0.21/x m v m s ==- 据202

0)/(ωv x A +=

得:0.05A m =

据A

x 0

1

cos

-±=?得0.64rad ?=±由于00v <,应取)(64.0rad =? 于是,所求方程为:))(64.07cos(05.0m t x += 5-7 某质点振动的x-t 曲线如题图5-7所示.求: (1)质点的振动方程;

(2)质点到达P 点相应位置所需的最短时间.

分析 由旋转矢量可以得出相位和角频率,求出质点的振动方程。并根据P 点的相位确定最短时间。

00001cos()0,/2,03

1,3

2

56

50.1cos(

)63

20x A t t x A v t s t x t m P ω?π

π

ωπ

ωππ=+==>=-=-=

=

=-Q Q 解:()设所求方程为:从图中可见,由旋转矢量法可知;又故:()点的相位为

0500.463

0.4p p p t t t s

P s

ππ

ω?∴+=

-==即质点到达点相应状态所要的最短时间为 题图5-7

5-8有一弹簧,当下面挂一质量为m 的物体时,伸长量为m 2

108.9-?.若使弹簧上下振动,且规定向下为正方向.

(1)当t =0时,物体在平衡位置上方m 2

100.8-?,由静止开始向下运动,求振动方程. (2) 当t =0时,物体在平衡位置并以0.6m/s 的速度向上运动,求振动方程. 分析 根据初始条件求出特征量建立振动方程。 解:设所求振动方程为:)cos(?ω+=t A x

其中角频率l

g

m l mg

m k ?=?=

=//ω,代入数据得:10/rad s ω= (1)以平衡位置为原点建立坐标,根据题意有:000.08,0x m v =-= 据202

0)/(ωv x A +=

得:0.08A m =

据A

x 0

1

cos

-±=?得rad ?π=±由于0v =0,不妨取rad ?π= 于是,所求方程为:10.08cos(10)()x t SI π=+

(2)以平衡位置为原点建立坐标,根据题意有:000,0.6/x v m s ==- 据202

0)/(ωv x A +=

得:0.06A m =

据A

x 0

1

cos

-±=?得/2rad ?π=±由于00v <,应取/2rad ?π= 于是,所求方程为:20.06cos(10/2)()x t SI π=+

5-9 一质点沿x 轴作简谐振动,振动方程为)SI )(3

t 2cos(104x 2π+π?=-,求:从 t=0时刻起到质点位置在x=-2cm 处,且向x 轴正方向运动的最短时间.

分析 由旋转矢量图求得两点相位差,结合振动方程中特征量即可确定最短时间。 解: 依题意有旋转矢量图

?π?=从图可见

02(0)t t ?ωπ?=?=-而

解答图5-9

012

t s ?

ω

?=

=

故所求时间为:

5-10两个物体同方向作同方向、同频率、同振幅的简谐振动,在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动,试利用旋转矢量法求它们的相位差.

分析 由旋转矢量图求解。根据运动速度的方向与位移共同确定相位。 解:由于2/10A x =、100v <可求得:4/1π?= 由于2/20A x =、200v >可求得:4/2π?-= 如图5-10所示,相位差:12/2???π?=-=

题图5-10

题图5-11

题图5-11

5-11一简谐振动的振动曲线如题图5-11所示,求振动方程.

分析 利用旋转矢量图求解,由图中两个确定点求得相位,再根据时间差求得其角频率。 解:设所求方程为)cos(?ω+=t A x

当t=0时:115,0x cm v =-<由A 旋转矢量图可得:02/3t rad ?π== 当t=2s 时:从x-t 图中可以看出:220,0x v => 据旋转矢量图可以看出, 23/2t rad ?π==

所以,2秒内相位的改变量203/22/35/6t t rad ???πππ==?=-=-= 据t ?ω?=?可求出:/5/12/t rad s ω?π=??= 于是:所求振动方程为:52

0.1cos(

)()123

x t SI ππ=+ 5-12 在光滑水平面上,有一作简谐振动的弹簧振子,弹簧的劲度系数为K,物体的质量为m ,振幅为A .当物体通过平衡位置时,有一质量为'm 的泥团竖直落到物体上并与之粘结在一起.求:(1)'m 和m 粘结后,系统的振动周期和振幅;

(2)若当物体到达最大位移处,泥团竖直落到物体上,再求系统振动的周期和振幅. 分析 系统周期只与系统本身有关,由质量和劲度系数即可确定周期,而振幅则由系统能量决定,因此需要由动量守恒确定碰撞前后速度,从而由机械能守恒确定其振幅。 解:(1)设物体通过平衡位置时的速度为v ,则由机械能守恒

:

2211

22

KA mv v ==±当'm 竖直落在处于平衡位置m 上时为完全非弹性碰撞,且水平方向合外力为零,所以

(')'

mv m m u m u v

m m =+=+

此后,系统的振幅变为'A ,由机械能守恒,有

2211

'(')22

'KA m m u A =+==

系统振动的周期为: K

'

m m 2T +π

=

(2)当m 在最大位移处'm 竖直落在m 上,碰撞前后系统在水平方向的动量均为零,因而系统的振幅仍为A,周期为K

'

m m 2+π

. 5-13 设细圆环的质量为m,半径为R,挂在墙上的钉子上.求它微小振动的周期. 分析 圆环为一刚体须应用转动定律,而其受力可考虑其质心。 解: 如图所示,转轴o 在环上,角量以逆时针为正,则振动方程为

θ-=θ

sin mgR dt

d J 22 当环作微小摆动θ≈θsin 时, 22

20d dt

θωθ+=

mgR

J

ω=

22J mR =Q

222R

T g

π

π

ω

∴=

= 5-14 一轻弹簧在60 N 的拉力下伸长30 cm .现把质量为4 kg 的物体悬挂在该弹簧的下端并使之静止 ,再把物体向下拉10 cm ,然后由静止释放并开始计时.求 (1) 此小物体是停在振动物体上面还是离开它?(2) 物体的振动方程;(3) 物体在平衡位置上方5 cm 时弹簧对物体的拉力;(4) 物体从第一次越过平衡位置时刻起到它运动到上方5 cm 处所需要的最短时间.(5) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?

分析 小物体分离的临界条件是对振动物体压力为零,即两物体具有相同的加速度,而小物体此时加速度为重力加速度,因此可根据两物体加速度确定分离条件。 解: 选平衡位置为原点,取向下为x 轴正方向。 由:f kx = 200/f

k N m x

== /507.07/k m rad s ω=

=≈

(1) 小物体受力如图. 设小物体随振动物体的加速度为a , 按牛顿第二定律有 ma N mg =- )(a g m N -=

当N = 0,即a = g 时,小物体开始脱离振动物体, 已知 A = 10 cm ,200/,

7.07/k N m rad s ω=≈

N mg 题图5-14

解答图5-13

系统最大加速度为 22

max 5a A m s ω-==?

此值小于g ,故小物体不会离开. (2) 00010cos ,0sin t x cm A v A ?ω?=====-时,

解以上二式得 100A cm

?==

∴ 振动方程0.1cos(7.07)()x t SI =

(3) 物体在平衡位置上方5 cm 时,弹簧对物体的拉力 ()f m g a =- ,而2

2

2.5a x m s ω-=-=?

29.2f N ∴=

(4) 设1t 时刻物体在平衡位置,此时0x =,即 10cos ,A t ω= ∵ 此时物体向上运动, 0v < ∴ 11,

0.2222

2t t s π

π

ωω

=

=

=。 再设2t 时物体在平衡位置上方5cm 处,此时5x cm =-,即 25cos ,A t ω-=

∵此时物体向上运动,0v < 2222,0.2963

3t t s ππ

ωω

=

=

= 210.074t t t s

?=-=

(5) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得

x a g 2ω-== 2/19.6x g cm ω=-=-

即在平衡位置上方19.6 cm 处开始分离,由g A a >=2

max ω,可得

2

/19.6A g cm ω>=。

5-15在一平板下装有弹簧,平板上放一质量为1.0Kg 的重物.现使平板沿竖直方向作上下简谐振动,周期为0.50s ,振幅为m 2

100.2-?,求: (1)平板到最低点时,重物对板的作用力;

(2)若频率不变,则平板以多大的振幅振动时,重物会跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物会跳离平板? 分析 重物跳离平板的临界条件是对平板压力为零。

解:重物与平板一起在竖直方向上作简谐振动,向下为正建立坐标, 振动方程为:)4cos(02.0?π+=t x

设平板对重物的作用力为N ,于是重物在运动中所受合力为:

x

5 cm

O 题图5-14

f m

g N ma =-=,

2a x ω=-而 据牛顿第三定律,重物对平板的作用力'N 为:)('2

x g m N N ω+-=-= (1)在最低点处:A x =,由上式得,'12.96N N =

(2)频率不变时,设振幅变为'A ,在最高点处('A x -=)重物与平板间作用力最小,设

0'=N 可得:2'/0.062A g m ω==

(3)振幅不变时,设频率变为'ν,在最高点处('A x -=)重物与平板间作用力最小,设

0'=N 可得:''/2 3.52Hz νωπ==

=

5-16一物体沿x 轴作简谐振动,振幅为0.06m ,周期为2.0s ,当t=0时位移为0.03m ,且向轴正方向运动,求:

(1)t=0.5s 时,物体的位移、速度和加速度;

(2)物体从0.03x m =-处向x 轴负方向运动开始,到达平衡位置,至少需要多少时间? 分析 通过旋转矢量法确定两位置的相位从而得到最小时间。 解:设该物体的振动方程为)cos(?ω+=t A x 依题意知:2//,0.06T rad s A m ωππ===

据A

x 0

1

cos

-±=?得)(3/rad π?±= 由于00v >,应取)(3/rad π?-= 可得:)3/cos(06.0ππ-=t x

(1)0.5t s =时,振动相位为:/3/6t rad ?πππ=-= 据22cos ,sin ,cos x A v A a A x ?ω?ω?ω==-=-=- 得20.052,

0.094/,

0.512/x m v m s a m s ==-=-

(2)由A 旋转矢量图可知,物体从

0.03x m =-m 处向x 轴负方向运动,到达平衡位置时,

A 矢量转过的角度为5/6?π?=,该过程所需时间为:/0.833t s ?ω?=?=

5-17地球上(设2

/8.9s m g =)有一单摆,摆长为1.0m ,最大摆角为5o

,求:

(1)摆的角频率和周期;

(2)设开始时摆角最大,试写出此摆的振动方程; (3)当摆角为3?

时的角速度和摆球的线速度各为多少? 分析 由摆角最大的初始条件可直接确定其初相。 解:(1)/ 3.13/g l rad s ω=

= 2/ 2.01T s πω==

(2)由t=0时,max 5θθ==o

可得振动初相0=?,则以角量表示的振动方程为

cos3.13()36

t SI π

θ=

(3)由cos3.13()36

t SI π

θ=

,当3θ=o 时,有max cos /0.6?θθ==

而质点运动的角速度为:2

max max /sin 1cos 0.218/d dt rad s θθω?θω?=-=--=-

线速度为:/0.218/v l d dt m s θ=?=

5-18 有一水平的弹簧振子,弹簧的劲度系数K=25N/m,物体的质量m=1.0kg,物体静止在平衡位置.设以一水平向左的恒力F=10 N 作用在物体上(不计一切摩擦),使之由平衡位置向左运动了0.05m,此时撤除力F,当物体运动到最左边开始计时,求物体的运动方程. 分析 恒力做功的能量全部转化为系统能量,由能量守恒可确定系统的振幅。 解: 设所求方程为0cos()x A t ω?=+

5/K

rad s m

ω=

= 因为不计摩擦,外力做的功全转变成系统的能量,

题图5-16

故210.22Fx KA A m =

∴== 000,,t x A ?π==-∴=Q 又

故所求为 0.2cos(5)()x t SI π=+

5-19如题图5-19所示,一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.

分析 由质点在A 、B 两点具有相同的速率可知A 、B 两点在平衡位置两侧距平衡位置相等距离的位置,再联系两次经过B 点的时间即可确定系统的周期,而相位可由A 、B 两点位置确定。

解:由旋转矢量图和 A B v v = 可知 24,

8T s T s ==,111

,

28

4

s rad s π

νωπν--===

?

(1)以AB 的中点为坐标原点,x 轴指向右方.

05cos t x cm A ?==-=时,

25cos(2)sin t s x cm A A ω??===+=-时,

由上二式解得 1tg ?=

因为在A 点质点的速度大于零,所以3544

ππ

?-=

/cos A x ?==

∴ 振动方程

2

310cos(

))44

t x SI -ππ

=-( (2) 速率

d 3sin()()d 44

x t SI t ππ

==-v 当t = 0 时,质点在A 点

221d 310sin() 3.9310d 4

x m s t ---π=

=-=??v 5-20一物体放在水平木板上,这木板以Hz 2=ν的频率沿水平直线作简谐振动,物体和水平木板之间的静摩擦系数50.0=s μ,求物体在木板上不滑动时的最大振幅max A .

题解图5-19

题图5-19

分析 物体在木板上不滑动的临界条件是摩擦力全部用来产生其加速度。

2max 222max ,mg 0(1)(2)(3)cos()

(4)

(1)(2)(3)/(4)//(4)0.031x x s s s s s N f ma f N

a A t a mg m g

A g g m

μωω?μμμωμπν-==-≤=-+=====解:设物体在水平木板上不滑动竖直方向:水平方向:且又有由得再由此式和得

5-21在一平板上放一质量为2m kg =的物体,平板在竖直方向作简谐振动,其振动周期0.5T s =,振幅4A cm =,求:

(1)物体对平板的压力的表达式. (2)平板以多大的振幅振动时,物体才能离开平板?

分析 首先确定简谐振动方程,再根据物体离开平板的临界位置为最高点,且对平板压力为零。

解:物体与平板一起在竖直方向上作简谐振动,向下为正建立坐标,振动方程为:

0.04cos(4)()x t SI π?=+

设平板对物体的作用力为N ,于是物体在运动中所受合力为: x m ma N mg f 2

ω-==-=

(1)据牛顿第三定律,物体对平板的作用力'N 为:)('2

x g m N N ω+-=-= 即:)4cos(28.16.19)16('2

2?πππ+--=+-=t x g m N

(2)当频率不变时,设振幅变为'A ,在最高点处('x A =-)物体与平板间作用力最小 令0'=N 可得:2

'/0.062A g m ω==

5-22一氢原子在分子中的振动可视为简谐振动.已知氢原子质量Kg m 27

1068.1-?=,振动

频率Hz 14

100.1?=ν,振幅m A 11

10

0.1-?=.试计算:(1)此氢原子的最大速度;(2)与此

振动相联系的能量.

分析 振动能量可由其最大动能(此时势能为零)确定。

解:(1)最大振动速度:3

2 6.2810/m v A A m s ωπν===?

(2)氢原子的振动能量为:2201

3.31102

m E mv J -=

=? 5-23 一物体质量为0.25Kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k=25N/m ,如果起始振动时具有势能0.06J 和动能0.02J ,求: (1)振幅;

(2)动能恰等于势能时的位移; (3)经过平衡位置时物体的速度.

分析 简谐振动能量守恒,其能量由振幅决定。 解:2

11k 2

K P E E E A =+=

() 1/2[2()/k]0.08()K P A E E m =+=

2

21(2)k 2/22

K P K P P P E E E A E E E E E kx =+=

===因为,当时,有,又因为

222/0.0566()x A x A m ==±=±得:,即

21

(3)02

K P x E E E mv ==+=过平衡点时,,此时动能等于总能量

1/2[2()/]0.8(/)K P v E E m m s =+=±

5-24 一定滑轮的半径为R ,转动惯量为J ,其上挂一轻绳,绳的一端系一质量为m 的物体,另一端与一固定的轻弹簧相连,如题图5-24所示.设弹簧的劲度系数为k ,绳与滑轮间无滑动,且忽略轴的摩擦力及空气阻力.现将物体m 从平衡位置拉下一微小距离后放手,证明物体作简谐振动,并求出其角频率.

分析 由牛顿第二定律和转动定律确定其加速度与位移的关系即可得到证明。 解:取如图x 坐标,平衡位置为原点O ,向下为正,m 在平衡位置时弹簧已伸长0x

(1)mg kx =

设m 在x 位置,分析受力,这时弹簧伸长0x x +

20()

(2)T k x x =+ 由牛顿第二定律和转动定律列方程:

1(3)mg T ma -= 12(4)T R T R J β

-=

(5)a R β=

联立(1)(2)(3)(4)(5)解得x m

R J k

a +-

=)/(2

由于x 系数为一负常数,故物体做简谐振动,

其角频率为:2

2

2

)/(mR

J kR m

R J k

+=+=ω

题图5-24

5-25两个同方向的简谐振动的振动方程分别为:2

11410cos 2()(),8

x t SI π-=?+

221

310cos 2()()4

x t SI π-=?+求:

(1)合振动的振幅和初相;(2)若另有一同方向同频率的简谐振动2

3510cos(2)()x t SI π?-=?+,则?为多少时,31x x +的振幅最大??又为多

少时,32x x +的振幅最小?

分析 合振动的振幅由其分振动的相位差决定。 解:(1))2cos(21?π+=+=t A x x x

按合成振动公式代入已知量,可得合振幅及初相为 22224324cos(/2/4)10 6.4810A m ππ--=

++-?=?

4sin(/4)3sin(/2)

1.124cos(/4)3cos(/2)

arctg

rad ππ?ππ+==+

所以,合振动方程为))(12.12cos(1048.62

SI t x +?=-π

(2)当π??k 21=-,即4/2ππ?+=k 时,31x x +的振幅最大. 当π??)12(2+=-k ,即2/32ππ?+=k 时,32x x +的振幅最小.

5-26有两个同方向同频率的振动,其合振动的振幅为0.2m ,合振动的相位与第一个振动的相位差为6/π,第一个振动的振幅为0.173m ,求第二个振动的振幅及两振动的相位差。 分析 根据已知振幅和相位可在矢量三角形中求得振幅。 解:采用旋转矢量合成图求解

题图5-24

取第一个振动的初相位为零,则合振动的相位为/6φπ= 据21A A A +=可知12A A A -=,如图:

)(1.0cos 2122

12m AA A A A =-+=?

由于A 、1A 、2A 的量值恰好满足勾股定理, 故1A 与2A 垂直.

即第二振动与第一振动的相位差为2/πθ=

5-27一质点同时参与两个同方向的简谐振动,其振动方程分别为

21510cos(4/3)()x t SI π-=?+,22310sin(4/6)()x t SI π-=?-画出两振动的旋转矢量

图,并求合振动的振动方程.

分析 须将方程转化为标准方程从而确定其特征矢量,画出矢量图。 解:)6/4sin(1032

2π-?=-t x

)2/6/4cos(10

32

ππ--?=-t )3/24cos(10

32

π-?=-t

作两振动的旋转矢量图,如图所示. 由图得:合振动的振幅和初相分别为

3/,2)35(πφ==-=cm cm A .

合振动方程为))(3/4cos(10

22

SI t x π+?=-

5-28将频率为348Hz 的标准音叉和一待测频率的音叉振动合成,测得拍频为3.0Hz.若在待测音叉的一端加上一个小物体,则拍频将减小,求待测音叉的角频率. 分析 质量增加频率将会减小,根据拍频减少可推知两个频率的关系。 解:由拍频公式12ννν-=?可知:ννν?±=12

在待测音叉的一端加上一个小物体,待测音叉的频率2ν会减少,若拍频ν?也随之减小,则说明2ν>1ν,于是可求得:21351Hz ννν=+?=

5-29一物体悬挂在弹簧下作简谐振动,开始时其振幅为0.12m ,经144s 后振幅减为0.06m. 问:(1)阻尼系数是多少? (2)如振幅减至0.03m ,需要经过多少时间? 分析 由阻尼振动振幅随时间的变化规律可直接得到。 解:(1)由阻尼振动振幅随时间的变化规律0t A A e β-?=

题图5-26

题图5-27

)/1(1081.4ln

31

s t A A -?==

β

(2)由0t A A e β-?=

1

2

12t t A e A e

ββ-?-?=

于是:12

21ln /144A A t t t s β

?=-=

=

5-30一弹簧振子系统,物体的质量m=1.0 Kg ,弹簧的劲度系数k=900N/m.系统振动时受到阻尼作用,其阻尼系数为0.10=β 1/s ,为了使振动持续,现加一周期性外力

)(30cos 100SI t F =作用.求:

(1)振动达到稳定时的振动角频率;

(2)若外力的角频率可以改变,则当其值为多少时系统出现共振现象?其共振的振幅为多大?

分析 受迫振动的频率由外力决定。

解:(1)振动达到稳定时,振动角频率等于周期性外力的角频率,有30/rad s ω= (2)受迫振动达到稳定后,其振幅为:2

2

2

22

004)(/)/(ωβωω+-=m F A 式中m k /0=

ω为系统振动的固有角频率,0F 为外力的振幅

由上式可解得,当外力的频率ω

为:26.5/rad s ω==时

系统出现共振现象,共振的振幅为:0.177r A m ==

大学物理-机械振动习题-含答案

大学物理-机械振动习题-含答案

t (s ) v (m.s -1) 12m v m v o 1.3题图 第三章 机械振动 一、选择题 1. 质点作简谐振动,距平衡位置2。0cm 时, 加速度a=4.0cm 2 /s ,则该质点从一端运动到另一端的时间为( C ) A:1.2s B: 2.4s C:2.2s D:4.4s 解: s T t T x a x a 2.2422,2 222,22===∴== ===ππ ω πωω 2.一个弹簧振子振幅为2 210m -?, 当0t =时振子在2 1.010m x -=?处,且向 正方向运动,则振子的振动方 程是:[ A ] A :2 210cos()m 3 x t πω-=?-; B :2 210cos()m 6x t π ω-=?-; C :2 210cos()m 3 x t π ω-=?+ ; D : 2210cos()m 6 x t π ω-=?+; 解:由旋转矢量可以得出振动的出现初相为:3 π- 3.用余弦函数描述一简 谐振动,若其速度与时间(v —t )关系曲线 如图示,则振动的初相位为:[ A ] 1.2题图 x y o

A :6π; B :3π; C :2 π ; D :23π; E :56π 解:振动速度为:max sin()v v t ω?=-+ 0t =时,01sin 2?=,所以06π?=或0 56 π ?= 由知1.3图,0t =时,速度的大小 是在增加,由旋转矢量图知,旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有0 6 π?=是符合条件的。 4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。1秒,则此钟摆的摆长为( B ) A:15cm B:30cm C:45cm D:60cm 解:单摆周期 ,2g l T π=两侧分别对T , 和l 求导,有: cm mm T dT dl l l dl T dT 3060) 1.0(21 21,21=-?-==∴= 二、填空题 1.有一放置在水平面上的弹簧振子。振幅 A = 2.0×10-2m 周期 T = 0.50s , 3 4 6 5 2 1 x /1 2题图 x y

大学物理 机械振动习题 含答案

题图 第三章 机械振动 一、选择题 1. 质点作简谐振动,距平衡位置2。0cm 时,加速度a=4.0cm 2 /s ,则该质点从一端运动到另一端的时间为( C ) A: B: C: D: 解: s T t T x a x a 2.242 2,2 222,22===∴==== =ππ ωπ ωω 2.一个弹簧振子振幅为2210m -?,当0t =时振子在21.010m x -=?处,且向正方向运 动,则振子的振动方程是:[ A ] A :2210cos()m 3 x t π ω-=?-; B :2 210cos()m 6 x t π ω-=?-; C :2210cos()m 3 x t π ω-=?+ ; D :2210cos()m 6 x t π ω-=?+ ; 解:由旋转矢量可以得出振动的出现初相为:3 π- 3.用余弦函数描述一简谐振动,若其速度与时间(v —t )关系曲线如图示,则振动的初相位为:[ A ] A :6π; B :3π; C :2 π ; D :23π; E :56 π 解:振动速度为:max 0sin()v v t ω?=-+ 0t =时,01sin 2?= ,所以06π?=或056 π?= 由知图,0t =时,速度的大小是在增加,由旋转矢量图知, 旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对 应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有06 π ?= 是符 合条件的。 4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。1秒,则此钟摆的摆长为( B ) A:15cm B:30cm C:45cm D:60cm 解:单摆周期 ,2g l T π =两侧分别对T ,和l 求导,有: cm mm T dT dl l l dl T dT 3060) 1.0(21 21,21=-?-= =∴=

大学物理习题_机械振动机械波

机械振动机械波 一、选择题 1.对一个作简谐振动的物体,下面哪种说法是正确的 (A )物体处在运动正方向的端点时,速度和加速度都达到最大值; (B )物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C )物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D )物体处在负方向的端点时,速度最大,加速度为零。 2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为 (A )φωsin A v -=; (B )φωsin A v =; (C )φωcos A v -=; (D )φωcos A v =。 3.一物体作简谐振动,振动方程为??? ? ? +=4cos πωt A x 。在4T t =(T 为周期)时刻,物 体的加速度为 (A )2221ωA - ; (B )2221 ωA ; (C )232 1 ωA - ; (D )2321ωA 。 4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相 (A )落后2π; (B )超前2π ; (C )落后π; (D )超前π。 5.一质点沿x 轴作简谐振动,振动方程为?? ? ?? +?=-ππ312cos 10 42 t x (SI )。从0=t 时刻 起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 第题图

(A )s 8/1; (B )s 4/1; (C )s 2/1; (D )s 3/1。 6.一个质点作简谐振动,振幅为 A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运 动,代表此简谐振动的旋转矢量图为 7.一个简谐振动的振动曲线如图所示。此振动的周期为 (A )s 12; (B )s 10; (C )s 14; (D )s 11。 8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是 (A )动能为零,势能最大; (B )动能为零,机械能为零; (C )动能最大,势能最大; (D )动能最大,势能为零。 9.一个弹簧振子做简谐振动,已知此振子势能的最大值为1600J 。当振子处于最大位移的1/4时,此时的动能大小为 (A )250J ; (B )750J ; (C )1500J ; (D ) 1000J 。 10.当质点以频率ν作简谐振动时,它的动能的变化频率为 (A )ν; (B )ν2 ; (C )ν4; (D ) 2 ν。 11.一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是 (A )T /4; (B )T/2; (C )T ; (D )2T 。 x (A ) (B )(C ) (D ) )s 2 1 -

大学物理 机械振动与机械波

大学物理单元测试 (机械振动与机械波) 姓名: 班级: 学号: 一、选择题 (25分) 1 一质点作周期为T 的简谐运动,质点由平衡位置正方向运动到最大位移一半处所需的最短时间为( D ) (A )T/2 (B )T/4 (C)T/8 (D )T/12 2 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的( E ) (A )7/16 (B )9/16 (C )11/16 (D )13/16 (E )15/16 3 一质点作简谐运动,其振动方程为 )3 2cos( 24.0π π + =t x m, 试用旋转矢量法求出质点由初始状态运动到 x =-0.12 m,v <0的状态所经过的最短时间。 (C ) (A )0.24s (B ) 3 1 (C )3 2 (D )2 1 4 一平面简谐波的波动方程为:)(2cos λνπx t A y - =,在ν 1 = t 时刻,4 31λ= x 与 4 2λ = x 两处质点速度之比:( B ) (A )1 (B )-1 (C )3 (D )1/3 5 一平面简谐机械波在弹性介质中传播,下述各结论哪个正确?( D ) (A)介质质元的振动动能增大时,其弹性势能减小,总机械能守恒. (B)介质质元的振动动能和弹性势能都作周期性变化,但两者相位不相同 (C)介质质元的振动动能和弹性势能的相位在任一时刻都相同,但两者数值不同. (D)介质质元在其平衡位置处弹性势能最大. 二、填空题(25分) 1 一弹簧振子,弹簧的劲度系数为0.3 2 N/m ,重物的质量为0.02 kg ,则这个系统的固有频率为____0.64 Hz ____,相应的振动周期为___0.5π s______. 2 两个简谐振动曲线如图所示,两个简谐振动的频率之比 ν1:ν2 = _2:1__ __,加速度最大值之比a 1m :a 2m = __4:1____,初始速率之比 v 10 :v 20 = _2:1__ ___.

《大学物理学》机械振动练习题

《大学物理学》机械振动自主学习材料 一、选择题 9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2 A - ,且向x 轴正方向运动, 代表此简谐运动的旋转矢量为( ) 【旋转矢量转法判断初相位的方法必须掌握】 9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( ) (A )22 2cos()3 3x t ππ=-; (B )2 22cos()33x t ππ=+ ; (C )4 22cos()33x t ππ=-; (D )4 22cos()33 x t ππ=+ 。 【考虑在1秒时间内旋转矢量转过 3 ππ+,有43 πω= 】 9-3.两个同周期简谐运动的振动曲线如图所示, 1x 的相位比2x 的相位( ) (A )落后 2 π ; (B )超前 2 π ; (C )落后π; (D )超前π。 【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】 9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A )2 ν ; (B )ν; (C )2ν; (D )4ν。 【考虑到动能的表达式为2 2 2 11sin () 2 2 k E m v kA t ω?= = +,出现平方项】 9-5.图中是两个简谐振动的曲线,若这两个简谐振动可 叠加,则合成的余弦振动的初相位为( ) (A )32 π; (B )2π ; (C )π; (D )0。 【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】 9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则 '/T T 为( ) ()A ()B () C ()D ) s 1 -2 -

清华大学《大学物理》习题库试题及答案--04-机械振动习题

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单 摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) ) π21 cos(2-+=αωt A x (C) ) π23 cos(2-+=αωt A x (D) )cos(2π++=αωt A x 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 (B) 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' 6.5178:一质点沿x 轴作简谐振动,振动方程为 ) 31 2cos(1042π+π?=-t x (SI)。从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 81 (B) s 61 (C) s 41 (D) s 31 (E) s 21 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) ) 21/cos(π-=t m k A x (C) ) π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取 v 2 1

(完整版)《大学物理》习题册题目及答案第15单元 机械振动

第15单元 机械振动 学号 姓名 专业、班级 课程班序号 一 选择题 [ B ]1. 已知一质点沿y 轴作简谐振动,其振动方程为)4/3cos(πω+=t A y 。与其对应的振动曲线是: [ B ] 2. 一质点在x 轴上作简谐振动,振幅A = 4cm ,周期T = 2s, 其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2cm 处,且向x 轴负方向运动,则质点第二次通过x = -2cm 处的时刻为: (A) 1s (B) s 32 (C) s 3 4 (D) 2s [ C ] 3. 如图所示,一质量为m 的滑块,两边分别与劲度系数为k1和k2的轻弹簧联接, 两弹簧的另外两端分别固定在墙上。滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。现将滑块m 向左移动x0,自静止释放,并从释放时开始 计时。取坐标如图所示,则其振动方程为: ??? ? ? ?+=t m k k x x 2 10cos (A) ??????++=πt k k m k k x x )(cos (B) 212 10 ? ?? ???++=πt m k k x x 210cos (C) ??? ???++=πt m k k x x 210cos (D) ??????+=t m k k x x 2 1 0cos (E) [ E ] 4. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的: (A) 167 (B) 169 (C) 1611 (D) 1613 (E) 16 15 [ B ] 5. 图中所画的是两个简谐振动的振动曲线,若 这两个简谐振动可叠加,则合成的余弦振动的初相为: (A) π2 1 (B)π t y A (D) A -t y o A -(A) A t y o A A -t y A A (C) o m x x O 1k 2 k t x o 2 /A -2 x 1 x

大学物理机械振动习题解答

习题四 4-1 符合什么规律的运动才是谐振动分别分析下列运动是不是谐振动: (1)拍皮球时球的运动; (2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短). 题4-1图 解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统 是在 自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用 0d d 2 22=+ξωξt 描述时,其所作的运动就是谐振动. (1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线 性回复力. (2)小球在题4-1图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中 ,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题4-1图(b)所示.题 中所述,S ?<<R ,

故R S ?= θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有 θθ mg t mR -=22d d 令R g = 2ω,则有 0d d 2 22=+ωθt 4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期. 题4-2图 解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有 1 11x k F x k F -=-=串 222x k F -= 又有 21x x x += 2 211k F k F k F x +== 串 所以串联弹簧的等效倔强系数为

(完整版)大学物理(第四版)课后习题及答案机械振动

13 机械振动解答 13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相?=3π/4。试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。 13-1 分析 弹簧振子的振动是简谐运动。振幅A 、初相?、角频率ω是简谐运动方程 ()?ω+=t A x cos 的三个特征量。求运动方程就 要设法确定这三个物理量。题中除A 、?已知外, ω可通过关系式T π ω2= 确定。振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。 解 因T π ω2=,则运动方程 ()?? ? ??+=+=?π?ωt T t A t A x 2cos cos 根据题中给出的数据得 ]75.0)2cos[()100.2(12ππ+?=--t s m x 振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+??-==---t s s m dt dx v πππ75.0)2cos[()108(/112222+??-==---t s s m dt x d a x-t 、v-t 及a-t 图如图13-l 所示 13-2 若简谐运动方程为?? ???? +=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和 初相;(2)t=2s 时的位移、速度和加速度。 13-2 分析 可采用比较法求解。 将已知的简谐运动方程与简谐运动方程的一般形式()?ω+=t A x cos 作比较,即可求得各特征量。 运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。 解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()?ω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相π?25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。 (2)t= 2s 时的位移、速度、加速度分别为 m m x 21007.7)25.040cos()10.0(-?=+=ππ )25.040sin()2(/1πππ+?-==-s m dt dx v

《大学物理学》机械振动练习题

大学物理学》机械振动自主学习材料 、选择题 9-1 .一个质点作简谐运动,振幅为A ,在起始时质点的位移为 代表此简谐运动的旋转矢量为() 【旋转矢量转法判断初相位的方法必须掌握】 9-2 .已知某简谐运动的振动曲线如图所示,则此简谐运动 的运动方程( 的单位为 s)为( 2 2cos( 3t ) 2 3 ) ; (A)x 22 (B x2cos(t) 33 (C)x 4 2cos( 3 t 2 3 ) ; 42 (D x2cos(t) 33 4 【考虑在1 秒时间内旋转矢量转过,有】 33 9-3 .两个同周期简谐运动的振动曲线如图所示,x1的相位 比x2 的相位() (A )落后;(B)超前; 22 (C)落后;(D )超前。 【显然x1的振动曲线在x2 曲线的前面,超前了1/4 周期,即超前 9-5 .图中是两个简谐振动的曲线,若这两个简谐振动可叠 加,则合成的余弦振动的初相位为() 9-4 .当质点以频 率 作简谐运动时,它的动能变化的频率为 ( A)2;(B) 考虑到动能的表达式为E k C) 2 ;(D) 4 。 1 2 mv 221 kA 2 sin 2( t ) ,出现平方项】 A,且向x 轴正方向运 动, x 的单位为cm ,t /2】

】 3 9-10 .如图所示,两个轻弹簧的劲度系数分别为 9-15 .一个质点作简谐振动, 置到二分之一最大位移这段路程所需要的最短时间为: 3 A ) 2 C ) B )2; D ) 0 。 【由图可见,两个简谐振动同频率,相位相差 是大的那一个】 ,所以,则合成的余弦振动的振幅应该是大减小,初相位 9--1 .一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为 T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为 T ',则 T'/T 为( ) 11 (A ) 2; (B )1; (C ) ; (D ) 。 22 弹簧串联的弹性系数公式为 形成新的弹簧整体,弹性系数为 T ' 2 1 1 1 ,弹簧对半分割后,其中一根的弹性系数为 2k ,两弹簧并联后 k 串 k 1 k 2 4k ,公式为 k 并 k 1 k 2 ,利用 ,考虑到 T 2 ,所以, T 】 2 9--2 .一弹簧振子作简谐运动,当位移为振幅的一半时,其动能为总能量的( 33 ;( D ) 。 24 11 E k mv 2 kA 2 sin 2 ( t ) , 位 移 为 振 幅 的 一 半 时 , 有 22 1 kA 2 ( 3)2 】 22 A ) 1;( B ) 2 考虑到动 12 ; (C ) 能的 表达式 为 2 2 ,那么, E k 3k 9--3 .两个同方向, 相位差为( A ) 6; ( B ) 同频率的简谐运动,振幅均为 A ,若合成振幅也为 A ,则两分振动的初 2 3; (C )2 3 D ) 则振动频率为: ( 1 A ) 2 k 1 k 2 ; m B ) C ) 2 m ; k 1 k 2 D ) 提示:弹簧串联的弹性系数公式为 k 1 k 2 m(k 1 k 2) m(k 1 k 2) k 1 。 k 2 11 1 , ,而简谐振动的频率为 k 串 k 1 k 2 】 1 2 k 1和 k 2 ,物体在光滑平面上作简谐振动, 可用旋转矢量考虑,两矢量的夹角应为 周期为 T ,当质点由平衡位置向 x 轴正方向运动时, 由平衡位

大学物理教案机械振动与机械波

教学目标 1.掌握简谐振动的定义、表达方式、简谐振动的合成方法;了解自由、阻尼、强 迫等各类简谐振动的特点和规律。 2.掌握振动和波的关系、波的相干条件、叠加原理、驻波的形成条件、驻波的振 幅、相位和能量的空间分布,半波损失。 3.学会建立波动方程。 教学难点 多自由体系的小振动 第十一章 机械振动 振动是指物体或系统在其平衡位置附近的往复运动。(例子:物体位置、电流强度、电压、电场强度、磁场强度等)。 物体或系统质点数是无穷的,自由度数也是无穷的,因此存在空间分布和时间分布,需要用偏微分方程描述 (如果一个微分方程中出现多元函数的偏导数,或未知函数与几个变量有关,而且未知函数对应几个变量的导数,那么这种微分方程就是偏微分方程。例如弦包含很多的质点,不能用质点力学的定律研究,但是可以将其细分成若干个极小的小段,每小段可以抽象成一个质点,用微分的方法研究质点的位移,其是这点所在的位置和时间变量的函数,根据张力,就可以建立起弦振动的偏微分方程) 。 一、简谐振动(单自由度体系无阻尼自由小振动) 虽然多质点的振动要用偏微分方程描述,但是我们可以简化或只考虑细分成的每一小段,那么就成为单质点单自由度(只需一个坐标变量)的振动。 2222 22222,,0 cos():0i i t F k k F kx a x m m m d x d x a x a x dt dt x A t Ae e i ,令特征方程特征根:?ωωωωω?λωλω =-= =-==-=∴+==+=+==±A (振幅)、?(初相位)都是积分常数,k 为倔强系数。 在微分方程中所出现的未知函数的导数的最高阶数称为这个方程的阶。 形如 ()()dx P t x Q x dt +=的方程为线性方程,其特点是它关于未知函数x 及其导数dx dt 都是一次的。若()0Q x =,则()0dx P t x dt +=称为齐次的线性方程。 二阶常系数齐次线性微分方程的解法: ()() 1 2 121212121,212cos sin t t t t x c e c e x c c t e i x e c t c t λλλαλλλλλαβββ≠=+==+=±=+ 由cos()sin()x A t v A t ω?ωω?=+?=-+ 按周期定义, ()()cos()cos sin()sin A t A t T A t A t T ω?ω?ωω?ωω?+=++???? -+=-++???? ,同时满足以上两方程的T 的 最小值应为 2p w 1,2T n w pn ==,w 称为圆频率或角频率。不像A 、

大学物理(第四版)课后习题与答案机械振动

13 机械振动解答 13-1 有一弹簧振子,振幅A=2.0 ×10 -2 m,周期T=1.0s ,初相=3π/4。试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。 13-1 分析弹簧振子的振动是简谐运动。振幅 A 、初相、角频率是简谐运动方程 x A cos t 的三个特征量。求运动方程就 要设法确定这三个物理量。题中除A、已知外, 可通过关系式2 T 确定。振子运动的速度 和加速度的计算仍与质点运动学中的计算方法相同。 解因2 T ,则运动方程 x A c os t A cos 2 T t t 根据题中给出的数据得 x ( 2.0 10 2 m s 1 t ) cos[( 2 ) 0.75 ] 振子的速度和加速度分别为 v dx / dt (4 10 2 m s 1 s 1 t ) sin[( 2 ) 0.75 ] a d 2 x dt2 2 2 m s 1 s 1 t / (8 10 ) cos[( 2) 0.75 x-t 、v-t 及a-t 图如图13-l 所示 13-2 若简谐运动方程为x(0 .01m) cos (20 s ) ,求:(1)振幅、频率、角频率、周期和 1 t 1 t 4 初相;(2)t=2s 时的位移、速度和加速度。 13-2 分析可采用比较法求解。将已知的简谐运动方程与简谐运动方程的一般形式x A cos t 作比较,即可求得各特征量。运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。 1 t 解(l )将x (0.10m) c os[( 20 s ) 0 .25 ] 与x A cos t 比较后可得:振幅A= 0.10 m,角频率 1 20 s ,初相0.25 ,则周期T 2 / 0 .1s ,频率1/ T 10 H z 。 (2)t= 2s 时的位移、速度、加速度分别为 2 x ( 0. 10m) c os(40 0.25 ) 7.07 10 m

大学物理学机械振动练习题

大学物理学》机械振动自主学习材 料 旋转矢量转法判断初相位的方法必须掌握】 、选择题 9-1 .一个质点作简谐运动,振幅 为 A,在起始时质点的位移 为 A,且向x 轴正方向运动, 2 代表此简谐运动的旋转矢量 为 9-2 .已知某简谐运动的振动曲线如图所示,则此简谐运动的运动 方程的单位为s)为() x 的单位为cm,t A) x 2cos( 2 3 B) x 2cos( 2 3 C) x 2cos( 4 3 2 3 2 3 2 x(cm) D) x42 2cos( t ) 。 33 ,有4】 考虑在 1 秒时间内旋转矢量转过 33 9-3 .两个同周期简谐运动的振动曲线如图所 示,x 1的相位比x2 的相位() A)落后;(B)超前; 22 C)落后;(D)超前。 显然x1的振动曲线在x2曲线的前面,超前了1/4 周期,即超前 ) 9-4 .当质点以频 率 /2 】 作简谐运动时,它的动能变化的频率为 ( (A);(B);(C)2 ;(D)4 。 2 【考虑到动能的表达式为 E k 1 mv 2 1 kA 2 sin 2 ( t 22 9-5 .图中是两个简谐振动的曲线,若这两个简谐振动 可叠加,则合成的余弦振动的初相位为()3 (A);(B); 22 (C);(D)0。 ),出现平方项】 【由图可见,两个简谐振动同频率,相位相差, 是大的那一个】 9--1 .一物体悬挂在一质量可忽略的弹簧下 端,测得其振动周期为T,然后将弹簧分割 为两半,一物体,再使物体略有位移,测得 其振动周期为 所以,则合成的余弦振动的振幅应该是大 减小 使物体略有位 移,并联地悬挂 同T ' ,则 ,初相 位

《大学物理学》机械振动自学练习题

《大学物理学》机械振动 一、选择题 9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2 A -,且向x 轴正方向运动, 代表此简谐运动的旋转矢量为( ) 【旋转矢量转法判断初相位的方法必须掌握】 9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( ) (A )22 2cos()33x t ππ=-; (B )22 2cos()33x t ππ=+; (C )42 2cos()33x t ππ=-; (D )42 2cos()33 x t ππ=+。 【考虑在1秒时间内旋转矢量转过3 π π +,有43 πω= 】 9-3.两个同周期简谐运动的振动曲线如图所示, 1x 的相位比2x 的相位( ) (A )落后 2π; (B )超前2 π; (C )落后π; (D )超前π。 【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】 9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A ) 2 ν ; (B )ν; (C )2ν; (D )4ν。 【考虑到动能的表达式为22211sin ()22 k E mv kA t ω?==+,出现平方项】 9-5.图中是两个简谐振动的曲线,若这两个简谐振动可 叠加,则合成的余弦振动的初相位为( ) (A ) 32π; (B )2π; (C )π; (D )0。 【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】 9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则 '/T T 为( ) ()A ()B ()C ()D ) s --

大学物理_第7章_机械振动习题思考题

习题 7-1. 原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式。 解:振动方程:x =Acos (ωt +φ), 在本题中,kx =mg ,所以k =10 ; 101 .010 === m k ω 振幅是物体离开平衡位置的最大距离,当弹簧升长为0.1m 时为物体的平衡位置,以向下为正方向。所以如果使弹簧的初状态为原长,那么:A=0.1, 当t =0时,x =-A ,那么就可以知道物体的初相位为π。 所以:)(π+=t x 10cos 1.0 。 7-2. 有一单摆,摆长m 0.1=l ,小球质量g 10=m .0=t 时,小球正好经过 rad 06.0-=θ处,并以角速度rad/s 2.0=? θ向平衡位置运动。设小球的运动可看 作筒谐振动,试求: (1)角频率、频率、周期;(2)用余弦函数形式写出小球的振动式。 解:振动方程:x =Acos (ωt+φ)我们只要按照题意找到对应的各项就行了。(1)角频率:10== l g ω,频率:π πν210 21== l g , 周期:10 22π π = =g l T (2 )根据初始条件:A θ ?= 0cos 象限) 象限) 4,3(02,1(0{sin 0<>-=ωθ?A

可解得:32.2088.0-==?,A 所以得到振动方程:)(32.213.2cos 088.0-=t θ 7-3. 一竖直悬挂的弹簧下端挂一物体,最初用手将物体在弹簧原长处托住,然后放手,此系统便上下振动起来,已知物体最低位置是初始位置下方cm 0.10处,求:(1)振动频率;(2)物体在初始位置下方cm 0.8处的速度大小。 解:(1)由题知 2A=10cm ,所以A=5cm ; 19610 58 .92 =?=?=-x g m K 又ω=14196==m k ,即 π πν721 == m k (2)物体在初始位置下方cm 0.8处,对应着是x=4cm 的位置,所以: 5 4cos 0== A x ? 那么此时的5 3sin 0±=- =ω?A v 那么速度的大小为42.05 3 ==ωA v

大学物理机械振动试题

专业班级 学号 姓名 批阅 机械振动 本章知识点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,简谐运动的合成,阻尼振动,受迫振动,共振 本章重点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,同方向同频率简谐运动的合成 一、填空题 1.一个给定系统做简谐振动时,其振幅和初相位决定于 、 和 ;弹簧振子做简谐振动时,其频率决定于 和 . 2.一弹簧振子,弹簧的劲度系数为0.32 N/m ,重物的质量为0.02 kg ,则这个系统的固有角频率为 rad/s ,相应的振动周期为 s . 3.在两个相同的弹簧下各悬挂一物体,两物体的质量比为4:1,则两者做简谐运动的周期之比为 . 4.质点做简谐运动的位移和时间关系如图1所示,则其运动方程为 . 5.两个同频率的简谐运动曲线如图2所示,则2x 的相位比1x 的相位落后 . 6.两个简谐振动曲线如图3所示,两个简谐振动的频率之比12:νν= ,加速度最大值之比a 1m :a 2m = ,初始 速率之比10 20:=v v . 7.简谐振动的方程为)cos(?ω+=t A x ,势能最大时位移x= ,此时动能E k = . 8.已知一质点做简谐运动曲线如图4所示,由图可确定振子在t= s 时速度为零;在t= s 时弹性势能最小;在(__________)s 时加速度取正的最大值. 9.两个同方向同频率的简谐振动,其合振动的振幅为0.20m ,合振动与第一分振动的相位差为60度,已知第一分振动的振幅为0.10m ,则第二分振动的振幅为 m ,第二分振动与第一分振动的相位差为 . 10.某谐振子同时参与两个同方向的简谐运动,其运动方程分别为))(3/4cos(1032 1m t x ππ+?=-; ))(4cos(10422m t x ?π+?=- 当?= 时合振动的振幅最大,其值 m ax A = ;当?= 时合振动的振幅最小,其值min A = . t/s 7 x/m 0.05 0.10 图1 x 1 x x 2 t o 图3 2 1 x t/s 图4 图5 x 2 x 1 x t 图2

大学物理习题_机械振动机械波

机械振动机械波 一、选择题 1.对一个作简谐振动的物体,下面哪种说法是正确的? (A )物体处在运动正方向的端点时,速度和加速度都达到最大值; (B )物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C )物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D )物体处在负方向的端点时,速度最大,加速度为零。 2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为 (A )φωsin A v -=; (B )φωsin A v =; (C )φωcos A v -=; (D )φωcos A v =。 3.一物体作简谐振动,振动方程为??? ? ? +=4cos πωt A x 。在4T t =(T 为周期)时刻,物 体的加速度为 (A )2221ωA - ; (B )222 1 ωA ; (C )2 32 1ωA -; (D )2321ωA 。 4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相 (A )落后2π; (B )超前2π ; (C )落后π; (D )超前π。 5.一质点沿x 轴作简谐振动,振动方程为?? ? ?? +?=-ππ312cos 10 42 t x (SI )。从0=t 时刻 起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为

(A )s 8/1; (B )s 4/1; (C )s 2/1; (D )s 3/1。 6.一个质点作简谐振动,振幅为 A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运 动,代表此简谐振动的旋转矢量图为 7.一个简谐振动的振动曲线如图所示。此振动的周期为 (A )s 12; (B )s 10; (C )s 14; (D )s 11。 8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是 (A )动能为零,势能最大; (B )动能为零,机械能为零; (C )动能最大,势能最大; (D )动能最大,势能为零。 9.一个弹簧振子做简谐振动,已知此振子势能的最大值为1600J 。当振子处于最大位移的1/4时,此时的动能大小为 (A )250J ; (B )750J ; (C )1500J ; (D ) 1000J 。 10.当质点以频率ν作简谐振动时,它的动能的变化频率为 (A )ν; (B )ν2 ; (C )ν4; (D ) 2 ν。 11.一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是 (A )T /4; (B )T/2; (C )T ; (D )2T 。 12.两个同振动方向、同频率、振幅均为A 的简谐振动合成后,振幅仍为A ,则这两个振 动的相位差为 x (A ) (B )(C )(D ) )s 2 1 -

大学物理机械振动习题含答案

大学物理机械振动习 题含答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.3题图 第三章 机械振动 一、选择题 1. 质点作简谐振动,距平衡位置2。0cm 时,加速度a=4.0cm 2/s ,则 该质点从一端运动到另一端的时间为( C ) A:1.2s B: 2.4s C:2.2s D:4.4s 解: s T t T x a x a 2.2422,2 222 ,22===∴=====ππωπωω 2.一个弹簧振子振幅为2210m -?,当0t =时振子在21.010m x -=?处,且向正方向运动,则振子的振动方程是:[ A ] A :2210cos()m 3 x t π ω-=?-; B :2 210cos()m 6x t πω-=?-; C :2210cos()m 3 x t π ω-=?+ ; D :2210cos()m 6 x t π ω-=?+; 解:由旋转矢量可以得出振动的出现初相为:3 π- 3.用余弦函数描述一简谐振动,若其速度与时间(v —t )关系曲线如图示,则振动的初相位为:[ A ] A :6π ; B : 3π ; C :2 π ; D : 23 π ; E : 56 π 解:振动速度为:max 0sin()v v t ω?=-+ 0t =时,01sin 2?=,所以06π?=或056 π ?= 由知1.3图,0t =时,速度的大小是在增加,由旋转矢量图知,旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加 的,旋转矢量在第二象限内,对应质点的运动是由平衡位置向负最大位移运 动,速度是逐渐减小的,所以只有06 π ?=是符合条件的。 4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。 1秒,则此钟摆的摆长为( B ) A:15cm B:30cm C:45cm D:60cm

大学物理题库-振动与波动

振动与波动题库 一、选择题(每题3分) 1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( ) (A ) 2v (B )v (C )v 2 (D )v 4 2、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。当0=t 时, 位移为cm 6,且向x 轴正方向运动。则振动表达式为( ) (A) )(3 cos 12.0ππ-=t x (B ))(3cos 12.0ππ+=t x (C ))(32cos 12.0ππ-=t x (D ))(32cos 12.0ππ+=t x 3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的 四倍,则它的总能量变为 ( ) (A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1 (C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( ) (A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝ 6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的 波形如图所示,则x=0处的质点的振动方程为 ( ) (A) y=2×10-2cos (πt/2-π/2) (m) (B) y=2×10-2cos (πt + π) (m) (C) y=2×10-2cos(πt/2+π/2) (m) (D) y=2×10-2cos (πt-3π/2) (m) 7、一平面简谐波,沿X 轴负方向 传播。x=0处的质点 的振动曲线如图所示,若波函数用余弦函数表示,则该波 的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /2 8、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。设小球的运动可看作筒谐振动,则该振动的周期为( ) (A) 2π (B )32π (C )102π (D )52π 9、一弹簧振子在光滑的水平面上做简谐振动时,弹性力在半个周期内所做的功为 [ ] (A) kA 2 (B )kA 2 /2 (C )kA 2 /4 (D )0

相关主题
文本预览
相关文档 最新文档