当前位置:文档之家› 二次函数顶点式图像与性质

二次函数顶点式图像与性质

二次函数顶点式图像与性质
二次函数顶点式图像与性质

2.2二次函数的图象与性质(3)

教学目标

(一)教学知识点

1.能够作出函数y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与

y=ax2的图象的关系.理解a,h,k对二次函数图象的影响.

2.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.

(二)能力训练要求

1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解.

2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力.

(三)情感与价值观要求

1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.

2.让学生学会与人合作,并能与他人交流思维的过程和结果.

教学重点

1.经历探索二次函数y=ax2+bx+c的图象的作法和性质的过程.

2.能够作出y=a(x—h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.

3.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.教学难点

能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.

教学方法

探索——比较——总结法.

教具准备

投影片四张

第一张:(记作§2.4.1A)

第二张;(记作§2.4.1B)

第三张:(记作§2.4.1C)

第四张:(记作§2.4.1D)

教学过程

Ⅰ.创设问题情境、引入新课

[师]我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对称图形,对称轴都是y轴,有最大值或最小值.顶点都是原点.还知道y=ax2+c的图象是函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题.

Ⅱ.新课讲解

一、比较函数y=3x2与y=3(x-1)2的图象的性质.

投影片:(§2.4A)

(1)完成下表,并比较3x2和3(x-1)2的值,它们之间有什么关系?

(2)在下图中作出二次函数y=3(x-1)2的图象.你是怎样作的?

(3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

(4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x值的增大而减小?

[师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结.[生](1)第二行从左到右依次填:27,12,3,0,3,12,27,48;第三行从左到右依次填48,27,12,3,0,3,12,27.

(2)用描点法作出y=3(x-1)2的图象,如上图.

(3)二次函数y=3(x-1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).

(4)当x>1时,函数y=3(x-1)2的值随x值的增大而增大,x<1时,

y=3(x-1)2的值随x值的增大而减小.

[师]能否用移动的观点说明函数y=3x2与y=3(x-1)2的图象之间的关系呢?

[生]y=3(x-1)2的图象可以看成是函数y=3x2的图象整体向右平移得到的.[师]能像上节课那样比较它们图象的性质吗?

[生]相同点:

a.图象都是抛物线,且形状相同,开口方向相同.

b.都是轴对称图形.

c.都有最小值,最小值都为0.

d.在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.

不同点:

a.对称轴不同.y=3x2的对称轴是y轴.y=3(x-1)2的对称轴是x=1.

b.它们的位置不同.

c.它们的顶点坐标不同.y=3x2的顶点坐标为(0,0),y=3(x-1)2的顶点坐标为(1,0).

联系:

把函数y=3x2的图象向右移动一个单位,则得到函数y=3(x-1)2的图像.

二、做一做

投影片:(§2.4.1B)

在同一直角坐标系中作出函数y=3(x-1)2和y=3(x-1)2+2的图象.并比较它们图象的性质.

[生]图象如下

它们的图象的性质比较如下:

相同点:

a.图象都是抛物线,且形状相同,开口方向相同.

b.都是轴对称图形,对称轴都为x=1.

c.在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.

不同点:

a.它们的顶点不同,最值也不同.y=3(x-1)2的顶点坐标为(1,0),最小值为0.y=3(x-1)2+2的顶点坐标为(1,2),最小值为2.

b.它们的位置不同.

联系:

把函数y=3(x-1)2的图象向上平移2个单位,就得到了函数y=3(x-1)2+2的图象.

三、总结函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象之间的关系.

[师]通过上面的讨论,大家能够总结出这三种函数图象之间的关系吗?

[生]可以.

二次函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象都是抛物线,并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数y=3x2的图象向右平移1个单位,就得到函数y=3(x-1)2的图象;再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.

[师]大家还记得y=3x2与y=3x2-1的图象之间的关系吗?

[生]记得,把函数y=3x2向下平移1个平位,就得到函数y=3x2-1的图象.[师]你能系统总结一下吗?

[生]将函数y=3x2的图象向下移动1个单位,就得到了函数y=3x2-1的图

象;向上移动1个单位,就得到函数y=3x2+1的图象;将y=3x2的图象向右平移动1个单位,就得到函数y=3(x-1)2的图象;向左移动1个单位,就得到函数y=3(x+1)2的图象;由函数y=3x2向右平移1个单位、再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.

[师]下面我们就一般形式来进行总结.

投影片:(§2.4.1C)

一般地,平移二次函数y=ax2的图象便可得到二次函数为y=ax2+c,

y=a(x-h)2,y=a(x-h)2+k的图象.

(1)将y=ax2的图象上下移动便可得到函数y=ax2+c的图象,当c>0时,向上移动,当c<0时,向下移动.

(2)将函数y=ax2的图象左右移动便可得到函数y=a(x-h)2的图象,当h>0时,向右移动,当h<0时,向左移动.

(3)将函数y=ax2的图象既上下移,又左右移,便可得到函数y=a(x-h)2+k 的图象.

因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k的值有关.

下面大家经过讨论之后,填写下表:

y=a(x-h)2+k开口方向对称轴顶点坐标

a>

a<0

四、议一议

投影片:(§2.4.1D)

(1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

(2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

(3)对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?

[师]在不画图的情况下,你能回答上面的问题吗?

[生](1)二次函数y =3(x +1)2的图象与y =3x 2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y =3(x +1)2的图象的对称轴是直线x =-1,顶点坐标是(-1,0).只要将y =3x 2的图象向左平移1个单位,就可以得到 y =3(x +1)2的图象.

(2)二次函数y =-3(x -2)2+4的图象与y =-3x 2的图象形状相同,只是位置不同,将函数y =-3x 2的图象向右平移2个单位,就得到y =-3(x -2)2的图象,再向上平移4个单位,就得到y =-3(x -2)2+4的图象.y =-3(x -2)2+4的图象的对称轴是直线x =2,顶点坐标是(2,4).

(3)对于二次函数y =3(x +1)2和y =3(x +1)2+4,它们的对称轴都是x =-1,当x <-1时,y 的值随x 值的增大而减小;当x >-1时,y 的值随x 值的增大而增大.

Ⅲ.课堂练习 随堂练习 Ⅳ.课时小结

本节课进一步探究了函数y =3x 2与y =3(x -1)2,y =3(x -1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结,还能利用这个结果对其他的函数图象进行讨论.

Ⅴ.课后作业 习题2.4 Ⅳ.活动与探究 二次函数y =

21(x +2)2-1与y =21(x -1)2+2的图象是由函数y =2

1

x 2的图象怎样移动得到的?它们之间是通过怎样移动得到的?

解:y =21(x +2)2-1的图象是由y =2

1

x 2的图象向左平移2个单位,再向下

平移1个单位得到的,y =21(x -1)2+2的图象是由y =21

x 2的图象向右平移1个

单位,再向上平移2个单位得到的.

y =

2

1

(x +2)2-1的图象向右平移3个单位,再向上平移3个单位得到 y =2

1

(x -1)2+2的图象.

y =

2

1

(x -1)2+2的图象向左平移3个单位,再向下平移3个单位得到 y =2

1

(x +2)2-1的图象.

板书设计

§4.2.1 二次函数y =ax 2+bx +c 的图象(一)

一、1.比较函数y =3x 2与y =3(x -1)2的图象和性质(投影片§2.4.1A) 2.做一做(投影片§2.4.1B)

3.总结函数y =3x 2,y =3(x -1)2,y =3(x -1)2+2的图象之间的关系(投影片§2.4.1C)

4.议一议(投影片§2.4.1D) 二、课堂练习 1.随堂练习 2.补充练习 三、课时小结 四、课后作业

二次函数的图像及性质

《二次函数的图像及性质》教学案例及反思 教师:同学们,我们上一节课一起研究了二次函数的表达式,那么我们一起来回忆一下表达式是什么? 学生齐答:y=ax2+bx+c(a,b,c是常数,a不为0) 教师:好,那么请同学们在黑板上写出一些常数较简单的二次函数表达式. (学生表现很踊跃,一下写出了十多个) 教师:黑板上这些二次函数大致有几个类型? 学生:(讨论了3分钟)四大类!有y=ax2+bx+c;y=ax2+bx;y=ax2+c;y=ax2! 教师:太棒了!同学们归纳的很好,今天我们就一起来研究比较简单的一种y=ax2的图像及性质! 教师在学生板书的函数中选了四个,并把复杂的系数换成简单的常数,找到如下函数:y=x2;y=-x2;y=2x2;y=-2x2.(教师在这里让学生自己准备素材!) 教师启发学生利用函数中的“列表,描点,连线”的方法,把画上述四个函数的任务分配给A,B,C,D小组,一组一个在已画好的坐标系的小黑板上动手操作.生在自己提供的素材上进行再“加工”,兴趣很大,合作交流充分,课堂气氛活跃.教师到每组巡视、指导,在确认画图全部正确的情况下,提出了要求,开始了探究之旅. 教师:请同学们小组之间比较一下,你们画的图象位置一样吗? 学生;不一样. 教师:有什么不一样?(开始聚焦矛盾) 学生:开口不一样. 学生A:走向不一样. 学生B:经过的象限不一样. 学生C:我们的图象在原点的上方,他们的图象在原点的下方. 教师:看来是有些不一样,那么它们位置的不一样是由什么要素决定的?(教师指明了探究方向,但未指明具体的探究之路,这是明智的) 学生:是由二次项系数的取值确定的. 教师:好了,根据同学们的回答,能得到图象或函数的那些结论?(顺水推舟,放手让学生一搏) 热烈讨论后,学生D回答并板书,当a>0时,图象在原点的上方,当a<0时,图象在原点的下方。 学生E:当a>0时,图象开口向上;当a<0时,图象开口向下. 学生A站起来补充:还有顶点,顶点坐标(0,0),对称轴为y轴! (这个过程约用了十多分时间,学生体会非常充分,从学生的神情看,绝大多数学生已接受了这几个学生的板书,但教师未对结论进行优化。怎么没有一个学生说出二次函数的性质呢?短暂停顿后,教师确定了思路) 教师:刚才你们是研究图象的性质,你们能否由图象性质得出相应的函数的性质? 看着学生茫然的目光,我在思考是不是我的问题---- 教师:请看同学们的板书,能揣摩图象“走向”的意思吗? 学生:(七嘴八舌)当a>0时,图象从左上向下走到原点后在向右上爬;当a<0时,图象从左下向上爬到原点后在向右下走(未出现教师所预期的结论) 教师:好,你们从图象的直观形象来理解的图象性质,很贴切,你们能从自变量与函数值之间的变化角度来说明“向上爬”和“向下走”吗?

初三二次函数的图像与性质

龙文教育学科导学 教师:学生:年级:日期: 星期: 时段: 学情分析二次函数部分内容中考难度不大,所以本套教案注重于基础知识的准确掌握。 课题二次函数的图像与性质 学习目标与考点分析学习目标:1、理解二次函数的概念;会识别最基本的二次函数并利用二次函数的概念求解析式中的未知数; 2、熟练的画出各种抛物线的图像,根据解析式的变化判断图像的平移方法; 3、熟练的选用合适的解析式利用待定系数法求解析式。 学习重点图像的平移;待定系数法求解析式 学习方法讲练结合、师生讨论、启发引导 学习内容与过程 教学内容: 知识回顾 1.一般地,形如y=ax2 +bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。其中,x 是自变量, a,b,c分别是函数解析式的二次项系数,一次项系数和常数项. 2.二次函数的解析式及其对称轴 (1)二次函数解析式的一般式(通式):,它的顶点坐标为(,),对称轴为;(2)二次函数解析式的顶点式(通式):,顶点坐标为(,)对称轴是;(3)二次函数解析式的交 点式:。此时抛物线的对称轴为。其中,(x 1,0)(x 2 ,0)是抛 物线与X轴的交点坐标。显然,与X轴没有交点的抛物线不能用此解析式表示的 3.二次函数y=a(x-h) 2+k的图像和性质 4.二次函数的平移问题 5. 二次函数y=ax2 +bx+c中a,b,c的符号与图像性质的关系: 6.抛物线y=ax2+bx+c与X轴的交点个数与一元二次方程的根的判别式△的符号之间的的关系

二次函数的常规解法: 一、若已知二次函数图象上的三个点的坐标或是x、y的对应数值时,可选用y=ax2+bx+c(a≠0)求解。我们称y=ax2+bx+c(a≠0)为一般式(三点式)。 例:二次函数图象经过A(1,3)、B(-1,5)、C(2,-1)三点,求此二次函数的解析式。 说明:因为坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式。所以将已知三点的坐标分别代入y=ax2+bx+c (a≠0)构成三元一次方程组,解方程组得a、b、c的值,即可求二次函数解析式。 二、若已知二次函数的顶点坐标或对称轴或最值时,可选用y=a(x+m)2+k (a≠0)求解。我们称y =a(x+m)2+k (a≠0)为顶点式(配方式)。 例:若二次函数图像的顶点坐标为(-2,3),且过点(-3,5),求此二次函数的解析式。 说明:由于顶点式中要确定a、m、k的值,而已知顶点坐标即已知了-m、k的值。用顶点式只要确定a的值就可以求二次函数解析式。若已知这两点的坐标用一般式来解是不能确定a、b、c的值的,不妨让学生尝试一下加深印象。 三、若已知二次函数与X轴的交点坐标是A(x1,0) 、B(x2,0)时, 可选用y=a(x-x1)(x- x2 ) (a≠0)求解。我们称y=a(x-x1)(x- x2 ) (a≠0)为双根式(交点式)。 例:已知一个二次函数的图象经过点A(-1,0)、B(3,0)和C(0,-3)三点,求此二次函数的解析式。 说明:很多同学看到此例会想到使用一般式来解,将已知三点的坐标分别代入去求a、b、c的值来求此二次函数的解析式。往往忽略A、B两点的坐标就是二次函数图象与x轴的交点坐标,而用双根式来求解就相对比较简单容易。 四、若已知二次函数在X轴上截得的线段长为d时,可选用 或 例:抛物线y=2x2-mx-6在X轴截锝线段长为4,求此二次函数的解析式。 说明:对于此例主要让学生明白这两种二次函数解析式中线段长d的推导过程,记住公式套进去就行了。注意相互之间不要混淆。 总之,要求一个二次函数的解析式,可以根据不同的已知条件选择恰当的解题方法,使计算过程简单化,达到迅速解题的目的。当然,也只有在平时的练习中对基本解法的适用情况做到心中有数,才能在具体的问题中结合图形及二次函数的相关性质择优选取适当的解法,提高解题能力。 二次函数的概念 如果y=ax2+bx+c(a≠0,a,b,c为常数),那么y叫做x的二次函数 注意:二次函数的表达形式为整式,且二次项系数不为0,b ,c可分别为0,也可同时为0 自变量的取值范围是全体实数 练习:

二次函数图像与性质总结

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我 们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

二次函数的图像与性质知识点及练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2,y=a(x-h)2,y =a(x-h)2+k 和c bx ax y ++=2图象,能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口 方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 例1. 在同一平面坐标系中分别画出二次函数y =x 2 y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2的性质: 2. y =ax 2+k 的性质: (k 上加下减) 3. y =a (x -h )2的性质: (h 左加右减)

4. y =a (x -h)2+k 的性质: 5. y =ax 2+bx+c 的性质: 二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式() 2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如 下: 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字 “左加右减,上加下减”. 方法二:

二次函数的图像和性质总结

二次函数的图像和性质 1.二次函数的图像与性质: 解析式 a 的取值 开口方向 函数值的增减 顶点坐标 对称轴 图像与y 轴的交点 时当0>a ;开口向上;在对称轴的左侧y 随x 的增大而减小,在对称轴的 右侧y 随x 的增大而增大。 时当0k 时向上平移;当0>k 时向下平移。 (2)抛物线2 )(h x a y +=的图像是由抛物线2 y ax =的图像平移h 个单位而得到 的。当0>h 时向左平移;当0k 时向上平移;当0>k 时向下平移;当0>h 时向左平移;当0

3.二次函数的最值公式: 形如 c bx ax y ++=2 的二次函数。时当0>a ,图像有最低点,函数有最小值 a b ac y 442-= 最小值 ;时当0?时抛物线与x 轴有两个交点;当0=?抛物线与x 轴有一个交点;当 0

二次函数图像与性质总结

二次函数图像与性质总 结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。Array 3.()2 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 二、二次函数图象的平移 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2)

⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后 者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中 2 424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般 我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴 对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =- ,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =- ,顶点坐标为2424b ac b a a ??-- ???,.当2 b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3.两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

一元二次函数的图像和性质

3.9 一元二次函数的性质和图象 一.选择题: 1. 二次函数y=(2m-1)x 2-3x+4的图象开口向下, 则m 的取值范围是( ) A. m=21 B. m> 21 C. m<21 D. 无法确定 2. 二次函数y=x 2-4x+3的顶点坐标是( ) A. (-2,1) B. (-2,-1) C. (2,1) D. (2,-1) 3. 二次函数y= -x 2+2x+3的减区间是( ) A. (-∞,+∞) B. (-∞,-1] C. [1,-1] D. [1,+∞) 4. 二次函数y=x 2-x-1的图象是( )的一条抛物线. A. 开口向上,顶点为(-21,45 ) B. 开口向下,顶点为(21,-45 ) C. 开口向上,顶点为(21,-45 ) D. 开口向下,顶点为(-21,45 ) 5. 二次函数y=f(x)的图象开口向上,它的对称轴方程为x=3,下列关系错误的是( ) A. f(5)>f(4) B. f(2)>f( 5) C. f(2)=f(4) D. f(0)

二次函数的图象与性质

二次函数的图象与性质 复习目标: 1. 能结合具体情境确定二次函数的表达式。 2. 根据表达式求顶点坐标、对称轴、最大(小)值。 3. 二次函数图像的性质、平移。 Ⅰ题组练习一(问题习题化) 1. 已知函数y =x 2+2x -3. (1)函数的图象是 ,开口方向 . (2)函数的对称轴是 ,顶点坐标是_____. (3)函数图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 _________. (4)画出此抛物线的图象。 (5)观察图象回答: ①当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小。 ②当x 时,y>0,当x 时,y <0。 ③当x 时,函数有最 值为 。 (6)将函数图象向 平移 个单位,再向 平移 个单位,可得到函数y =x 2 (7)试确定与y =x 2+2x -3的图象关于y 轴对称的抛物线表达式。 2. 二次函数y =a x 2+bx+c(a ≠0)的图象如图所示, 试确定a,b,c, b 2-4ac,a+b+c 的符号。 Ⅱ知识梳理 1. 二次函数表达式: 一般式:y =a x 2+bx+c(a ≠0); 顶点式:y =a(x -h)2+k,(h,k)为抛物线的顶点坐标; 交点式:y=a(x-1x )(x-2x ),1x ,2x 为抛物线与x 轴交点的横坐标。 2. 二次函数y =a x 2+bx+c(a ≠0)的图 象与各项系数、顶点坐标、对称轴、b 2-4ac 之间的关系。 3. 二次函数图象平移规律。 Ⅲ题组练习二(知识网络化) 1. 对于抛物线1032-+=x x y ,开口 方向 ,顶点坐为 。 2.若二次函数k x x y ++-=22的部分图 象如图所示,关于x 的一元二次方程022=++-k x x 的一个解31=x ,另 一个解=2x ; 3. 已知二次函数2y ax bx c =++(0a ≠)

二次函数图像与性质完整归纳

二次函数的图像与性质 一、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

二次函数的图像及性质专题复习

九年级数学期末复习教学案二次函数图像与性质 一、选择题 1、下列各式中,y 是x 的二次函数的是 ( ) A .21xy x += B . 220x y +-= C . 22y ax -=- D .2210x y -+= 2、抛物线122+--=m mx x y 的图象过原点,则m 为 ( ) A .0 B .1 C .-1 D .±1 3、抛物线y=x 2 -(m+2)x+3(m-1)与x 轴 ( ) A.一定有两个交点; B .只有一个交点; C .有两个或一个交点; D .没有交点 4、若直线y=ax +b (a ≠0)在第二、四象限都无图像,则抛物线y=ax 2 +bx+c ( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴平行于y 轴 C.开口向上,对称轴平行于y 轴 D.开口向下,对称轴是y 轴 5、一次函数y=ax+b 与二次函数y=ax 2 +bx+c 在同一坐标系中的图像可能是 ( ) 6、对于任何的实数t ,抛物线 y=x 2 +(2-t)x+t 总经过一个定点,这个点是 ( ) A . (1, 0) B.(-l, 0) C.(-1, 3) D. (l, 3) 7、将函数2y x x =+的图象向右平移a (0)a >个单位,得到函数232y x x =-+的图象,则a 的值为 ( ) A .1 B .2 C .3 D .4 8、已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1), N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 2 9、已知=次函数y =ax 2 +bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c ,2a+b , 2a -b 中,其值大于0的个数为 ( ) A .2 B 3 C 、4 D 、5 10、为了备战世界杯,中国足球队在某次集训中,一队员在距离球门12米处的挑射,正好射中了2.4米高的球门横梁.若足球运行的路线是抛物线c bx ax y ++=2 (如图),则下列结论:①a <

二次函数图象和性质知识点总结

二次函数的图象和性质知识点总结 一、知识点回顾 1. 二次函数解析式的几种形式: ①一般式:(a、b、c为常数,a≠0) ②顶点式:(a、h、k为常数,a≠0),其中(h,k)为 顶点坐标。 ③交点式:,其中是抛物线与x轴交点的横坐标, 即一元二次方程的两个根,且a≠0,(也叫两根式)。 2. 二次函数的图象 ①二次函数的图象是对称轴平行于(包括重合)y轴的抛物 线,几个不同的二次函数,如果a相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。 ②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。 ③在画的图象时,可以先配方成的形式,然后 将的图象上(下)左(右)平移得到所求图象,即平移法;也可 用描点法:也是将配成的形式,这样可以确定 开口方向,对称轴及顶点坐标。然后取图象与y轴的交点(0,c),及此点关于对称轴对称的点(2h,c);如果图象与x轴有两个交点,就直接取这两个点(x1,0),(x2,0)就行了;如果图象与x轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y轴交点及其对称点),一般画图象找5个点。

(1)抛物线开口向 (1)抛物线开口向(1)抛物线 (1)抛物线 4. 求抛物线的顶点、对称轴和最值的方法 ①配方法:将解析式化为的形式,顶点坐标为(h,k),对称轴为直线,若a>0,y有最小值,当x=h时,;若a<0,y有最大值,当x=h时,。 ②公式法:直接利用顶点坐标公式(),求其顶点;对称轴是直线,若若 ,y有最大值,当

5. 抛物线与x轴交点情况: 对于抛物线 ①当时,抛物线与x轴有两个交点,反之也成立。 ②当时,抛物线与x轴有一个交点,反之也成立,此交点即 为顶点。 ③当时,抛物线与x轴无交点,反之也成立。 二、考点归纳 考点一求二次函数的解析式 例1.已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且 f(x)的最大值是8,试求f(x)。 解答: 法一:利用二次函数的一般式方程 设f(x)=ax2+bx+c(a≠0),由题意 故得f(x)=-4x2+4x+7。 法二:利用二次函数的顶点式方程 设f(x)=a(x-m)2+n 由f(2)=f(-1)可知其对称轴方程为,故m=; 又由f(x)的最大值是8可知,a<0且n=8; 由f(2)=-1可解得a=-4。 故。 法三:利用二次函数的零点式方程 由f(2)=-1,f(-1)=-1可知f(x)=-1的两根为2和-1,故可设F(x)=f(x)+1=a(x-2)(x+1)。又由f(x)的最大值

初中数学二次函数的图像与性质

二次函数2 ax y =和c ax y +=2 【教学目标】 1.会用描点法画出二次函数二次函数()02≠=a ax y 和()02≠+=a c ax y 的图象,知道抛物线的有关概念; 2.了解抛物线二次函数()02≠=a ax y 和()02≠+=a c ax y 的顶点、对称轴的概念; 3.理解二次函数二次函数()02≠=a ax y 和()02≠+=a c ax y 的最值; 4.了解二次函数二次函数()02≠=a ax y 和()02≠+=a c ax y ,函数值y 随自变量x 变化的变化规律. 【重点、难点】 重点:会用描点法画出二次函数二次函数()02≠=a ax y 和()02≠+=a c ax y 的图象. 难点:由抛物线的图象直观得到二次函数二次函数()02≠=a ax y 和()02≠+=a c ax y 的有关性质. 【知识要点】 1.二次函数y=x 2 和y=x 2 +c 的图象. 2.二次函数y=x 2 和y=x 2 +c 的有关性质. 3.二次函数y=x 2 和y=x 2 +c 的图象画法 4.二次函数y=x 2 和y=x 2 +c 的性质. (1) 二次函数 02

(2) 二次函数 02 【典型例题】 例1 画图.在同一坐标系内,画出下列函数的图象 (1)y=2x 2 与y=2x 2 +2 (2)y=-2x 2 与y=-2x 2 +3 例2.已知抛物线2ax y =经过点()8,2--A .(1)判断点()4,1--B 是否在此抛物线上;(2)求出此抛物线上纵坐标为-6的点的坐标. 例3.如图所示,已知直线AB 经过x 轴上的点()0,2A ,且与抛物线2 ax y =相交于C B ,两点.已知B 点 坐标为()1,1.(1)求直线和抛物线的解析式;(2)如果D 为抛物线上一点,使得OBC AOD ??与的面积相等,求D 点坐标.

归纳二次函数的图像与性质

二次函数 的图像和性质 函数 开口方向 对称轴 顶点坐标 最值 增减性 图像 a >0 向上 Y 轴 (x=0) (0,0) 当自变量x=0时,函数y 有最小值0 在对称轴的左侧(x <0),y 随x 的增大而减小;在对称轴的右侧(x >0),y 随x 的增大而增大 a <0 向上 Y 轴 (x=0) (0,0) 当自变量x=0时,函数y 有最小值0 在对称轴的左侧(x <0),y 随x 的增大而增大;在对称轴的右侧(x >0),y 随x 的增大而减小 的绝对值越大,抛物线的开口越小; 的绝对值越小,抛物线的开口越大。 的绝对值相同,抛物线的形状相同。 二次函数+C 的图像和性质 该类函数是由y=ax 2的函数顺着y 轴上下平移得到的,当C >0时,顺着y 轴向上平移∣c ∣个单位,此时顶点坐标为(0,c );当c <0时,顺着y 轴向下平移∣c ∣个单位,顶点坐标为(0,c )。 a 的绝对值越大,抛物线的开口越小。 的绝对值越小,抛物线的开口越大。 的绝对值相同,抛物线的形状相同。 函数 开口方向 对称轴 顶点坐 标 最值 增减性 图像 a >0 c >0 向上 Y 轴 (x=0) (0,c ) 当自变量x=0 时,函数y 有 最小值c 在对称轴的左侧(x <0),y 随x 的增大而减小;在对称轴的右侧(x >0),y 随x 的增大而增大 c <0 a < c >0 向下 Y 轴 (x=0) (0,c ) 当自变量x=0 时,函数y 有 最大值c 在对称轴的左侧(x <0),y 随x 的增大而增大;在对称轴的右侧(x >0),y 随x 的增大而减小 c <0

二次函数的定义、图像及性质

二次函数的定义、图像及性质 一、基本概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法1:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加

下减”. 方法2: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数 ()2 y a x h k =-+与 2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 五、二次函数 2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开 口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点 为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数 2 y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 七、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

二次函数的图像与性质

沪九上22.2二次函数的图像与性质 第1题. 直线y x =与抛物线2 2y x =-的两个交点的坐标分别是( ) A.(22),,(11), B.(22),,(11)--, C.(22)--,,(11), D.(22)--,,(11)--, 答案:B 第2题. 把函数2 3y x =-的图像沿x 轴对折,所得图像的函数式为 . 答案:2 3y x = 第3题. 经过(01)A ,点作一直线与x 轴平行,与抛物线2 4y x =相交于M ,N 两点,则M ,N 的坐标分别为 . 答案:112?? ???, ,112??- ??? , 第4题. 函数2 ()y =-的图像是一条 ,其顶点坐标为 ,对称轴为 ;图像的开口向 ;当x = 时,函数有最 值;0x >时y 随x 的增大而 , 0x <时,y 随x 的增大而 . 答案:抛物线 (00), y 轴 上 小 增大 减小 第5题. 把图中图像的号码,填在它的函数式后面: (1)2 3y x =的图像是 ; (2)2 13 y x =的图像是 ; (3)2 y x =-的图像是 ; (4)2 34 y x =- 的图像是 . 答案:(1)③ (2)① (3)④ (4)②

第6题. 函数2 y ax =与直线1y kx =+相交于两点,其中一点的坐标为(14),,则另一个点的坐标为 . 答案:1441?? - ??? , 第7题. 在同一坐标系中,其图像与2 2y x =的图像关于x 轴对称的函数为( ) A.212 y x = B.2 12 y x =- C.2 2y x =- D.2 y x =- 答案:C 第8题. 若函数2 y ax =的图像与直线1y x =-有一个公共点为(21),,则函数2 2y ax =的图像与直线 1y x =-交点的个数为( ) A.0个 B.1个 C.2个 D.3个 答案:A 第9题. 一台机器原价60万元,如果每年的折旧率为x ,两年后这台机器的价位为y 万元,则y 关于 x 的函数关系式为( ) A.2 60(1)y x =- B.2 60(1)y x =- C.2 60y x =- D.260(1)y x =+ 答案:A 第10题. 对于2 (0)y ax a =≠的图像,下列叙述正确的是( ) A.a 越大开口越大,a 越小开口越小 B.a 越大开口越小,a 越小开口越大 C.a 越大开口越小,a 越小开口越大 D.a 越大开口越大,a 越小开口越小 答案:C 第11题. 把2 12 y x =- 的图像向上平移2个单位. (1)求新图像的函数式、顶点坐标和对称轴; (2)列函数对应值表,并作函数图像; (3)求函数的最大值或最小值,并求x 的对应值. 答案:(1)2 122 y x =-+,顶点(02), ,对称轴y 轴. (2) (3)0x =时,y 有最大值为2.

5.2二次函数的图象和性质(2)

课题5.2二次函数的图像与性质(2) 主备人张亚元 学生姓名 学习内容:研究k ax y +=2与2ax y =函数图像之间的关系 预习指导:阅读教材P12—14的内容 教学过程: (一)操作探究: 在同一直角坐标系中,画出函数22x y =与222+=x y 的图象. 解 列表. 描点、连线,画出这两个函数的图象,如下图所示. 探索 : 观察这两个函数,它们的开口 方向、对称轴和顶点坐标有那些是相同的?又有哪些不同? 你能由此说出函数22x y =与222-=x y 的图象之间的关系吗? (二)例题分析 例1.在同一直角坐标系中,画出函数12+-=x y 与12--=x y 的图象,并说明,通过怎样的平移,可以由抛物线12+-=x y 得到抛物线12--=x y . . 回顾与反思 1、抛物线12 --=x y 是由抛物线12 +-=x y 向 方向平移 个 单位得到的.

2、抛物线12+-=x y 和抛物线12--=x y 分别是由抛物线2x y -=向 、向 平 移 个单位得到的. 3、如果要得到抛物线42+-=x y ,应将抛物线12--=x y 作怎样的平移? 例2.一条抛物线的开口方向、对称轴与2 2 1x y = 相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.试着说出一些该函数的其他性质。 解: 回顾与反思 : k ax y +=2(a 、k 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐标 (三)巩固练习: 1. 抛物线94 12 -= x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线2 4 1x y =向 平移 个单位得到的. 2. 函数332+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数 取得最 值,最 值y= . 3. 若二次函数22 +=ax y 的图象经过点(-2,10),求a 的值.这个函数有最大还是最小 值?是多少? 【课后作业】 一、感受·理解

二次函数图像与性质完整归纳

二次函数图像与性质完整归纳

二次函数的图像与性质 一、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2 y ax c =+的性质: 上加下减。 a 的 符号 开口方向 顶点 坐标 对称轴 性质 0 a > 向上 ()00, y 轴 x >时,y 随x 的增大而增 大;0x <时,y 随x 的增大而减小;0x =时,y 有最 小值0. a < 向下 ()00, y 轴 x >时,y 随x 的增大而减 小;0x <时,y 随x 的增大而增大;0x =时,y 有最 大值0. a 的 符号 开口方向 顶点 坐标 对称轴 性质

3. ()2 y a x h =-的性质: 左加右减。 a > 向上 ()0c , y 轴 x >时,y 随x 的增大而增 大;0x <时,y 随x 的增大而减小;0x =时,y 有最 小值c . a < 向下 ()0c , y 轴 x >时,y 随x 的增大而减 小;0x <时,y 随x 的增大而增大;0x =时,y 有最 大值c . a 的 符号 开口方向 顶点 坐标 对称轴 性质 0 a > 向上 ()0h , X=h x h >时,y 随x 的增大而增 大;x h <时,y 随x 的增大而减小;x h =时,y 有最 小值0. a < 向下 ()0h , X=h x h >时,y 随x 的增大而减 小;x h <时,y 随x 的增大而增大;x h =时,y 有最 大值0.

4. () 2 y a x h k =-+的性质: 二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式 ()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2 y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: a 的 符号 开口方向 顶点 坐标 对称轴 性质 0 a > 向上 ()h k , X=h x h >时,y 随x 的增大而增 大;x h <时,y 随x 的增大而减小;x h =时,y 有最 小值k . a < 向下 ()h k , X=h x h >时,y 随x 的增大而减 小;x h <时,y 随x 的增大而增大;x h =时,y 有最 大值k .

相关主题
文本预览
相关文档 最新文档