当前位置:文档之家› 常用芯片参数

常用芯片参数

常用芯片参数
常用芯片参数

MAX3081 参数

符号

MIN TYPE MAX

单位 Input High Voltage VIH1 DE, DI, RE, H/ F, TXP, RXP

2.0 V Input Low Voltage VIL1 DE, DI, RE, H/ F, TXP, RXP 0.8 V SRL Input Current

Iin1 DE, DI, RE

±2

uA

Iin2

H/F, TXP, RXP, internal pulldown 10 40

Driver Input Voltage (DI).............................-0.3V to (VCC + 0.3V)

Driver Output V oltage (A, B, Y , Z)........................................±13V Receiver Input V oltage (A, B) ..............................................±13V Receiver Output V oltage (RO)....................-0.3V to (VCC + 0.3V) Continuous Power Dissipation:

8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW 8-Pin SO (derate 5.88mW/°C above +70°C)................471mW

参数 符号 MIN MAX TYPE 单位 工作温度 TA -40 85 °C 输入正向电流 IF 20 mA 输入反向电压 VR 5 V 输入电流, 低电平 I fl

0 250 uA 输入电流, 高电平 I fh

7.5 15 mA 低电平选通电压 V

el

0 0.8 V 高电平选通电压 V EH

2.0 VCC V 高电平输出延迟时间 T plh 100 50 ns 低电平输出延迟时间 T phl 100 60 ns 输入门槛电流 5 3 mA 高电平选通电流 -1.6 -0.7 mA 低电平选通电流

-1.6

-0.9

mA

符号参数范围单位Vcc Supply voltage ±16 or 32 V

Vi Input V oltage -0.3 to +32 V Ptot Power Dissipation N Suffix

D Suffix 500

400

mW

Vid Differential Input V oltage +32 V Iin Input current 50 mA Toper Operating Free-air Temperature Range 0 to +70 ℃Tstg Storage Temperature Range -65 to +150 ℃

LM358

参数符号数值单位

输入电压Vin -0.3—32 V

功耗Pd 570 mW

MOC3023

参数符号数值(max)type 单位反向电压Vr 3 V 正向电流If 60 mA

热损耗(室温25℃)Pd 100

1.33 mW mW / ℃

关断状态终端电压Vdrw 400 V 重复冲击电流峰值Itsm 1 A 通态输出峰值电压Vtm 3 1.8 V 通态输出峰值电流Itm 100 mA LED触发电流Ift 5mA

P521—1 P521-2 P521-4

参数数值

电流传输比50%min

输入正向电流

70 mA(I F) 50 mA

(LED)

反向电压5V

集电极电流50 mA ( Ic )

集电极热损耗150mw 100mw

recommend type max 单位

电源电压 5 24 V

正向电流16 25 mA

集电极电流 1 10 mA

PC817

参数符号数值单位

正向电流If 50 mA

峰值正向电流Ifm 1 A

集电极电流Ic 50 mA

Uce饱和电压Uce

响应时间tr 4-18 us

高隔离电压:5000V有效值

电磁阀利用Vce-Ic 与If的关系控制三极管的饱和开通或直接控制固态继电器的开关脉冲宽度<=100ms,占空比:0.001

Z0409

参数符号数值单位

峰值门限电流Igm 1.2 A

温升Rth 15 ℃/W

型号最大电流最大反向电压最大浪涌电压最大反向电流DB102S 1.0 A 20 40 0.55 1

DB103S 1.0 A 30 40 0.55 1

DB104S 1.0 A 40 40 0.55 1

DB105S 1.0 A 50 40 0.7 1 1

DB106S 1.0 A 60 40 0.7 1 1

78M15

参数符号数值type max

输出电压Vo 15V 15.75V 静态电流Iq 5.2mA 8mA 输出电压温漂 1 Mv/℃输入输出电压差 2 V

短路电流Isc 250mA

峰值电流Ipk 2.2A

7805

参数符号数值type max

输出电压Vo 5V 5.25V 静态电流Iq 5.0mA 8mA 输出电压温漂0.8 Mv/℃输入输出电压差 2 V

短路电流Isc 230mA

峰值电流Ipk 2.2A

HCPL0601

参数符号数值(max)min 热损耗P1 45mw

每个通道输出电流Io 50mA

每个通道输出电压Vo 7V

输入低电平Vel 0.8V 0

输入高电平Veh Vcc 2.0V 输入电流If 50mA

高电平输出延迟时间Telh 20ns

低电平输出延迟时间Tehl 20ns

输出电压端上拉电阻Rl 4K 330 低电平输入电流Ifl 0—250uA

高电平输入电流Ifh 6.3—15mA

CBS2—10(LV 25—P)

参数符号数值(max)min 总精度Ipn ±12V—15V 0.9%

估算阻值±12V ±10mA 30Ω190Ω

±12 ±14 30Ω100Ω

±15 ±10 100Ω350Ω

±15 ±14 100Ω190Ω补偿电流Ip 0.15mA

电流大小0—14mA

原边电流Ip 10mA

副边电流Isn 25mA

η 2.5

电流转换比例

电源电压U0 ±12—15V

电压传感器的量程:0—±0.2V、0—±2V、0—±20V

TLC5615

引脚I/O口描述

DIN 1 数据输入

SCLK 1 时钟输入

CS 1 芯片选择,低电平有效

DOUT O 链接传出数据

AGND 模拟接地

REFIN 1 基准输入

OUT O 交直流模拟电压输出

Vdd 电源电压

参数符号数值(max)min 提供电源电压Vdd 5V

输入高电平Vih 2.4V

输入低电平Vil 0.8V

推荐输出负载Rl Rl 2K

Rl=10K,输出电压Uout Vcc—0.4 0

短路电流Iosc 20mA

输出低电平Vol 0.25V

输出高电平Voh 4.75V

TLP250 max

LED 正向电流 If 20mA LED 短路尖峰电流 Ifpt 1A LED 反向电压 Vr 5V 输入门线电流max If 5mA 输入电流 Icc 11mA

输出电流 Io ±2.0A

HCNR200

电流转换比 K3

2

1

pd pd I

I

HCNR200:±15% HCNR201:±5% 平均输入电流 If 25mA 尖峰输入电流 If ’

40mA

K3 Type 都为1 0.85—1.15 0.93—1.07

min type max K1 HCNR200 0.25 0.5 0.75 K1 HCNR201 0.36 0.48 0.72 LED 正向电压

1.3

1.6

1.85

THB7128 参数 符号 数值 type 低导通电阻 Ron 0.53Ω 最高耐压 40V DC 峰值电流 3.3A

管脚说明

VREF 电流设定端 OSC1 斩波频率设定电容连接端

M1、M2、M3 细分设置端

CW/CCW 正/反转信号输入端 低电平正转 高电平反转 ENBLE 脱机信号控制端 低电平,强制关断,高阻状态 高电平,恢复输出 VM

电源VM 连接端 最大工作电压 Vm max 36V 最大输出电流 Io max 3.3A 最大逻辑输入电压

6V

逻辑输入电压2—6V 5V 数字信号电源 3.3—6V 5V VCC 电源连接端输入低电平时解

除待机状态

逻辑输入低电平0.8V

逻辑输入高电平2V

集成电路的检测方法

集成电路的检测方法 现在的电子产品往往由于一块集成电路损坏,导致一部分或几个部分不能常工作,影响设备的正常使用。那么如何检测集成电路的好坏呢?通常一台设备里面有许多个集成电路,当拿到一部有故障的集成电路的设备时,首先要根据故障现象,判断出故障的大体部位,然后通过测量,把故障的可能部位逐步缩小,最后找到故障所在。 要找到故障所在必须通过检测,通常修理人员都采用测引脚电压方法来判断,但这只能判断出故障的大致部位,而且有的引脚反应不灵敏,甚至有的没有什么反应。就是在电压偏离的情况下,也包含外围元件损坏的因素,还必须将集成块内部故障与外围故障严格区别开来,因此单靠某一种方法对集成电路是很难检测的,必须依赖综合的检测手段。现以万用表检测为例,介绍其具体方法。 我们知道,集成块使用时,总有一个引脚与印制电路板上的“地”线是焊通的,在电路中称之为接地脚。由于集成电路内部都采用直接耦合,因此,集成块的其它引脚与接地脚之间都存在着确定的直流电阻,这种确定的直流电阻称为该脚内部等效直流电阻,简称R内。当我们拿到一块新的集成块时,可通过用万用表测量各引脚的内部等效直流电阻来判断其好坏,若各引脚的内部等效电阻R内与标准值相符,说明这块集成块是好的,反之若与标准值相差过大,说明集成块内部损坏。测量时有一点必须注意,由于集成块内部有大量的三极管,二极管等非线性元件,在测量中单测得一个阻值还不能判断其好坏,必须互换表笔再测一次,获得正反向两个阻值。只有当R内正反向阻值都符合标准,才能断定该集成块完好。 在实际修理中,通常采用在路测量。先测量其引脚电压,如果电压异常,可断开引脚连线测接线端电压,以判断电压变化是外围元件引起,还是集成块内部引起。也可以采用测外部电路到地之间的直流等效电阻(称R外)来判断,通常在电路中测得的集成块某引脚与接地脚之间的直流电阻(在路电阻),实际是R内与R外并联的总直流等效电阻。在修理中常将在路电压与在路电阻的测量方法结合使用。有时在路电压和在路电阻偏离标准值,并不一定是集成块损坏,而是有关外围元件损坏,使R外不正常,从而造成在路电压和在路电阻的异常。这时便只能测量集成块内部直流等效电阻,才能判定集成块是否损坏。根据实际检修经验,在路检测集成电路内部直流等效电阻时可不必把集成块从电路上焊下来,只需将电压或在路电阻异常的脚与电路断开,同时将接地脚也与电路板断开,其它脚维持原状,测量出测试脚与接地脚之间的R内正反向电阻值便可判断其好坏。 例如,电视机内集成块TA7609P瑢脚在路电压或电阻异常,可切断瑢脚和⑤脚(接地脚)然后用万用表内电阻挡测瑢脚与⑤脚之间电阻,测得一个数值后,互换表笔再测一次。若集成块正常应测得红表笔接地时为8.2kΩ,黑表笔接地时为272kΩ的R内直流等效电阻,否则集成块已损坏。在测量中多数引脚,万用表用R×1k挡,当个别引脚R内很大时,换用R ×10k挡,这是因为R×1k挡其表内电池电压只有1.5V,当集成块内部晶体管串联较多时,电表内电压太低,不能供集成块内晶体管进入正常工作状态,数值无法显现或不准确。 总之,在检测时要认真分析,灵活运用各种方法,摸索规律,做到快速、准确找出故障 摘要:判断常用集成电路的质量及好坏 一看: 封装考究,型号标记清晰,字迹,商标及出厂编号,产地俱全且印刷质量较好,(有的 为烤漆,激光蚀刻等) 这样的厂家在生产加工过程中,质量控制的比较严格。 二检: 引脚光滑亮泽,无腐蚀插拔痕迹, 生产日期较短,正规商店经营。 三测: 对常用数字集成电路, 为保护输入端及工厂生产需要,每一个输入端分别对VDD

FLUKE测试报告参数详解

Fluke DTX系列六类双绞线测试参数说明: 1、插入损耗:是指发射机与接收机之间,插入电缆或元件产生的信号损耗,通常指衰减。插入损耗以接收信号电平的对应分贝(db)来表示。对于光纤来说插入损耗是指光纤中的光信号通过活动连接器之后,其输出光功率相对输入光功率的比率的分贝数。 2、NEXT(近端串扰):是指在与发送端处于同一边的接收端处所感应到的从发送线对感应过来的串扰信号。在串扰信号过大时,接收器将无法判别信号是远端传送来的微弱信号还是串扰杂讯。 3、PSNEXT(综合近端串扰):实际上是一个计算值,而不是直接的测量结果。PSNEXT 是在每对线受到的单独来自其他三对线的NEXT 影响的基础上通过公式计算出来的。PSNEXT 和FEXT(随后介绍)是非常重要的参数,用于确保布线系统的性能能够支持象千兆以太网那样四对线同时传输的应用。 4、ACR(衰减串扰比):表示的是链路中有效信号与噪声的比值。简单地将ACR 就是衰减与NEXT 的比值,测量的是来自远端经过衰减的信号与串扰噪声间的比值。例如有一位讲师在教师的前面讲课。讲师的目标是要学员能够听清楚他的发言。讲师的音量是一个重要的因素,但是更重要的是讲师的音量和背景噪声间的差别。如果讲师实在安静的图书馆中发言,即使是低声细语也能听到。想象一下,如果同一个讲师以同样的音量在热闹的足球场内发言会是怎样的情况。讲师

将不得不提高他的音量,这样他的声音(所需信号)与人群的欢呼声(背景噪声)的差别才能大到被听见。这就是ACR。ACR=衰减的信号-近端串扰的噪音 5、PSACR(综合衰减串扰比):反映了三对线同时进行信号传输时对另一对线所造成的综合影响。它只要用于保证布线系统的高速数据传输,即多线对传输协议。 6、ELFEXT(等效远端串扰):是远端串扰损耗与线路传输衰减的差值,以db 为单位。是信噪比的另一种方式,即两个以上的信号朝同一方向传输时的情况。 7、PSELFEXT(综合平衡等级远端串扰):表明三对线缆处于通信状态时,对另一对线缆在远端所造成的干扰。 8、RL(回波损耗):电信号在遇到端接点阻抗不匹配时,部分能量会反射回传送端。回波损耗表征了因阻抗不匹配反射回来的能量的大小,回波损耗对于全双工传输的应用非常重要。

常用电源芯片大全

常用电源芯片大全 第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596

18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751 27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875

集成电路测试

第一章 集成电路的测试 1.集成电路测试的定义 集成电路测试是对集成电路或模块进行检测,通过测量对于集成电路的输出回应和预期输出比较,以确定或评估集成电路元器件功能和性能的过程,是验证设计、监控生产、保证质量、分析失效以及指导应用的重要手段。 .2.集成电路测试的基本原理 输入Y 被测电路DUT(Device Under Test)可作为一个已知功能的实体,测试依据原始输入x 和网络功能集F(x),确定原始输出回应y,并分析y是否表达了电路网络的实际输出。因此,测试的基本任务是生成测试输入,而测试系统的基本任务则是将测试输人应用于被测器件,并分析其输出的正确性。测试过程中,测试系统首先生成输入定时波形信号施加到被测器件的原始输入管脚,第二步是从被测器件的原始输出管脚采样输出回应,最后经过分析处理得到测试结果。 3.集成电路故障与测试 集成电路的不正常状态有缺陷(defect)、故障(fault)和失效(failure)等。由于设计考虑不周全或制造过程中的一些物理、化学因素,使集成电路不符合技术条件而不能正常工作,称为集成电路存在缺陷。集成电路的缺陷导致它的功能发生变化,称为故障。故障可能使集成电路失效,也可能不失效,集成电路丧失了实施其特定规范要求的功能,称为集成电路失效。故障和缺陷等效,但两者有一定区别,缺陷会引发故障,故障是表象,相对稳定,并且易于测试;缺陷相对隐蔽和微观,缺陷的查找与定位较难。 4.集成电路测试的过程 1.测试设备 测试仪:通常被叫做自动测试设备,是用来向被测试器件施加输入,并观察输出。测试是要考虑DUT的技术指标和规范,包括:器件最高时钟频率、定时精度要求、输入\输出引脚的数目等。要考虑的因素:费用、可靠性、服务能力、软件编程难易程度等。 1.测试界面 测试界面主要根据DUT的封装形式、最高时钟频率、ATE的资源配置和界面板卡形等合理地选择测试插座和设计制作测试负载板。

线路参数测试方法

高感应电压下用SM501测试线路参数的方法 湖南省送变电建设公司调试所邓辉邓克炎 0引言 超高压输电线路工频参数测试时,经常遇到感应电压很高的情况,不能用仪器直接测试, 否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 1SM501的介绍: SM501线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D同步交流采样及数字信号处理技术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 1.1SM501的主要功能与特点: (1)可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。 (2)全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。

(3)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电流互感器。 (4)可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。 1.2主要技术指标; (1)基本测量精度:电流、电压、阻抗0.2级,功率0.5级 (2)电压测量范围:AC 0-450V 电流测量范围:AC 0-50A 2为什么要对输电线路进行参数测试: 输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。 以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保定市超人电子有限公司研制了一种比较智能的参数测试仪那就是SM501。 3几种典型的参数测试: 3.1 输电线路正序阻抗的测试: 将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图1接法测量。当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器,按图2接法测量。在仪器测试项目菜单中

电压基准芯片的参数解析及应用技巧

电压基准芯片的参数解析及应用技巧 电压基准芯片是一类高性能模拟芯片,常用在各种数据采集系统中,实现高精度数据采集。几乎所有电压基准芯片都在为实现“高精度”而努力,但要在各种不同应用场合真正实现高精度,则需要了解电压基准的内部结构以及各项参数的涵义,并要掌握一些必要的应用技巧。 电压基准芯片的分类 根据内部基准电压产生结构不同,电压基准分为:带隙电压基准和稳压管电压基准两类。带隙电压基准结构是将一个正向偏置PN结和一个与VT(热电势)相关的电压串联,利用PN结的负温度系数与VT的正温度系数相抵消实现温度补偿。稳压管电压基准结构是将一个次表面击穿的稳压管和一个PN结串联,利用稳压管的正温度系数和PN结的负温度系数相抵消实现温度补偿。次表面击穿有利于降低噪声。稳压管电压基准的基准电压较高(约7V);而带隙电压基准的基准电压比较低,因此后者在要求低供电电压的情况下应用更为广泛。 根据外部应用结构不同,电压基准分为:串联型和并联型两类。应用时,串联型电压基准与三端稳压电源类似,基准电压与负载串联;并联型电压基准与稳压管类似,基准电压与负载并联。带隙电压基准和稳压管电压基准都可以应用到这两种结构中。串联型电压基准的优点在于,只要求输入电源提供芯片的静态电流,并在负载存在时提供负载电流;并联型电压基准则要求所设置的偏置电流大于芯片的静态电流与最大负载电流的总和,不适合低功耗应用。并联型电压基准的优点在于,采用电流偏置,能够满足很宽的输入电压范围,而且适合做悬浮式的电压基准。 电压基准芯片参数解析 安肯(北京)微电子即将推出的ICN25XX系列电压基准,是一系列高精度,低功耗的串联型电压基准,采用小尺寸的SOT23-3封装,提供1.25V、2.048V、2.5V、3.0V、3.3V、4.096V输出电压,并提供良好的温度漂移特性和噪声特性。

常用稳压芯片

LM2930T-5.0 5.0V低压差稳压器 LM2930T-8.0 8.0V低压差稳压器 LM2931AZ-5.0 5.0V低压差稳压器(TO-92) LM2931T-5.0 5.0V低压差稳压器 LM2931CT 3V to 29V低压差稳压器(TO-220,5PIN) LM2940CT-5.0 5.0V低压差稳压器 LM2940CT-8.0 8.0V低压差稳压器 LM2940CT-9.0 9.0V低压差稳压器 LM2940CT-10 10V低压差稳压器 LM2940CT-12 12V低压差稳压器 LM2940CT-15 15V低压差稳压器 LM123K 5V稳压器(3A) LM323K 5V稳压器(3A) LM117K 1.2V to 37V三端正可调稳压器(1.5A) LM317LZ 1.2V to 37V三端正可调稳压器(0.1A) LM317T 1.2V to 37V三端正可调稳压器(1.5A) LM317K 1.2V to 37V三端正可调稳压器(1.5A) LM133K 三端可调-1.2V to -37V稳压器(3.0A) LM333K 三端可调-1.2V to -37V稳压器(3.0A) LM337K 三端可调-1.2V to -37V稳压器(1.5A) LM337T 三端可调-1.2V to -37V稳压器(1.5A) LM337LZ 三端可调-1.2V to -37V稳压器(0.1A) LM150K 三端可调1.2V to 32V稳压器(3A)

LM350K 三端可调1.2V to 32V稳压器(3A) LM350T 三端可调1.2V to 32V稳压器(3A) LM138K 三端正可调1.2V to 32V稳压器(5A) LM338T 三端正可调1.2V to 32V稳压器(5A) LM338K 三端正可调1.2V to 32V稳压器(5A) LM336-2.5 2.5V精密基准电压源 LM336-5.0 5.0V精密基准电压源 LM385-1.2 1.2V精密基准电压源 LM385-2.5 2.5V精密基准电压源 LM399H 6.9999V精密基准电压源 LM431ACZ 精密可调2.5V to 36V基准稳压源LM723 高精度可调2V to 37V稳压器 LM105 高精度可调4.5V to 40V稳压器 LM305 高精度可调4.5V to 40V稳压器 MC1403 2.5V基准电压源 MC34063 充电控制器 SG3524 脉宽调制开关电源控制器 TL431 精密可调2.5V to 36V基准稳压源 TL494 脉宽调制开关电源控制器 TL497 频率调制开关电源控制器 TL7705 电池供电/欠压控制器 7805 正5V稳压器(1A)

MOSFET参数及其测试方法

参数类别(物理特征): 1、漏源电压系列 1.1、V(BR)DSS:漏源击穿电压 1.2、dV(BR)DSS/dTJ:漏源击穿电压的温度系数1.3、VSD:二极管正向(源漏)电压 1.4、dV/dt:二极管恢复电压上升速率 2、栅源电压系列 2.1、VGS(TH):开启电压 2.2、dVGS(TH)/dTJ:开启电压的温度系数 2.3、V(BR)GSS:漏源短路时栅源击穿电压 2.4、VGSR:反向栅源电压 3、其它电压系列 3.1、Vn:噪声电压 3.2、VGD:栅漏电压 3.3、Vsu:源衬底电压 3.4、Vdu:漏衬底电压 3.5、Vgu:栅衬底电压 二、电流类参数 1、漏源电流系列 1.1、ID:最大DS电流 1.2、IDM:最大单脉冲DS电流 1.3、IAR:最大雪崩电流 1.4、IS:最大连续续流电流 1.5、ISM:最大单脉冲续流电流 1.6、IDSS:漏源漏电流 2、栅极电流系列 2.1、IGSS:栅极驱动(漏)电流 2.2、IGM:栅极脉冲电流 2.3、IGP:栅极峰值电流

三、电荷类参数 1、Qg:栅极总充电电量 2、Qgs:栅源充电电量 3、Qgd:栅漏充电电量 4、Qrr:反向恢复充电电量 5、Ciss:输入电容=Cgs+Cgd 6、Coss:输出电容=Cds+Cgd 7、Crss:反向传输电容=Cgd 四、时间类参数 1、tr:漏源电流上升时间 2、tf:漏源电流下降时间 3、td-on:漏源导通延时时间 4、td-off:漏源关断延时时间 5、trr:反向恢复时间 五、能量类参数 1、PD:最大耗散功率 2、dPD/dTJ:最大耗散功率温度系数 3、EAR:重复雪崩能量 4、EAS:单脉冲雪崩能量 六、温度类参数 1、RJC:结到封装的热阻 2、RCS:封装到散热片的热阻 3、RJA:结到环境的热阻 4、dV(BR)DSS/dTJ:漏源击穿电压的温度系数 5、dVGS(TH)/dTJ:开启电压的温度系数 七、等效参数 1、RDSON:导通电阻 2、Gfs:跨导=dID/dVGS 3、LD:漏极引线电感 4、LS:源极引线电感

集成电路测试原理及方法

H a r b i n I n s t i t u t e o f T e c h n o l o g y 集成电路测试原理及方法简介 院系:电气工程及自动化学院 姓名: XXXXXX 学号: XXXXXXXXX 指导教师: XXXXXX 设计时间: XXXXXXXXXX

摘要 随着经济发展和技术的进步,集成电路产业取得了突飞猛进的发展。集成电路测试是集成电路产业链中的一个重要环节,是保证集成电路性能、质量的关键环节之一。集成电路基础设计是集成电路产业的一门支撑技术,而集成电路是实现集成电路测试必不可少的工具。 本文首先介绍了集成电路自动测试系统的国内外研究现状,接着介绍了数字集成电路的测试技术,包括逻辑功能测试技术和直流参数测试技术。逻辑功能测试技术介绍了测试向量的格式化作为输入激励和对输出结果的采样,最后讨论了集成电路测试面临的技术难题。 关键词:集成电路;研究现状;测试原理;测试方法

目录 一、引言 (4) 二、集成电路测试重要性 (4) 三、集成电路测试分类 (5) 四、集成电路测试原理和方法 (6) 4.1.数字器件的逻辑功能测试 (6) 4.1.1测试周期及输入数据 (8) 4.1.2输出数据 (10) 4.2 集成电路生产测试的流程 (12) 五、集成电路自动测试面临的挑战 (13) 参考文献 (14)

一、引言 随着经济的发展,人们生活质量的提高,生活中遍布着各类电子消费产品。电脑﹑手机和mp3播放器等电子产品和人们的生活息息相关,这些都为集成电路产业的发展带来了巨大的市场空间。2007年世界半导体营业额高达2.740亿美元,2008世界半导体产业营业额增至2.850亿美元,专家预测今后的几年随着消费的增长,对集成电路的需求必然强劲。因此,世界集成电路产业正在处于高速发展的阶段。 集成电路产业是衡量一个国家综合实力的重要重要指标。而这个庞大的产业主要由集成电路的设计、芯片、封装和测试构成。在这个集成电路生产的整个过程中,集成电路测试是惟一一个贯穿集成电路生产和应用全过程的产业。如:集成电路设计原型的验证测试、晶圆片测试、封装成品测试,只有通过了全部测试合格的集成电路才可能作为合格产品出厂,测试是保证产品质量的重要环节。 集成电路测试是伴随着集成电路的发展而发展的,它为集成电路的进步做出了巨大贡献。我国的集成电路自动测试系统起步较晚,虽有一定的发展,但与国外的同类产品相比技术水平上还有很大的差距,特别是在一些关键技术上难以实现突破。国内使用的高端大型自动测试系统,几乎是被国外产品垄断。市场上各种型号国产集成电路测试,中小规模占到80%。大规模集成电路测试系统由于稳定性、实用性、价格等因素导致没有实用化。大规模/超大规模集成电路测试系统主要依靠进口满足国内的科研、生产与应用测试,我国急需自主创新的大规模集成电路测试技术,因此,本文对集成电路测试技术进行了总结和分析。 二、集成电路测试重要性 随着集成电路应用领域扩大,大量用于各种整机系统中。在系统中集成电路往往作为关键器件使用,其质量和性能的好坏直接影响到了系统稳定性和可靠性。 如何检测故障剔除次品是芯片生产厂商不得不面对的一个问题,良好的测试流程,可以使不良品在投放市场之前就已经被淘汰,这对于提高产品质量,建立生产销售的良性循环,树立企业的良好形象都是至关重要的。次品的损失成本可以在合格产品的售价里得到相应的补偿,所以应寻求的是质量和经济的相互制衡,以最小的成本满足用户的需要。 作为一种电子产品,所有的芯片不可避免的出现各类故障,可能包括:1.固定型故障;2.跳变故障;3.时延故障;4.开路短路故障;5桥接故障,等等。测试的作用是检验芯片是否存在问题,测试工程师进行失效分析,提出修改建议,从工程角度来讲,测试包括了验证测试和生产测试两个主要的阶段。

常用电源芯片及其参数

常用电源的电源稳压器件如下: 79L05 负5V稳压器 79L06 负6V稳压器 79L08 负8V稳压器 79L09 负9V稳压器 79L12 负12V稳压器 79L15 负15V稳压器 79L18 负18V稳压器 79L24 负24V稳压器 LM1575T-3.3 3.3V简易开关电源稳压器(1A) LM1575T-5.0 5V简易开关电源稳压器(1A) LM1575T-12 12V简易开关电源稳压器(1A) LM1575T-15 15V简易开关电源稳压器(1A) LM1575T-ADJ

简易开关电源稳压器(1A可调1.23 to 37) LM1575HVT-3.3 3.3V简易开关电源稳压器(1A) LM1575HVT-5.0 5V简易开关电源稳压器(1A) LM1575HVT-12 12V简易开关电源稳压器(1A) LM1575HVT-15 15V简易开关电源稳压器(1A) LM1575HVT-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2575T-3.3 3.3V简易开关电源稳压器(1A) LM2575T-5.0 5V简易开关电源稳压器(1A) LM2575T-12 12V简易开关电源稳压器(1A) LM2575T-15 15V简易开关电源稳压器(1A) LM2575T-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2575HVT-3.3 3.3V简易开关电源稳压器(1A) LM2575HVT-5.0 5V简易开关电源稳压器(1A) LM2575HVT-12 12V简易开关电源稳压器(1A)

LM2575HVT-15 15V简易开关电源稳压器(1A) LM2575HVT-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2576T-3.3 3.3V简易开关电源稳压器(3A) LM2576T-5.0 5.0V简易开关电源稳压器(3A) LM2576T-12 12V简易开关电源稳压器(3A) LM2576T-15 15V简易开关电源稳压器(3A) LM2576T-ADJ 简易开关电源稳压器(3A可调1.23V to 37V) LM2576HVT-3.3 3.3V简易开关电源稳压器(3A) LM2576HVT-5.0 5.0V简易开关电源稳压器(3A) LM2576HVT-12 12V简易开关电源稳压器(3A) LM2576HVT-15 15V简易开关电源稳压器(3A) LM2576HVT-ADJ 简易开关电源稳压器(3A可调1.23V to 37V) LM2930T-5.0 5.0V低压差稳压器

常用小型稳压LDO等芯片推荐参考.

目录 产品类型系列页码 1.电压调整器(LDO ME6201 1 ME6206 2 ME6211 3 ME6219 4 ME1084 5 ME1085 6 ME1117 7 ME3206 8 ME6401 9 2.升压DC/DC转换器MEXX1C 10 MEXX1D 11 ME2100 12 ME2101 13 ME2106 14

ME2108 15 ME2109 16 ME2111 17 ME2115 18 ME2206 19 ME2209 20 3.降压DC/DC转换器ME3101 21 ME3102 22 ME3110 23 4.功率MOSFET MEM2301 24 MEM2303 25 MEM2307 26 MEM2309 27 MEM2311 28 MEM2302 29 MEM2306 30 MEM2308 31 MEM2310 32 MEM2316 33

MEM2318 34 5.音频功率放大器ME5890 35 ME5990 36 ME5101 37 ME5103 38 6.其他 ME2801 39 ME2802 40 ME4054 41 ME7660 42 ME7661 43 MEL71XX 44 选型指南电压调整器(LDO 系列输出 电流 输入 电压 输出电压精度

静态 电流 纹波抑制比 (1KHz 封装状态 ME6201 100mA -18V 3.0-5.0V ±2% 3uA 60dB TO92/SOT89 量产ME6206 300mA -6.5V 1.2-5V ±2% 8uA 50dB SOT23/SOT89 量产 ME6211 500mA -6.5V 1.2-5V ±2% 50uA 75dB SOT-23-5LL/ SOT-89/DFN 量产 ME6219 300mA -6.5V 1.2-5V ±2% 65uA 62dB SOT-23-5LL 量产ME1084 5A -25V 3.3-12V ±2% 5mA 50dB TO220/TO263 2009/Q3 ME1085 3A -25V 3.3-12V ±2% 5mA 50dB TO220/TO263 2009/Q3 ME1117 800mA -20V 1.25-12V ±2% 2mA 50dB SOT223/TO252 2009/Q2 ME3206 300mA -6.5V 1.2-5V ±2% 16uA 50dB SOT-23-5LL 量产ME6401 200mA -6.5V 1.2-5V ±2% 130uA 62dB SOT-23-6LL 量产 升压DC/DC转换器 系列控制 模式 输入 电压

CMOS集成电路电流参数测试分析

电子设计工程 ElectronicDesign Engineering 第24卷Vol.24第4期No.42016年2月Feb.2016 收稿日期:2015-03-18 稿件编号:201503230 作者简介:谭婕娟(1977—),女,山西吉县人,硕士,副教授。研究方向:嵌入式系统开发。 在我们使用的大部分CMOS 数字集成电路中,在开始使用时效果还可以,但随着时间的发展系统或者整机的性能都会变差,不稳定,而引起后续工作无法继续进行,结合工作多年的经验,这些问题主要出自CMOS 集成电路电流参数较差引起的。本文可以给科技人员进行电路设计提供一定的帮助。 1CMOS 数字集成电路电流介绍 一般用输入电流(I i )、电源电流(I cc)表征CMOS 集成电 路的电流特性。 输入电流(Input Current ):也称最大输入电流(Maximin Input Current ),是指输入端在施加规定的高电平电压Vih(或 低电平电压Vil )时,流入(或流出)器件的电流,常用参数符号Iih(Iil )表示。 电源电流(Supply Current ):也称最大静态电流(Maximin Quiescent Supply Current )和静态器件电流(Quiescent Device Current ),是指在输入端施加规定的电平下,经电源端流入器 件的电流,常用参数符号I cc表示。 1.1电流参数测试的必要性 CMOS 电路质量和工艺水平的最主要的静态直流参数是 输入电流或电源电流,在生产过程中CMOS 电路的各种缺陷也集中在这两个参数上。熟悉掌握这两个参数,有助于科研人员对电路的质量、工艺水平进行把握,做出适当的判断和设计。 使电路输入电流增大的原因主要有:电路中MOS 管(主要是输入对管)的氧化层质量,氧化层缺陷,氧化层中的重离子污染等。 使电源电流变大的原因是:内部各MOS 管的源漏极漏电,及器件内的其他缺陷。不过器件内的保护二极管的反向漏电流以及器件受到外部非正常应力的冲击也会同时影响输入电流和电源电流。 随着数字集成电路的用量不断加大,市场上充斥着一些劣质产品,在这些不好的器件中,CMOS 电路的典型失效就是输入电流和电源电流参数比较差。这些不合格的CMOS 电路在大部分情况下并不能立即影响使用,但因为其内部存在的不足,会在以后的使用中或一些较严苛的环境下发生电路性能退化,甚至完全失控,对整机和系统的可靠性造成重大危害。所以,对于CMOS 电路的输入电流和电源电流严格、准确的测试是十分必要的[1-2]。 1.2电流参数测试原理 输入电流测试原理如图1、图2所示。 CMOS 集成电路电流参数测试分析 谭婕娟 (西安航空职业技术学院电子工程学院,陕西西安710089) 摘要:基于在工作过程中遇到部分CMOS 集成电路性能不稳定等原因,通过多次试验,发现CMOS 集成电路的输入电流(Ii )、电源电流(Icc)对电路的整体性能影响较大,本文对输入电流和电源电流的定义、测试原理、测试必要性、影响测试结果准确性因素等几个方面进行了理论方面的叙述。最后采用54HC14集成电路进行了实际测试试验,得出本文里所使用的电流测试方式是准确可行的。 关键词:输入电流;电源电流;CMOS 集成电路;54HC14中图分类号:TN430.7 文献标识码:A 文章编号:1674-6236(2016)04-0064-03 CMOS integrated circuit current parameter analysis TANJie -juan (Electronic Engineering School ,Xi ’an Aeronautical Polytechnic Institute ,Xi ’an 710089,China ) Abstract:The part of CMOS integrated circuit performance is not stable in the working process.So it found the CMOS integrated circuit of input current (Ii ),the power supply current (Icc)impact on the performance of the overall circuit throughmany experiments.In this paper ,it has carried on the theoretical aspects of the narrative that the input current and electriccurrent ,testing principle ,testing the necessity ,the definition of factors influencing the accuracy of test results and so on.54HC14is used for the actual test experiment.It is concluded that the method of the current test in this article use is accurate and feasible. Key words:input current ;power current ;CMOS integrated circuits ;54HC14 -64-

常用芯片型号大全

常用芯片型号大全 4N35/4N36/4N37 "光电耦合器" AD7520/AD7521/AD7530/AD7521 "D/A转换器" AD7541 12位D/A转换器 ADC0802/ADC0803/ADC0804 "8位A/D转换器" ADC0808/ADC0809 "8位A/D转换器" ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器" CA3080/CA3080A OTA跨导运算放大器 CA3140/CA3140A "BiMOS运算放大器" DAC0830/DAC0832 "8位D/A转换器" ICL7106,ICL7107 "3位半A/D转换器" ICL7116,ICL7117 "3位半A/D转换器" ICL7650 "载波稳零运算放大器" ICL7660/MAX1044 "CMOS电源电压变换器" ICL8038 "单片函数发生器" ICM7216 "10MHz通用计数器" ICM7226 "带BCD输出10MHz通用计数器" ICM7555/7555 CMOS单/双通用定时器 ISO2-CMOS MT8880C DTMF收发器 LF351 "JFET输入运算放大器" LF353 "JFET输入宽带高速双运算放大器" LM117/LM317A/LM317 "三端可调电源" LM124/LM124/LM324 "低功耗四运算放大器" LM137/LM337 "三端可调负电压调整器" LM139/LM239/LM339 "低功耗四电压比较器"

LM158/LM258/LM358 "低功耗双运算放大器" LM193/LM293/LM393 "低功耗双电压比较器" LM201/LM301 通用运算放大器 LM231/LM331 "精密电压—频率转换器" LM285/LM385 微功耗基准电压二极管 LM308A "精密运算放大器" LM386 "低压音频小功率放大器" LM399 "带温度稳定器精密电压基准电路" LM431 "可调电压基准电路" LM567/LM567C "锁相环音频译码器" LM741 "运算放大器" LM831 "双低噪声音频功率放大器" LM833 "双低噪声音频放大器" LM8365 "双定时LED电子钟电路" MAX038 0.1Hz-20MHz单片函数发生器 MAX232 "5V电源多通道RS232驱动器/接收器" MC1403 "2.5V精密电压基准电路" MC1404 5.0v/6.25v/10v基准电压 MC1413/MC1416 "七路达林顿驱动器" MC145026/MC145027/MC145028 "编码器/译码器" MC145403-5/8 "RS232驱动器/接收器" MC145406 "RS232驱动器/接收器"

竞赛作品_集成数字集成电路参数测试

1.系统设计 1.1 设计要求 (1) 任务: 设计制作一个74系列中小规模数字集成电路参数测试仪。 (2)要求 1、基本要求: (1)能对74系列中小规模数字集成电路的V IH(min)、V IL(max)、V OH、V OL、I IL、I OL等参数指标进行单项自动测试。 (2)测量参数项目及指标要求(V CC=5V): A、V IH(min)、V OH 测量范围为0~5V,误差<1%读数±1个字; B、V IL(max)、V OL测量范围为0~1V,误差<1%读数±1个字; C、I IL(短路电流),I OL(R L=300Ω)测量范围为0~20mA,误差<1%读数±1个字; (3)测试项目有对应的指示。 2、发挥部分: (1)能连续自动循环测量,并显示; (2)能有选择地调阅最后一次测量的任一项参数; (3)能设置集成电路参数标准值,并判断所测参数是否达标; (4)采用示波器作为显示器,测试数字集成电路的电压传输特性,能显示完整的传输特性曲线;从屏幕上读出的指标(如输出高、低电平和开、关门电平)要求精度优于20%; (5)其他。 1.2 总体设计方案 1.2.1. 设计思路 题目要求设计一个74LS04集成电路参数测试仪。设计中产生一个三角波信号,周期改变输入电压。再经过AD采样输出电压,当Vo=2.7时确定Vil(max),当Vo=0.5时确定Vih(min)的值。继电器切换电路,通过输出端接入一个

-0.4mA 恒流源。继电器切换电路,输入Vi=0.8V时测量Voh的值。继电器切换电路,输出端一个8mA的恒流源。继电器切换电路,输入电压Vi=2.0V时测量Vol的值。继电器切换电路,在输入电压Vi=0.4V时输出悬空测量Iil的值。继电器切换电路,输入悬空,输出接Vo=0.5V的恒压源,测量输出电流Iol的值。电流值的测量可通过在电路中串接一个电阻通过测其两端的电压值,再经计算算出电流大小。最后将测得的结果发送到PC机上显示出来。 1.根据测试参数设计对应测试电路,用继电器切换相应电路,数码管显示测试 参数序号。 2.对74LS04的6个非门进行循环测试。 3.将测得的参数发送到电脑上显示,对比参数标出不合格的非门。 4.分别做出主测试电路模块、控制模块(信号产生、信号采集、继电器控制、键 盘控制、数据处理、测试参数显示)、继电器切换模块。 1.2.2方案比较设计论证 1. 控制电路模块 方案一:采用AT89C51单片机进行控制。本设计需要使用的软件资源比较简单,只需要完成数控部分、键盘输入以及显示输出功能。采用AT89C51进行控制比较简单,但是51单片机资源有限,控制输入输出,需要外接8279之类的芯片进行I/O扩展。 方案二:采用凌阳SPCE061A单片机进行控制。SPCE061A凌阳单片机具有强大功能的16位微控制器,它内部集成7路10位ADC和2通道10位DAC,

LM2940稳压芯片

LM2940-5、0低压差三端稳压芯片(国产) 型号:LM2940-5、0P+?封装:TO-220? 输出电压固定得低压差三端稳压器;输出电压5V;输出电流1A;输出电流1A时,最小输入输出电压差小于0、8V;最大输入电压26V;工作温度-40~+125℃;内含静态电流降低电路、电流限制、过热保护、电池反接与反插入保护电路。 当把一个高些得电压接入芯片时,从input接入,从gnd接出。Output就能输出5V电压 LM2940引脚图

LM2940-5、0得参数介绍:?首先就是基本介绍也就就是generaldescription,从这可以了解到2940最大输出电流有1A,典型得输入输出电压压降为0、5V,还有就就是过流保护,过压保护这样一般电源芯片都有得东西 ? 接着就就是典型电路图,一般接发直接按照典型电路图来接就OK了,同样上图 LM2940典型应用

由图可见,2940得电路接发极其简单。 接着比较重要得参数就就是dropout voltage,也就就是输入输出压降 由表可知,LM2940-5、0在输出电流为1A时dropout voltage典型值为0、5V,即输入电压要>输出电压+0、5V=5、5V;同样输出电流为100mA时dropout voltage典型值为110mV,输入电压大于5、1V即可 接下去得就就是比较重要得一些图,依次介绍下 这个图表示2940得输入电压瞬间改变时输出电压得变化情况,由图可知输出电压在10uS内即可恢复正常

上图为输入电压低于正常值时,输入电压与输出电压间得关系(输出电流均保持在1A时) 上图为输入电压大于限定值时输出电压得情况,由图可得,输入电压大于30V时芯片启动了过压保护功能,输出电压在此刻变为0V LM2940与7805得区别:?LM2940比7805得转换效率高。7805直接输入不接输出得情况下,其内部还会有3mA得电流消耗(静态电流)。而LDO元件得静态电流就比它远远小得多了。具体请瞧LDO得解释。LM2940就就是一个LDO

运算放大器主要参数测试方法说明1

通用运算放大器主要参数测试方法说明 1. 运算放大器测试方法基本原理 采用由辅助放大器(A)与被测器件(DUT)构成闭合环路的方法进行测试,基本测试原理图如图1所示。 图1 辅助放大器应满足下列要求: (1) 开环增益大于60dB; (2) 输入失调电流和输入偏置电流应很小; (3) 动态范围足够大。 环路元件满足下列要求: (1) 满足下列表达式 Ri·Ib<Vos R<Rid R·Ib >Vos Ros<Rf<Rid R1=R2 R1>RL 式中:Ib:被测器件的输入偏置电流; Vos:被测器件的输入失调电压; Rid:被测器件的开环差模输入电阻; Ros:辅助放大器的开环输出电阻; (2) Rf/ Ri值决定了测试精度,但须保证辅助放大器在线性区工作。

2.运算放大器测试适配器 SP-3160Ⅲ数/模混合集成电路测试系统提供的运算放大器测试适配器便是根据上述基本原理设计而成。它由运放测试适配板及一系列测试适配卡组成,可以完成通用单运放、双运放、四运放及电压比较器的测试。运算放大器适配器原理图如附图所示。 3.测试参数 以OP-77G为例,通用运算放大器主要技术规范见下表。

3.1 参数名称:输入失调电压Vos (Input Offset Voltage)。 3.1.1 参数定义:使输出电压为零(或规定值)时,两输入端间所加的直流补偿 电压。 3.1.2 测试方法: 测试原理如图2 所示。 图2 (1) 在规定的环境温度下,将被测器件接入测试系统中; (2) 电源端施加规定的电压; (3) 开关“K4”置地(或规定的参考电压); (4) 在辅助放大器A的输出端测得电压Vlo; (5) 计算公式: Vos=(Ri/(Ri+Rf))*VLo 。 3.1.3编程举例:(测试对象:OP-77G,测试系统:SP3160) ----测试名称:vos---- 测量方式:Vos Bias 1=-15.000 V Clamp1=-10.000mA Bias 2=15.000 V Clamp2=10.000mA 测量高限=0.0001 V 测量低限=____ V 测量延迟:50mS 箝位延迟:50mS SKon=[0,4,11,12,13,19,23,27] 电压基准源2电压=0V 电压基准源2量程+/-2.5V 电压基准源3电压=0V 电压基准源3量程+/-2.5V 测试通道TP1 测量单元DCV DCV量程:+/-2V

相关主题
文本预览
相关文档 最新文档