当前位置:文档之家› 离子交换树脂

离子交换树脂

离子交换树脂
离子交换树脂

离子交换树脂

为了除去水中离子态杂质,现在采用得最普遍的方法是离子交换。这种方法可以将水中离子态杂质清除得以较彻底,因而能制得很纯的水。所以,在热力发电厂锅炉用水的制备工艺中,它是一个必要的步骤。

离子交换处理,必须用一种称做离子交换剂的物质(简称交换剂)来进行。这种物质遇水时,可以将其本身所具有的某种离子和水中同符号的离子相互交换,离子交换剂的种类很多,有天然和人造、有机和无机、阳离子型和阴离子型等之分,大概情况如表所示。此外,按结构特征来分,还有大孔型和凝胶型等。

离子交换剂的分类

天然海绿砂

无机质

人造合成沸石

离子交换剂

碳质磺化煤强酸性磺酸基(-SO3H)

阳离子型

有机质弱酸性羧酸基(-COOH)

强碱性Ⅰ型{-N(-CH3)3}OH

离子交换树脂阴离子型Ⅱ型{-N(CH3)2}OH

弱碱性(-(NH3)OH、(=NH2)

OH 或

(≡NH)OH

其他-氧化还原型、有机物清除除型等

第一节离子交换剂的结构

离子交换树脂属于高分子化合物,结构比较复杂.离子交换剂的结构可以被区分为两个部分:一部分具有高分子的结构形式,称为离子交换剂的骨架;另一部分是带有可交换离子的基团(称为活性集团),它们化合在高分子骨架上.所谓“骨架”,是因为它具有庞大的空间结构,支持着整个化合物,正象动物的骨架支持着肌体一样,从化学的观点来说,它是一种不溶于水的高分子化合物,现将常用离子交换剂的结构简单介绍如下。

一、磺化煤

磺化煤是一种半化合成的离子交换剂,它利用煤质本身的空间结构作为高分子骨架,用浓硫酸处理的方法(称磺化)引入活性基团而制成。

磺化煤的活性基团,除了有由于磺化而引入的-SO3H外,还有一些煤质本身原有的基团(如-COOH和-OH)以及因硫酸氧化作用生成的羧酸(-COOH),所以它实质上是一种混合型离子交换剂。

磺化煤的价格比较便宜,是过去水处理系统中广泛应用的交换剂,但由于它有以下的缺点,所以现在大都为合成离子交换树脂所替代:

⒈化学稳定性较差,特别是对于碱性强的水,抵抗力很差;

⒉机械强度不好,易碎;

⒊交换容量小,小于合成离子交换树脂的1/3;

⒋性能随原煤的品种而异,难保持稳定的产品质量。

二、离子交换树脂

高分子化合物一般是由许多低分子化合物头尾相结合、连成一大串而形成的。这些低分子化合物称为单体,此化合过程称为聚合或缩合。离子交换树脂,根据其单体的种类,可分为苯乙烯系、酚醛系和丙烯酸系等。

⒈苯乙烯系离子交换树脂

苯乙烯系是现在我国电厂用得最广泛的一种,其制造工艺的第一步是用苯乙烯和二乙烯苯进行共聚。

工业用二乙烯苯常常是它的各种异构体(约40%~55%)和乙基乙烯的混合物。所以在聚合时,实际上这些组成物均聚合在高分子内。

由于在一个二乙烯苯的分子上有两个可以聚合的乙烯基,它可以将两个苯乙烯聚合键交联起来,所以二乙烯苯称为架桥物质。在市场上买到的离子交换树脂所标称的交联度(简写为DVB),就是指聚合时所用二乙烯苯的质量占苯乙烯总质量的百分率。交联度的大小对聚合体的性能有很大的影响。最显著的影响是它的机械强度和密度是随交联度的增大而加大的。

现在,由于水处理工艺的需要,常在合成离子交换树脂时直接制成小球状。这种小球是将单体放在水溶液中,使其在悬浮状态下聚合而成。由苯乙烯和二乙烯苯制得的是高分子化合物聚苯乙烯,还没有可交换离子的基团,是半成品,称为白球。当将还些白球作进一步处理,引入带有可交换离子的基团后,即可得阴、阳离子交换树脂。

⑴苯乙烯系磺酸型阳离子交换树脂。如将白球用浓硫酸处理,引入活性基团-SO3H,则可制得磺酸型阳离子交换树脂。

⑵苯乙烯系阴离子交换树脂。它的制造方法是先将聚苯乙烯氯甲基化,然后胺化。氯甲基化的方法为用无水氯化铝或氧化锌为催化剂,用氯甲醚处理(称为傅氏反应)。如用叔胺处理此反应产物,即得季铵型强碱性阴离子交换剂,如用仲胺或伯胺处理,则生成的是弱碱性阴离子交换树脂。

强碱性阴离子交换剂分Ⅰ型和Ⅱ型。Ⅰ型是用三甲胺{(CH3)3N}胺化而得, Ⅱ型则是用二甲基乙醇基胺{(CH3)2NC2H4OH}胺化而得。Ⅰ型的碱性比Ⅱ型强,Ⅱ型的交换容量比Ⅰ型的大。

⒉丙烯酸系离子交换树脂

丙烯酸系树脂的基体是由丙烯酸甲酯(或甲基丙烯酸甲酯)和二乙烯苯共聚而成。

⑴丙烯酸系羧酸树脂。当将上述基体进行水解时,就可获得丙烯酸系羧树脂。羧酸型树脂是弱酸性阳离子交换剂。

⑵丙烯酸系阴离子交换树脂。当将上述基体用多胺进行胺化时,就可获得丙烯酸系阴离子交换树脂。这样制得的产品是弱碱性。因为它的每一个活性基团中有一个仲胺基和一个伯胺基,故其交换容量很大。除了以上两种树脂外,基于基体组成的不同,还有酚醛型和环氧型等多种离子交换树脂。

⒊树脂的结构类型

用普通聚合法制成的离子树脂都是由许多不规则的网状高分子构成的,类似凝胶,故称凝胶型树脂。这种树脂的缺点是,抗氧化性和机械强度差,易受有机物污染等,所以后来又发展了许多其他类型的离子交换树脂,现分述如下:

⑴大孔型树脂(MR型树脂)。大孔型树脂是在本世纪50年代末制成的。因其孔眼比凝胶型的大得多而得名。普通凝胶型树脂的孔眼孔径平均为1~2nm,而大孔型的孔径在20~100nm以上。凝胶型树脂的孔眼由高分子链和交联剂相键合而形成,这些孔眼不是其原有的,而是当它浸入水中时,由于活性基团发生水化而显示出来的。大孔型树脂实际上由许多小块凝胶型树脂所构成,孔眼存在于这些小块凝胶之间。不论是干的或湿的树脂,这些孔眼都可用电子显微镜看到。

大孔树脂的交联度通常要比凝胶型树脂的大,因为这样可制得抗氧化性好和机械强度高的树脂。至于凝胶型树脂,如果其交联度太大,则由于树脂孔眼过小和反应缓慢等原因,就失掉实用价值。对于大孔树脂来说,由于其大孔中有大量的表面积,离子很容易到达这里,所以可以补偿凝胶相中反应缓慢的过程。

实际上,由于大孔型树脂中的孔大,离子交换反应的速度加快,而且能抗有机物的污染(因为被截留的有机物容易在再生时通过这些孔道除去)。大孔型树脂的缺点是交换容量较低,再生时酸、碱的用量较大和售价较贵等。

⑵第二代大孔型树脂。这是在上述第一代大孔树脂基础上发展起来的新品种。它是由小块凝胶型树脂构成的大孔型树脂,但在其制造过程中,孔眼的大小和孔隙度的多少都加以控制,使它们更符合实际应用的要求。它的孔径比第一代大孔型树脂的小,孔隙率也较小(为1%~20%),第一代大孔型树脂的孔隙率通常为30%)。这种新树脂的优点是与凝胶型树脂有相近的交换容量,有较快的反应速度,有比第一代大孔型树脂更好的物理性能、抗污染性能和抗渗透冲击性能等。

⑶超凝胶型树脂。普通凝胶型树脂有机械强度较差的缺点,其原因是苯乙烯和二乙烯苯进行聚合反应时,通常是二乙烯苯首先反应完了,随后进行单独的苯乙烯分子间的聚合。此时,聚合成的是线型高分子,机械强度较差,这是凝胶型树脂的薄弱环节。在超凝胶型树脂的制造过程中,设法控制好苯乙烯和二乙烯苯之间的反应速度,不使产生单独由苯乙烯本身分子间产生聚合反应。这样制得的树脂机械强度较好,可以与大孔树脂相比,价格和凝胶型树脂相近或相同。

⑷均孔型强碱性阴树脂。此种树脂可防止有机物中毒,它是基于以下原理制取:树脂的有机物中毒原因之一是交联得不均匀,如果使交联均匀,所有孔眼的大小相近,在树脂内部不再有紧密区,树脂就不会中毒,但用二乙烯苯作交联剂时,由于苯乙烯和二乙烯苯是两种不同单体,所以聚合引起的不均匀性是不可避免的。因此,在制取均孔型树脂时不用二乙烯苯作交联剂,而是在引入氯甲基时,利用傅氏反应的副反应,使树脂骨架上的氯甲基和邻近的苯环间和忝亚甲基桥。这种交联不会集拢在一起,网孔较均匀,故称均孔型(也可称为等孔型)。均孔型树脂对有机物的吸着是可逆的,所以不会被污染。

第二节离子交换树脂的命名

一、全称

有机合成离子交换树脂的全名称,由分类名称、骨架名称、基本名称三部分按顺序依次排序组成。

⑴分类名称。按有机合成离子交换树脂本体的微孔形态分类,分为凝胶型、大孔型等。

⑵骨架名称。按有机合成离子交换树脂骨架材料命名,分为苯乙烯系、丙烯酸系、酚醛系、环氧系等。

⑶基本名称。基本名称为“离子交换树脂”。

凡属酸性反应的在基本名称前冠以“阳”字。

凡属碱性反应的在基本名称前冠以“阴”字。

按有机合成离子交换树脂的活性基团性质,分类强酸性、弱酸性、强碱性、弱碱性、螯合性等,分别在基本名称前冠以“强酸”、“弱酸”、“强碱”、“弱碱”、“螯合”等字样。

⑷全名称举例。微孔形态为凝胶型;骨架材料为“苯乙烯-二乙烯苯”共聚体;活性基团为“强酸”性磺酸基团(SO3H)的阳离子交换树脂,全名称为“凝胶型苯乙烯系强酸阳离子交换树脂”。

二、型号

⑴有机合成离子交换树脂产品型号的命名原则。有机合成离子交换树脂产品型号,以三位阿拉伯数字表示,凝胶型树脂的交联度值,用联接符号所联系的第四位阿拉伯数字表示。

凡属大孔型树脂,在型号前加“大”字的汉语拼音首位字母“D”。

凡属凝胶型树脂,在型号前不加任何字母。

⑵各位数字所代表的意义。各位数字所代表的意义如下:

第四位数字代表交联度(%)

1)第一位数字活性基团代号见下表。

第一位数字活性基团代号

2)

第二位数字骨架代号

3)产品型号举例:001×7 凝胶型苯乙烯系强酸阳离子交换树脂,交联度为7%,产品旧型号“732”;D311 大孔型丙烯酸系弱碱阴离子交换树脂,产品旧型号为“703”。

第三节离子交换原理

关于离子交换过程的机理很多,其中,最适于水处理工艺的,是将离子交换树脂看作具有胶体型结构的物质,这种上观点认为,在离子交换树脂的高分子表面上有许多和胶体表面相似的双电层。也就是说这里有两层离子,紧邻高分子表面的一层离子称为内层离子,在其外面是一层符号相反的离子层。与胶体的命名法相似,我们常把和内层离子符号相同的离子称作同离子,符号相反的称反离子。所以离子交换就是树脂中原有反离子和溶液中它种反离子相互交换位置。

根据胶体结构的概念,双电层中的反离子按其活动性的大小可划分为固定层和扩散层。那些活动性能差,紧紧地被吸附在高分子表面的离子层,称为固定层,在其外侧,那些活动性较大,向溶液中逐渐扩散的反离子层,称为扩散层,因为这些反离子像地球上的大气一样,笼罩在高分子表面上,故又称为离子氛。

内层离子依靠化学键结合在高分子的骨架上,固定层中的反离子依靠异电荷的吸引力被固定着。而在扩散层中的反离子,由于受到异电荷的吸引力较小,热运动比较显著,所以这些反离子有自高分子表面向溶液中渐渐扩散的现象。

当离子交换剂遇到含有电解质的水溶液时,电解质对其双电层有以下几种作用:

⑴交换作用。扩散层中反离子在溶液中的活动较自由,离子交换主要在此种反离子和溶液中其它反离子之间进行,但并不局限于此。因动平衡的关系,溶液中的反离子会先交换至扩散层,然后再与固定层中的反离子互换位置。

在扩散层中处于不同位置离子的能量是不相等的,那些和内层离得最远的反离子能量最大,因此它们最活泼,最易和其他反离子交换;和内层离得较近的反离子能量最小,活动性较差。这和多元酸或多元碱的多级电离情况相似。

⑵压缩作用。当溶液中盐类浓度增大时,可以使扩散层压缩,从而使扩散层中部分反离子变成固定层中的反离子,扩散层的活动范围变小。这说明了为什么当再生溶液的浓度太大时,不仅不能提高再生效果,有时反使再生效果降低。

第四节离子交换树脂的性能

同一类型的离子交换树脂,其交联剂加入量的多少,对产品的物理化学性能有很大的影响,一般加交联剂多(即交联度大)的树脂,由于许多苯乙烯链都被交联成网状,所以其产品有网孔小、机械强度大和稳定性较好等特点,其特点是交换容量较小。

一、物理性能

1、外观

⑴颜色。离子交换树脂是一种透明或半透明的物质,依其组成的不同,呈现的颜色也各异,苯乙烯系均呈黄色,其他也有黑色及赤褐色的。树脂的颜色稍深。树脂在使用中,由于可交换离子的转换或受杂质的污染等原因,其颜色会发生变化,但这种变化不

能确切表明它发生了什么改变,所以只可以作为参考。

⑵ 形状。离子交换树脂一般均呈球形。树脂呈球状颗粒数占颗粒总数的百分率,称为圆球率。对于交换柱水处理工艺来说,圆球率愈大愈好,它一般应达90%以上。

树脂圆球率的测定方法,是先将树脂在60℃烘干、称重,然后慢慢倒在倾斜10°的玻璃上端,让树脂分散地向下自由滚动,将滚动下来的树脂再称重,后者与前者比值的百分数即为圆球率。

2、粒度

树脂颗粒的大小对水处理的工艺过程有较大的影响。颗粒大,交换速度就慢;颗粒小,水通过树脂层的压力损失就大。如果各个颗粒的大小相差很大,则对水处理的工艺过程是不利的。这首先是因为小颗粒堵塞了大颗粒间的孔隙,水流不匀和阻力增大;其次,在反洗时流速过大会冲走小颗粒树脂,而流速过小,又不能松动大颗粒。用于水处理的树脂颗粒粒径一般为0.3~1.2mm 。树脂粒度的表示法和过滤介质的粒度一样,可以用有效粒径和不匀系数表示。

3、密度

离子交换树脂的密度是水处理工艺中的实用数据。例如在估算设备中树脂的装载量,需要知道它的密度。离子交换树脂的密度有以下几种表示法。

(1)干真密度。干真密度即在干燥状态下树脂本身的密度:

干真密度 = 树脂的真体积

干树脂质量 g/mL 此值一般为1.6左右,在实用意义不大,常用在研究树脂性能方面。

(2)湿真密度。湿真密度是指树脂在水中经过充分膨胀后,树脂颗粒的密度:

湿真密度 = 湿树脂的真体积

湿树脂质量 g/mL (3)湿视密度.湿视密度是指树脂在水中充分膨胀后的堆积密度:

湿视密度 = 湿树脂的堆体积

湿树脂质量 g/mL 湿视密度用来计算交换器中装载树脂时所需湿树脂的质量,此值一般在0.60~0.85之间。阴树脂较轻,偏于下限;阳树脂较重,偏于上限。

4、含水率

离子交换树脂的含水率是指它在潮湿空气中所保持的水量,它可以反映交联度和网眼中的孔隙率。树脂的含水率愈大,表示它的孔隙率愈大,并联度愈小。

5、溶胀性

当将干的离子交换树脂浸入水中时,其体积常常要变大,这种现象称为溶胀。

影响溶胀率大小的因素有以下几种:

(1)溶剂。树脂在极性溶剂中的溶胀性,通常比在非极性溶剂中强。

(2)交联度。高交联度树脂的溶胀能力较低。

(3)活性基团。此基团愈易电离,树脂的溶胀性愈强。

(4)交换容量。高交换容量离子交换树脂的溶胀性要比低交换容量的强。

(5)溶液深度。溶液中电解质浓度愈大,由于树脂内外溶液的渗透压差减小,树脂的溶胀率愈小。

(6)可交换离子的本质。可交换的水合离子半径愈大,其溶胀率愈大,故对于强酸和强碱性离子交换树脂,溶胀率大小的次序为:

H+>Na+>NH4+>K+>Ag+

OH->HCO3≈CO32->SO42->Cl-

一般,强酸性阳离子交换树脂由Na转变成H型,强碱性阴离子交换树脂由Cl型转变成OH型,其体积均增加约5%。

由于离子交换树脂具有这样的性能,因而在其交换和再生的过程中会发生胀缩现象,多次的胀缩就容易促使树脂颗粒碎裂。

6、耐磨性

交换树脂颗粒在运行中,由于相互磨轧和胀缩作用,会发生碎裂现象,所以其耐磨性是一个影响其实用性能的指标。一般,其机械强度应能保证每年的树脂耗损量不超过3%~7%。

7、溶解性

离子交换树脂是一种不溶于水的高分子化合物,但在产品中免不了会含有少量低聚物。因这些低聚物较易溶解,所以其应用的最初阶段。这些物质会逐渐溶解。

离子交换树脂在使用中,有时也会发生转变成胶体渐渐溶入水中的现象,即所谓胶溶。促使胶溶的因素有:树脂的交联度小、电离能力大、离子的水合半径大,有时还有受高温或被氧化的影响。特别是强碱性阴树脂,它会因化学降解而产生胶溶现象。

所以在运行中要密切注意其运行条件:如离子交换树脂处于蒸馏水中要比在盐溶液中易胶溶,Na型比Ca型易胶溶。离子交换器备用后刚投入运行时,有时发生出水带色的现象,就是胶溶的缘故。

8、耐热性

各种树脂所能承受的温度都有限度,超过此温度,树脂热分解的现象就很严重。由于各种树脂的耐热性能不一,所以对每种树脂能承受的最高温度,应由鉴定试验来确定。一般阳树脂可耐100℃或更高的温度;阴树脂,强碱性的约可耐60℃,弱碱性的可耐80℃以上。通常,盐型要比酸型或碱型稳定。

9、抗冻性

根据对各种树脂在-20℃的抗冻性试验,发现大孔型树脂的搞冻性优于凝胶型树脂,实际上冰对大孔型树脂没有影响。凝胶型阳树脂的抗冻性不如阴树脂。无论阴、阳树脂,机械强度好的(磨后圆球率高),抗冻性能也好。进行滤干外部水分的001×7阳树脂10周期(冻干24h,再完全解冻24h为1周期)的测定,发现磨后圆球率有所下降,裂球率提高,冰冻对浸在水中的001×7阳树脂的磨后圆球率几乎无影响;201×7

阴树脂不管滤干外部水分、还是浸在水中冰冻,磨后圆球率和裂球率均变化不大,表明阴树脂韧性较强。

10、耐辐射性能

在有核反应堆的企业中,所用离子交换剂的抗辐射性是很重要的。一般而论,无机离子交换剂的耐辐射性能较好,而树脂均易降解,其中又以阴树脂为严重。

11、导电性

干燥的离子交换树脂不导电,纯水也不导电,但用纯水润湿的离子交换树脂可以导电,所以这种导电属于离子型导电。这种导电在离子交换膜及树脂的催化作用上很重要。

二、化学性能

离子交换树脂的化学性能,有离子交换、催化和形成络盐等。对于水处理来说,以离子交换最为重要。今将有关离子交换方面的性能叙述于下。

1、离子交换反应的可逆性

离子交换反应是可逆的,例如当以含有硬度的水通过H型离子交换树脂时,其反就如下式:

2RH +Ca2+R2Ca +2H+

当反应进行到失效后,为了恢复离子交换树脂的交换能力,就可以利用离子交换反应的可逆性,用硫酸或盐酸溶液通过此失效的离子交换树脂,以恢复其交换能力,其反应如下:

R2Ca +2H+2RH +Ca2+

这两种反应,实质上就是可逆反应式(1-1)化学平衡的移动。当水中Ca2+和H 型离子交换树脂多时,反应正向进行,反之,则逆向进行。

2RH +Ca2+R2Ca +2H+(1-1)离子交换反应的可逆性,是离子交换树脂可以反复使用的重要性质。

2、酸、碱性

H 型阳离子交换树脂和OH型阴离子交换树脂的性能与电解质酸、碱相同,在水中有电离出H+和OH-的能力。因此,根据此能力的大小可以有强弱之分。例如磺酸型是强酸性离子交换树脂

羧酸型是弱酸性离子交换树脂

季胺型是强碱性离子交换树脂

伯胺、仲胺和叔胺型是弱碱性离子交换树脂:

也有些离子交换树脂介于上述强弱之间,例如-PO3H2(膦酸基)型离子交换树脂就是中等酸性的。

强酸性H 型交换树脂在水中电离出H+的能力较大,所以它很容易和水中其他各种阳离子进行交换反应;而弱酸性H 型交换树脂在水中电离出的H+能力较小,故当水中有一定量的H+时,就显示不出交换反应。强碱性和弱碱性阴离子交换树脂的情况与此相似。

3、中和与水解

离子交换树脂的中和与水解的性能和通常的电解质一样。H离子交换树脂和碱

溶液会进行中和反应,如强酸性H离子交换树脂和强碱NaOH相遇,则中和反应进行得很完全,如下式:

RSO3H +NaOH RSO3Na +H2O

因此,H型离子交换树脂酸性的强弱,和一种化合物酸性的强弱一样,可用测定滴定曲线的办法求得。

它的水解反应也和通常电解质的水解反应一样,当水解产物有弱酸或弱碱时,水解度就较大,如下式:

RCOONa +H2O RCOOH +NaOH

RNH3Cl +H2O RNH3OH +HCl

所以,具有弱酸性基团和弱碱性基团的离子交换树脂的盐型,容易水解。

4、离子交换树脂的选择性

离子交换树脂吸着各种离子的能力不一,有些离子易被交换树脂吸着,但吸着后要把它置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。选择性会影响到离子交换树脂的交换和再生过程,故在实际应用中是一个很重要的问题。

影响离子交换树脂选择性的因素很多,例如交换离子的种类、树脂的本质、溶液的浓度等。离子交换的选择性实际上是离子交换平衡的一种表现。

5、交换容量

离子交换树脂的交换容量表示其可交换离子量的多少。其表示单位有以下两种:一是质量表示法,即单位质量离子交换树脂吸着能力,通常用mmol/g表示;另一种是体积表示法,即单位体积离子交换树脂的吸着能力,通常用mmol/m3表示。

在表示交换容量时,应把交换树脂上可交换离子的形态阐述清楚,因为离子交换树脂形态不同,其质量和体积也不相同。为了统一起见,一般是阳离子交换树脂以Na型为准(也有以H型为准的),阴离子交换树脂以Cl型为准。必要时,应标明其离子形态。

今将常用的全交换容量、工作交换容量和平衡交换容量叙述如下:

(1)全交换容量(Q)。此指标表示离子交换树脂中所有活性基团的总量,即将树脂中所有活性基团全部再生成某种可交换的离子,然后测定其全部交换下来的量。对于同一种离子交换树脂来说,它是常数。这种交换容量主要用于离子树脂的研究方面。

(2)工作交换容量(Q G)。工作交换容量是在交换柱中,模拟水处理实际运行条件下测得的交换容量,就是把离子交换树脂放在动态交换柱中,通过需要处理的水,直到滤出液中有要交换的离子漏出为止所发挥出的交换容量,称为工作交换容量。影响工作交换容量的因素甚多:如进水中离子的浓度、交换终点的控制指标、树脂层的高度、水流速度等。此外,通常为了节约再生剂的用量,交换剂并不能得到彻底再生,这也会对工作交换容量有很大影响。所以在测定工作交换容量时,应明确规定这些运行条件,或根据设备情况、原水水质和对出水水质的要求等,通过试验来测定。工作交换容量常用体积表示法,即mmol/m3或mol/L。

显然,离子交换树脂的再生程度对其交换容量有很大的影响。如经充分再生,

则可得到最大的工作交换容量。

(3)平衡交换容量(Q P)。离子交换树脂完全再生后,求它和一定组成的水溶液作用到平衡状态时的交换容量,称为平衡交换容量。此指标表示在某种给定溶液中离子交换树脂的最大交换容量。它不是常数,只与平衡的溶液组成有关。

第五节离子交换选择性顺序

在离子交换水处理的实际应用中,我们常常需要知道在许多离子的混合液中哪一种离子易被吸取,哪一种离子较难被吸取的次序。此种性能与它们呈离子交换平衡时的相对量有关。

对于阳离子交换来说,此种顺序的规律比较明显,在稀溶液中,强酸性阳树脂对常见阳离子的选择性顺序如下:

Fe3+>Al3+>Ca2+>Mg2+>K+≈NH4>Na+>H+

这可以归纳为两个规律:离子所带电荷量愈大,愈易被吸取;当离子所带电荷量相同时,离子水合半径较小的易被吸取。

对于弱酸性阳树脂,H+的位置向前移动,例如羧酸型树脂对H+选择性居于Fe3+之前。在浓溶液中,选择性顺序有一些不同,某些低价离子会居于高价离子之前,

至于阴离子交换的选择性顺序,情况要比阳离子交换复杂,通过研究得知,在淡水的离子交换除盐处理系统中,即进水是稀酸溶液时,强碱性OH型阴树脂对阴离子的选择性顺序为:

SO42-(+HSO4-)>Cl->HCO3->HsiO3-

当OH离子交换树脂失效后,用碱进行再生时,即对于进水是浓碱溶液,阴离子的选择性顺序为:

Cl->SO42->CO32->SiO32-

据此,可以推知,强碱性OH型阴树脂对于水中常见阴离子的吸着顺序,遵循以下三条规律:

(1)在强弱酸混合的溶液中,易吸取强酸的阴离子。

(2)浓溶液与稀溶液相比,前者利于低价离子被吸取,后者利于高价离子被吸取。

(3)在浓度和价数等条件相同的情况下,选择性系数在的易被吸取。

第六节离子交换速度

离子交换平衡,是在某种具体条件下离子交换能达到的极限情况。在实际使用中,总是希望离子交换设备能在水的高流速下运行,所以反应的时间是有限的,不可能让离子交换达到平衡状态。为此,研究影响离子交换速度的因素,是有重要实践意义的。

离子交换过程,是在水中离子和离子交换树脂的可交换基团间进行的。树脂的可交换基团不规则在分布在每一颗粒中,它不仅处于树脂颗粒的表面,而且大量处在树脂颗粒的内部,所以离子交换的进行过程是比较复杂的,因为它不单是离子间交换位置的问题,还有离子在水中扩散到颗粒内部的过程。至于离子交换化学反应本身的速度,属于离子间的反应,一般是很快的,所以通常说的离子交换速度,不单指此种化学反应,而是表示水溶液中离子浓度改变的速度。

各种运行条件如何影响交换速度的问题,虽然已进行了许多研究,但还是没有完全弄清楚。下面简要地叙述影响阳离子交换速度的一些因素。

(1)树脂交换基团。我们知道离子间的化学反应速度是很快的,所以一般说来,树脂交换基团的不同并不影响到交换速度。例如磺酸型阳离子交换树脂,不论其呈H、Na或其他的形态,对各种阳离子间的交换速度都很快,彼此的差别也非常小。但对于会形成弱电解质的离子交换树脂,情况就不同,像H型和盐型的交换速度就会有很大差别。

(2)树脂的交联度。树脂的交联度越大,网孔越小,则其颗粒内扩散越慢,交换速度就越慢,当水中有粒径较大的离子存在时,对交换速度影响就更为显著。

(3)树脂的颗粒。树脂颗粒越小,交换速度越快。这是因为树脂的颗粒越小,内扩散的距离越短;同时颗粒越小,也等于扩大了膜扩散的表面积,从而加快交换速度。但树脂颗粒也不宜太小,因为太小会增大水流通过树脂层的阻力,且在反洗运行时容易流失。

(4)溶液的浓度。溶液浓度是影响扩散速度的重要因素,浓度越大,扩散速度越快。水溶液中离子浓度内扩散和膜扩散有不同程度的影响。当水溶液中离子浓度较大,膜扩散的速度就较快,此时交换速度主要受内扩散的支配,即内扩散是决定性阶段。这相当于水处理工艺中树脂再生时的情况。若水溶液中电解质的浓度较小,膜扩散的速度就变得非常慢,故交换速度受膜扩散的支配,这相当于用阳离子交换树脂进行水软化时的情况。当然,溶液中离子浓度变化时,树脂因膨胀或收缩也会影响到内扩散。

(5)水温。提高水温能同时加快内扩散和膜扩散,所以离子交换设备运行时,一般水温保持在20~40℃。但也不能过高,因为水温过高会影响交换剂的热稳定性,特别是强碱性阴树脂,不耐高温。

(6)搅拌或提高流速。交换过程中的搅拌或提高水的流速,只能加快扩散,但不能影响内扩散。

(7)离子的本性。它对内扩散的速度影响较大,离子水合半径越大,内扩散越慢;离子电荷数越多,内扩散越慢,根据实验结果,阳离子增加一个电荷,其内扩散速度约减慢为原来的1/10。

影响阴离子交换速度的因素与阳离子交换现象十分相似,对于阴离子交换树脂,膜扩散的问题现在还研究得很少,但可以推测,在很稀的溶液中,对于强碱性树脂,膜扩散是主要的;在浓溶液中,颗粒内扩散是主要的。树脂的交联度和离子的电荷对阴离子在树脂颗粒内部的扩散速度影响比对阳离子的影响要小得多,如阴离子每增加一个电荷对其内扩散速度的影响程度,仅为阳离子的1/2或1/3。当树脂的交联度从5%增加到15%时,一价阳离子的内扩散速度降低约为原来的1/10,而一价阴离子内扩散速度仅降低为1/2。大孔型树脂,其内扩散的速度要比普通树脂的快得多。

离子交换树脂的种类和性能

离子交换树脂的种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl

离子交换树脂的原理及应用总结归纳(重点阅读)

精心整理如何筛分混合的阴阳离子交换树脂? 离子交换树脂的工作原理及优缺点分析 将离子性官能基结合在树脂(有机高分子)上的材料,称之为“离子交换树脂”。树脂表面带有磺酸(sulfonic acid) 者,称为阳离子交换树脂,而带有四级氨离子的,则为阴离子交换树脂。由於离子交换树脂可以有效去除水中阴阳离子,所以经常使用於纯水、超纯水的制造程序中。(见下图) 离子交换树脂上的官能基虽可去除原水(Feed water) (Fouling)。方。 原理 软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。

由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般 需要5-15分钟左右。 吸盐(再生) (只要进水有一定的压力即可) 慢冲洗(置换) 应用 1)水处理 水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

各种型号离子交换树脂

几种常用的离子交换树脂型号 一、001x7Na(732)阳离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有磺酸基(-SO 3 H)的离子交换树脂,它具有交换容量高、交换速度快、机械强度好等特点。 本产品相当于美国Amberlite IR-120;Dowex-50,德国:Lewatit-100.日本:精品文档,超值下载 Diaion SK-1,法国AllassionCS;Duolite C-20,前苏联ky-3;SDB-3,相当于我国老牌号:732;强酸1号、2号、3号、4号;010。 用途:本产品主要用于硬水软化、脱盐水、纯水和高纯水的制备,也用于催化剂和脱水剂,以及湿法冶金、分离提纯稀有元素、食品、制药、制糖工业等。 二、201x7(717)强碱性阴离子交换树脂 本产品是在苯乙烯一二乙烯苯共聚基体上带有季铵基[N(CH 3) 3 OH]的阴离子 交换树脂,该树脂具有机械强度好,耐热性能高等特点。 本产品相当于美国Amberlite IRA-400,德国:Lewatit M500,日本:Diaion SA-10A,法国Allassion AG217,前苏联AB-17,相当于我国老牌号:717、702、强碱2号、4号、2041号。 用途:本产品主要用于纯水、高纯水的制备,废水处理,生化制品的提取,放射性元素提炼,抗菌素分离等。 三、D201大孔强碱阴离子交换树脂 本产品的性能与201×7强碱性阴离子交换树脂相似,但有更好的物理及化学稳定性(耐渗透压力,耐磨损等)及抗污染性能,由于具有大孔结构,因此可用于吸附分子尺寸较大的杂质以及在非水溶液中使用。 本产品相当于美国Amberlite IRA-900,德国:Lewatit MP-500日本:Diaion PA 308。相当于我国老牌号:D231;DK251;731;290。 用途:本产品主要用于高纯水的制备(尤其适用于高速混床)及用于凝结水净化装置(H-OH或NH 4 -OH混床系统),也用于废水处理,回收重金属,生化药物分离和糖类提纯。 四、D301大孔弱碱性苯乙烯系阴离子交换树脂 本产品是大孔结构的苯乙烯一二乙烯苯共聚体上带有叔胺基[-N(CH3)2]的离子交换树脂,其碱性较弱,能在酸性、近中性介质中有效地交换无机酸及硅酸根,并能吸附分子尺寸较大的杂质以及在非水溶液中使用,该树脂具有再生效率高、碱水耗低、交换容量大、抗有机物污染及抗氧化能力强、机械强度好等优点。 本产品相当于美国Amberlite IRA-93,德国Lewatit MP-60,日本Diaion WA-30,法国Duolite A305,前苏联AH-89×77Ⅱ,英国Zerolite MPH,相当于我国老牌号:D354、D351、710、D370。 用途:本产品主要用于纯水及高纯水的制备,用于阴复床、阴双层床系统,对含盐量较高的水源尤为合适,并能保护强碱阴树脂不受有机物污染,以及糖液脱色含铬废水的处理及回收等等。

离子交换树脂的概述

主要用于酒类去除,高级脂肪酸脂类等。 产品详细描述 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl-),同时吸附溶液中原来存有的其他阳离子或阴离子。即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来。 树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。离子交换树脂根据其基体的种类分为乙烯系树脂和丙烯酸系树脂,及根据树脂的物理结构分为凝胶型和大孔型。 离子交换树脂的品种很多,因化学组成和结构不同而具有不同的功能和特性,适应于不同的用途。应用树脂要根据工艺要求和物料的性质选用适当的类型和品种。 1、离子交换树脂的基本类型 (1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

离子交换树脂结构及交换原理

一. 离子交换树脂的结构 离子交换树脂的内部结构,如下图所示。由三部分组成,分别是: (1)高分子骨架由交联的高分子聚合物组成: (2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的 离子型官能团或带有极性的非离子型官能团; (3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶 孔)和高分子结构之间的孔(毛细孔)。 在交联结构的高分子基体(骨架)上,以化学键结合着许多交换基团,这些交换基团也是由两部分组成:固定部分和活动部分。交换基团中的固定部分被束缚在高分子的基体上,不能自由移动,所以称为固定离子;交换基团的活动部分则是与固定离子以离子键结合的符号相反的离子,称为反离子或可交换离子。反离子在溶液中可以离解成自由移动的离子,在一定条件下,它能与符号相同的其他反离子发生交换反应。 三离子交换的基本原理 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它

置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有关。离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于强酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:Fe3+>A13+>Ca2+>Mg2+>K+>Na+>H+。离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。 以001×7强酸阳离子交换树脂为例说明: 001×7强酸阳离子交换树脂是一种凝胶型离子交换树脂,其内部的网状结构中有无数四通八达的孔道,孔道里面充满了水分子,在孔道的一定部位上分布着可提供交换离子的交换基团。当原水当中的Ca2+,Mg2+等阳离子-扩散到树脂的孔道中时,由于该树脂对Ca2+,Mg2+等阳离子选择性强于对H+的选择性,,所以H+就与进入树脂孔道中的Ca2+,Mg2+等阳离子发生快速的交换反应,Ca2+,Mg2+等阳离子被固定到树脂交换基团上面,被交换下来的H+向树脂的孔道中-扩散,最终扩散到水中。 (1)边界水膜内的扩散水中的Ca2+,Mg2+等阳离子向树脂颗粒表面迁移,并扩散 通过树脂表面的边界水膜层,到达树脂表面; (2)交联网孔内的扩散(或称孔道扩散) Ca2+,Mg2+等阳离子进入树脂颗粒内部的交联网孔,并进行扩散,到达交换点; (3)离子交换 Ca2+,Mg2+等阳离子与树脂基团上的可交换的H+进行交换反应; (4)交联网孔内的扩散被交换下来的H+在树脂内部交联网孔中向树脂表面扩散。 (5)边界水膜内的扩散最终扩散到水中。 四离子交换树脂的再生 鉴于离子交换树脂反应的可逆性,反应后的树脂通过处理,重新转化为原来的离

各种类型离子交换树脂常用再生剂及其用量(打印)模板

各种类型离子交换树脂常用再生剂及其用量 离子交换树脂性能降解原因 树脂在长期使用中,性能会逐渐下降,表现为出水(即产品)质量降低。影响树脂性能降解的因素很复杂,如树脂体积减少,交换能力下降,球粒裂纹增多,破碎流失等,造成上述现象的原因不外是:(1)胀缩内应力不均。在使用中树脂内部由于溶胀及收缩变化的不均匀,局部结构中应力不平衡,造成断链裂解。 (2)氧化破坏。体系中的氧化剂,包括酸、碱、溶剂等对树脂骨架及功能基的破坏。 (3)杂质污染。水中杂质堵塞了树脂的内部孔道,阻挡交换吸附。

离子交换树脂如何进行预处理 (1)阳离子交换树脂的预处理步骤 首先用清水对树脂进行冲洗(最好为反洗)洗至出水清澈无混浊、无杂质为止。而后用4~5%的HCl和NaOH在交换柱中依次交替浸泡2~4小时,在酸碱之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的HCl溶液进行,用量加倍效果更好。放尽酸液,用清水淋洗至中性即可待用。 (2)阴离子交换树脂的预处理步骤 首先用清水对树脂进行冲洗(最好为反洗),洗至出水清澈无混浊、无杂质为止。而后用4 ~5%的NaOH和HCl在交换柱中依次交替浸泡2 ~4小时,在碱酸之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的NaOH溶液进行,用量加倍效果更好。放尽碱液,用清水淋洗至中性即可待用。 (3)应用于医药、食品行业的树脂,预处理最好先用乙醇浸泡,而后再用酸碱进行交替处理,大量清水淋洗至中性待用。 (4)预处理中最后一次通过交换柱的是酸还是碱,决定于使用时所要求的离子型式。 (5)为了保证所要求的离子型式的彻底转换,所用的酸、碱应是过量的。

阴离子交换树脂

阴离子交换树脂 离子交换法2007年02月05日星期一23:04一、前言 离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的的一 种可逆性化学反应,当液相中的某些离子较为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。 离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.1~1mm,其离子交换能力依其交换能力特征可分: 1. 强碱型阴离子交换树脂:主要是含有较强的反应基如具有四面体铵盐官能基之-N+(CH3)3,在氢氧形式下,-N+(CH3)3OH-中的氢氧离子可以迅速释出,以进行交换,强碱型阴离子交换树脂可以和所有的阴离子进行交换去除。 如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 2. 弱碱型阴离子交换树脂:这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生) 如氨基,仅能去除强酸中的阴离子如SO42-,Cl-或NO3-,对于HCO3-,CO32-或SiO42-则无法去除。 3 . 对阴离子的吸附 强碱性阴离子树脂对无机酸根的吸附的一般顺序为: SO42-> NO3-> Cl-> HCO3-> OH- 弱碱性阴离子树脂对阴离子的吸附的一般顺序如下: OH-> 柠檬酸根3-> SO42-> 酒石酸根2->草酸根2-> PO43->NO2-> Cl->醋酸根-> HCO3- 注意事项 1、离子交换树脂含有一定水份,不宜露天存放,储运过程中应保持湿润,以免风干脱水,使树脂破碎,如贮存过程中树脂脱水了,应先用浓食盐水(10%)浸泡,再逐渐稀释,不得直接放入水中,以免树脂急剧膨胀而破碎。 2、冬季储运使用中,应保持在5-40℃的温度环境中,避免过冷或过热,影响质量,若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水浓度可根据气温而定。 3、离子交换树脂的工业产品中,常含有少量低聚合物和未参加反应的单体,还含有铁、铅、铜等无机杂质,当树脂与水、酸、碱或其它溶液接触时,上述物质就会转入溶液中,影响出水质量,因此,新树脂在使用前必须进行预处理,一般先用水使树脂充分膨胀,

离子交换树脂分类

离子交换树脂分类 一、离子交换树脂的组成 离子交换树脂是一类带有功能基的网状结构高分子化合物,其结构由三部分组成:不溶性的三维空间网状骨架,连接在骨架上的功能基团和功能基团所带的相反电荷的可交换离子。 H)(强酸性阳离子交换树脂) 阳离子交换树脂:骨架上结合有磺酸基(-SO 3 或羧酸基(-COOH)(弱酸性阳离子交换树脂)。 阴离子交换树脂:骨架上结合有季铵基(强碱性阴离子交换树脂),伯胺基、仲胺基、叔胺基(弱碱性阴离子交换树脂)。 二、离子交换树脂的分类 按骨架结构不同:凝胶型(干态无孔,吸水后产生微孔)和大孔型(树脂内部无论干、湿或收缩、溶胀都存在着比凝胶型树脂更大、更多的孔)。 根据所带的功能基团的特性:阳离子交换树脂(带酸性功能基,能与阳离子进行交换)、阴离子交换树脂(带碱性功能基,能与阴离子进行交换)和其它树脂。 三、离子交换树脂的命名方法 根据离子交换树脂的功能基的性质,将其分为强酸(0)、弱酸(1)、强碱(2)、弱碱(3)、螯合(4)、两性(5)和氧化还原(6)七类(各类后面的数字为其分类代号)。 离子交换树脂的骨架分为苯乙烯系(0)、丙烯酸系(1)、酚醛系(2)、环氧系(3)、乙烯吡啶系(4)、脲醛系(5)、氯乙烯系(6)七类(各类后面的数字为骨架分类代号)。

命名方法: D ¤△▼×■ D 大孔树脂在名称前加D ¤分类代号(阴、阳、酸、碱、强、弱)△骨架分类代号 ▼顺序号 ×■凝胶型树脂后加*并注明交联度 举例: 001×7强酸性苯乙烯系阳离子交换树脂 D001 大孔强酸性苯乙烯系阳离子交换树脂 D113 大孔弱酸性丙烯酸系阴离子交换树脂

离子交换树脂结构及交换原理

一.氢型与钠型阳离子交换树脂是什么? 氢型阳离子交换树脂(有时简称氢型树脂)是一种人造有机聚合物产品。最常用的原料是:苯乙烯或丙烯酸(酯),先经过聚合反应生成具有三度空间立体网状结构的聚合物骨架(树脂母体),再于骨架上导入不同的「化学活性基」而成。由于它的活性基,如磺酸基(-SO3H)、羧基(-COOH)等,都含有活性氢离子,可在水中解离出来,用于与其它阳离子进行交换,所以特别在阳离子树脂名称之前再冠上“氢型”两字,以与同一系统的“钠型”种类有所区别。不过“钠型”可以利用强酸处理成为“氢型”,“氢型”也可以用氢氧化钠或食盐水溶液处理成为“钠型”,即二者可以互相转换。氢型阳离子交换树脂不溶于水和一般溶剂。和其它离子交换树脂一般,常被制成颗粒状,外观看起来有些像鱼卵,粒径大约在0.3-1.2 mm之间,但大部分在0.4-0.6 mm范围内。化学性质相当稳定,摸起来硬而有弹性,机械强度也足够承受相当压力,颜色由白色至近乎黑色都有,颜色浅时呈透明状,深时呈半透明状,都有光鲜亮丽的树脂光泽。氢型阳离子交换树脂最常应用的地方,就是硬水的软化,即让硬水流过树脂层,把硬水中的硬度离子,如钙、镁等离子吸收在树脂中,就变成不带硬度离子的软水了,这也是阳离子交换树脂最初被制造的主要目的,但它在工业上应用没有「钠型」来的多,因为在软化过程中,它会直接释出氢离子,使水质呈酸性,可能会因此腐蚀相关金属设备。依需要的不同,它也可以应用到水质预处理工艺中,用作软化水质及降低pH值之用。 二离子交换树脂的结构 离子交换树脂的内部结构,如2.1所示。由三部分组成,分别是: (1)高分子骨架由交联的高分子聚合物组成: (2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的 离子型官能团或带有极性的非离子型官能团; (3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶 孔)和高分子结构之间的孔(毛细孔)。 在交联结构的高分子基体(骨架)上,以化学键结合着许多交换基团,这些交换基团也是由两部分组成:固定部分和活动部分。交换基团中的固定部分被束缚在高

阳离子交换树脂制备资料

1前言 1.1离子交换树脂简介 1.1.1科技名词定义 中文名称:阳离子交换树脂 英文名称:cation exchange resin 定义1:离子交换树脂官能团上的离子只能与水中阳离子相互交换的树脂。 所属学科:电力(一级学科) ;热工自动化、电厂化学与金属(二级学科) 定义2:含功能性阴离子基团、可与带阳离子的物质进行交换反应的一类高分子量不溶性多聚体。可用于阳离子交换层析。 所属学科:生物化学与分子生物学(一级学科) ;方法与技术(二级学科) 1.1.2阳离子交换树脂分类 阳离子离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.5~1.0mm,其离子交换能力依其交换能力特征可分: 1. 强酸型阳离子交换树脂:主要含有强酸性的反应基如磺酸基(-SO3H),此离子交换树脂可以交换所有的阳离子。 2.弱酸型阳离子交换树脂:具有较弱的反应基如羧基(-COOH基),此离子

交换树脂仅可交换弱碱中的阳离子如Ca2+、Mg2+,对于强碱中的离子如Na+、K+等无法进行交换。 1.2种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。

离子交换树脂的交换原理

离子交换树脂的交换原理 离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。如:大孔强酸性苯乙烯系阳离子交换树脂。 离子交换树脂的结构,由三部分组成,分别是: (1)高分子骨架:由交联的高分子聚合物组成; (2)离子交换基团:它连在高分子骨架上,带有可交换的离子(称为反离子)的离子型官能团或带有极性的非离子型官能团; (3)孔:它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶孔)和高分子结构之间的孔(毛细孔)。 接下来宏昌化工小编着重给您介绍一下离子交换的基本原理: 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。 离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有关。离子交换作用即溶液中的可交换离子与交换基团上的可交

换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。 对于强酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:Fe3+>A13+>Ca2+>Mg2+>K+>Na+>H+。离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。

阴阳离子交换树脂分离技术

阴阳离子交换树脂分离技术 在化学除盐系统中由于设备缺陷或树脂存放时误装等原因,容易造成床内阴、阳树脂混合,使除盐系统再生不合格或制水水质变差。本文利用阴、阳树脂的比重差,采用浮选法将混合过后的阴、阳树脂进行分离,从而恢复除盐系统出水品质,同时避免了更换树脂造成的浪费。 标签:阴树脂;阳树脂;氯化钠;搅拌;分离 1 現状 汽水二车间化水专业一级除盐设备F系列发现阴床出水电导率、pH、碱度均高,阴床再生后正洗、循环时间较长,且设备周期制水量明显下降,由原来的24小时降为19小时。 2 原因排查 通过对F系列制水系统出水水质、系统流程的梳理,并且对阴床树脂进行取样分析鉴别,发现阴床内部树脂里确实含有部分阳树脂。 分析阴床内阳树脂的混入途径,结合反洗过程的工艺流程,进行查找。因反洗罐只有一台,当阴阳床树脂交替输入反洗罐时,存在树脂存留现象,这样就会造成阳树脂混入阴床。确认是在阴阳床大反洗过程中交替输入反洗罐时发生了树脂混杂。 3 解决措施 ①将F系列阳床反洗系统进行改造。将F系列阳床反洗系统与老系统阳反洗系统进行改造,解决共用一台反洗罐的问题,杜绝了阳树脂再次混入阴床内的途径; ②将阴床内混入的阳树脂进行分离。对阴、阳树脂的性质加以研究,确定实施方案。 4 一级除盐系统阴阳树脂的分离方案 4.1 阴阳树脂的物理特性 阴阳树脂均呈球状颗粒,阴树脂粒度在0.45~0.9mm,阳树脂粒度在0.63~1.25mm,阴树脂密度在湿态状态下的颗粒密度为1.05~1.11g/mL,阳树脂密度在湿态状态下的颗粒密度为1.24~1.28g/mL(如表1)。 从表1可以看出阴阳树脂的颗粒粒径范围有交叉不能采用筛分法。

20140923离子交换树脂的基本性能及其影响因素

离子交换树脂的基本性能及其影响因素 离子交换树脂的基本性能包括以下几个方面,现分别简述如下: 一、树脂的外观 新的树脂因结构、基团、离子形态、制造工艺等因素的不同,而有黄色、褐色、白色、棕色、黑色、灰色等各种颜色,以满足具体使用中不同场合的需要。常用水处理用的树脂外观一般为:凝胶型的苯乙烯系树脂一般为透明的淡黄色颗粒;而大孔树脂则为不透明(或微透明)颗粒;大孔苯乙烯系阳树脂一般为淡黄色或淡灰褐色颗粒,大孔苯乙烯系阴树脂为白色颗粒;丙烯酸系的树脂为白色或乳白色颗粒。同一种树脂在不同的离子形态时会发生颜色上的变化,如001x7树脂由再生态到失效态时的颜色是由深到淡,由失效态到再生态,又由淡到深。这种变化是可以逆转的, 树脂受污染时,其颜色也会发生根本性的变化,其颜色的变化程度一般与树脂受污染的程度成正比,并且较难逆转。因此,树脂在使用的过程中,要随时留意其颜色上的变化,以判断树脂污染的程度。如201x7树脂受铁或有机物污染时,颜色变深甚至黑褐色。001x7树脂受氧化剂破坏时,其树脂交联和交换基团都将被氧化,树脂的颜色也将变淡,树脂体积增大,由此树脂易碎和体积交换容量下降。 二、粒度 树脂的粒度大小和均匀性,对运行的影响较大。粒度大,比表面积就小,交换速度就慢;粒度太小,虽然交换速度快,但是,运行时的阻力又大;因此,国家标准根据不同的交换器床型(不同床型的运行流速不同)相对应的树脂型号,规定了相对较合理的粒径范围(参考国标)。 三、树脂的溶胀及转型体积改变率 树脂在干燥的状态下(惰性树脂除外),遇水会迅速膨胀。因此,当树脂脱水时,不能直接与水接触,而要用饱和的食盐水浸泡,减缓膨胀速度,防止树脂的破裂。 树脂不同的交联度,其膨胀系数也不同,体积改变率的大小与交联度成反比。交换容量的大小与溶胀率成正比。 可交换离子价数越高,溶胀率越小。同价离子,水合能力越强,溶胀率越大。 当然,树脂转型膨胀率的规律在实际的应用中较为复杂,因为它往往是多种离子间的交换。但这些规律的掌握,对设计不同交换器床型预留的膨胀空间具有重要的参考价值(尤其像双室固定床、双室浮动床等)。

离子交换树脂

离子交换树脂 为了除去水中离子态杂质,现在采用得最普遍的方法是离子交换。这种方法可以将水中离子态杂质清除得以较彻底,因而能制得很纯的水。所以,在热力发电厂锅炉用水的制备工艺中,它是一个必要的步骤。 离子交换处理,必须用一种称做离子交换剂的物质(简称交换剂)来进行。这种物质遇水时,可以将其本身所具有的某种离子和水中同符号的离子相互交换,离子交换剂的种类很多,有天然和人造、有机和无机、阳离子型和阴离子型等之分,大概情况如表所示。此外,按结构特征来分,还有大孔型和凝胶型等。 离子交换剂的分类 天然海绿砂 无机质 人造合成沸石 离子交换剂 碳质磺化煤强酸性磺酸基(-SO3H) 阳离子型 有机质弱酸性羧酸基(-COOH) 强碱性Ⅰ型{-N(-CH3)3}OH 离子交换树脂阴离子型Ⅱ型{-N(CH3)2}OH 弱碱性(-(NH3)OH、(=NH2) OH 或 (≡NH)OH 其他-氧化还原型、有机物清除除型等 第一节离子交换剂的结构 离子交换树脂属于高分子化合物,结构比较复杂.离子交换剂的结构可以被区分为两个部分:一部分具有高分子的结构形式,称为离子交换剂的骨架;另一部分是带有可交换离子的基团(称为活性集团),它们化合在高分子骨架上.所谓“骨架”,是因为它具有庞大的空间结构,支持着整个化合物,正象动物的骨架支持着肌体一样,从化学的观点来说,它是一种不溶于水的高分子化合物,现将常用离子交换剂的结构简单介绍如下。 一、磺化煤 磺化煤是一种半化合成的离子交换剂,它利用煤质本身的空间结构作为高分子骨架,用浓硫酸处理的方法(称磺化)引入活性基团而制成。 磺化煤的活性基团,除了有由于磺化而引入的-SO3H外,还有一些煤质本身原有的基团(如-COOH和-OH)以及因硫酸氧化作用生成的羧酸(-COOH),所以它实质上是一种混合型离子交换剂。 磺化煤的价格比较便宜,是过去水处理系统中广泛应用的交换剂,但由于它有以下的缺点,所以现在大都为合成离子交换树脂所替代:

离子交换树脂浅谈

离子交换树脂 摘要:我国自20世纪50年代以来开始生产和应用离子交换树脂。经过半个多世纪的发展,国内常规的离子交换树脂制造和应用技术已经较为成熟,水平与国外相当。 关键字:水处理、离子交换树脂、湿法冶金 前言:离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 特点 1.树脂颗粒尺寸 离子交换树脂通常制成珠状颗粒,树脂颗粒较细者,反应速度较大,但细颗粒对液体阻力较大,需要较高的工作压力。将树脂在充分吸水膨胀后进行筛分,累计其在20、30、40、50…目筛网上的留存量,以9000粒子可以通过其相对应的筛孔直径,称为树脂的“有效粒径”。大粒径树脂为0.6~1. 2mm(20^40目)之间,粉末树脂的粒径树脂0. 01~0. 1mm。一般离子交换树脂的粒径。 2.树脂的密度 树脂密度分为干密度和湿密度。干密度是在温度115℃真空干燥后的密度。 干真密度=干树脂重/干树脂颗粒的体积g/cm3 湿密度又分湿真密度和湿视密度。 (1)湿真密度一是树脂在水中充分膨胀后的质量与自身所占体积(不含树脂颗粒的空隙)比 值(g/ cm3,不同类型树脂,湿真密度不同。 湿真密度=湿树脂重/湿树脂颗粒的体积g/cm3 即使同一类型的阳树脂或阴树脂,由于所含交换离子种类不同,湿真密度大小也不相同,此值一般在1.04~1.3之间,阳树脂常比阴树脂湿真密度大。 湿真密度在双层床工艺过程中与树脂的分层效果有关, (2)湿视密度。 树脂的密度与它的交联度和交换基团的性质有关。交联度高的树脂密度较高,强酸性或强碱性树脂的密度高于弱酸或弱碱性,大孔型树脂的密度则较低。例如,苯乙烯系凝胶型强酸阳离子树脂的真密度为1. 26g/mL,视密度为0. 85g/mL;丙烯酸系凝胶型弱酸阳离子树脂的真密度为1. 19g/mL,视密度为0. 75g/mL。. 此值一般在0.60~0.85之间,实际采用湿视密度(堆积密度)来计算离子交换器内填充树脂的质量。

陶氏阳树脂

产品信息 Page 1 of 2 ??陶氏化学公司商标或者陶氏化学的关联公司 Form No. 177-02076-0407 DOWEX 离子交换树脂 DOWEX? MARATHON? C 一种用于软化和除盐应用的具有很高交换容量的均粒阳离子交换树脂 名称 树脂类型 树脂结构 官能团 DOWEX? MARATHON? C 强酸阳离子交换树脂 苯乙烯-DVB 凝胶型 磺酸基 技术参数 单位 Na +型 H + 型 全交换容量, 最小 eq/L kgr/ft 3 as CaCO 3 2.0 4 3.7 1.8 39.3 含水量 % 42 - 48 50 - 56 均一系数, 最大. 1.1 1.1 典型物化指标 Na +型 H +型 平均粒度 μm 585 ± 50 600 ± 50 全球率 , 最小. % 95 - 100 95 - 100 膨胀率(Na + → H +) % 8 8 湿真密度 g/mL 1.28 1.20 湿视密度 g/L lbs/ft 3 820 51 800 50 建议运行条件 ? 最高运行温度 ? pH 范围 ? 装填深度, 最小. ? 流速: 制水/快速清洗 反洗 顺流再生/置换 逆流再生/置换 ? 总清洗水量 ? 再生剂 120°C (250°F) 0 - 14 800 mm (2.6 ft) 5 - 60 m/h (2 - 24 gpm/ft 2) 见曲线 1 1 - 10 m/h (0.4 - 4 gpm /ft 2) 5 - 20 m/h ( 2 - 8 gpm /ft 2) 2 - 5 Bed volumes 1 - 8% H 2SO 4, 4 - 8% HCl or 8 - 12% NaCl ? ? 更多有关粒径分布的资料,请参照粒径分布参照表 (Form No. 177-01775).

介绍罗门哈斯离子交换树脂的分类

离子交换树脂技术发明是罗门哈斯公司研发团队经过很长时间的实验和努力.罗门哈斯是世界上最大的例子交换树脂制造商。其丰富多样,离子交换树脂已广泛使用,本文介绍了树脂含量的类型和用法; (1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 (2) 弱酸性阳离子树脂 这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。 (3) 强碱性阴离子树脂 这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。 这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。 (4) 弱碱性阴离子树脂 这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH 进行再生。 (5) 离子树脂的转型 有四种基本类型的树脂。在实际使用中,往往把这些树脂与其他离子类型的操作,以满足各种需求。例如,经常会强酸性阳离子树脂和氯化钠,钠树脂再次使用。钠树脂工作Na +和Ca2 +发布的解决方案,如镁2 +阳离子交换吸附、去除这些离子。反应时间没有释放H +,可以避免溶液pH值和由此产生的影响(如蔗糖转换和设备腐蚀,等等)。这类树脂与钠运行使用后,可以使用盐水再生(没有酸)。随着阴离子树脂可以再次到氯类型使用,Cl -和其他阴离

离子交换膜与离子交换树脂的比较

离子交换膜又称“离子交换树脂膜”或“离子选择透过膜”。这是因为离子交换膜与用于水处理领域的粒状离子交换膜树脂,具有基本相同的结构,而且早期的离子交换膜就是使用离子交 换树脂,通过加入粘合剂混炼拉片,然后加网热压成为膜状物的,所以,有“离子交换树脂漠”之称。但是,离子交换膜和离子交换树脂之间,除形状之差而外,还有着根本不同的作用原理:离子交换树脂是通过离子的吸附、药品溶离和再生的离子交换机能进行脱盐,但离子交换膜不是通过离子交换的机能,而是以选择透过为其主要机理,将离子作为一种选择性通过的媒介物。此外,在应用方法上也不相同,例如,离子交换树脂的使用过程包含着处理、交换、再生等步骤,而离子交换膜在应用过程中,可以连续作用,不必再生。由此看来,与其称为离子交换膜,不如称为“离子选择透过膜”更为确切。不过,根据长期的习惯,人们还是沿称“离子交换膜”。 离子交换膜与离子交换树脂 离子交换膜可制成均相膜和非均相膜两类。 而离子交换树脂就属于非均相膜 ①均相膜。先用高分子材料如丁苯橡胶、纤维素衍生物、聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、聚丙烯腈等制成膜,然后引入单体如苯乙烯、甲基丙烯酸甲酯等,在膜内聚合成高分子,再通过化学反应引入所需功能基。也可通过甲醛、苯酚等单体聚合制得。 ②非均相膜。用粒度为200~400目的离子交换树脂和普通成膜性高分子材料如聚苯乙烯、聚氯乙烯等充分混合后加工成膜制得。 下面给一些离子交换树脂的具体资料: 离子交换树脂分为阴阳两种类型,阳离子交换树脂又分为强酸性和弱酸性,阴离子交换树脂分为强碱性和弱碱性。 水通过阳离子交换树脂时变为酸性,再通过阴离子交换树脂变为中性后回到水族箱中,因此使用离子交换树脂时,要强酸性与强碱性、弱酸性与弱碱性配对使用,离子交换树脂依其听附对象的不同又分为H型,OH型CI型和NA型,水族箱适用NA型,(钠型)其目的是软化水质。 阳离子交换树脂的再生可用5%--10%盐酸、0.5%--5%硫酸、10%的食盐水或海水其中之一种,阴离子交换树脂的再生可用2%--10%氢氧化钠、2%--4%氨水或10%食盐水其中之一种,均浸泡24小时。离子交换树脂也是一种化学滤材 载体不同 后者属于前者,后者是前者所包含的物质之一。 如果还要细分的话还有正离子交换膜,负离子交换膜等。 水处理设备网讯:离子交换膜和球状离子交换树脂在化学结构上是相同的,所以有人称它为膜状的离子交换树脂。早期是利用粉碎的离子交换树脂加入粘合剂制成薄膜,故称为离子交换(树脂)膜。因为在膜中存在粘合剂,活性基团将会分布不均,故又称为异相(非均质)离子交换膜。随着制膜技术不断发展,近

离子交换树脂的种类

离子交换树脂的种类 离子交换剂是指具有离子交换能力的固体物质,依其可交换离子的种类,可分为阳离子剂和阴离子剂两大类。最主要的当属合成树脂。离子交换树脂可分别按照功能、内部结构、聚合物单体种类和用途分类。其中,以功能和内部结构分类为主流方式,故此处以这两种分类方式对离子交换树脂的种类作出说明。 1按功能分类 1.1阳离子交换树脂 首先,离子交换树脂可分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。而阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂则可分为强碱性和弱碱性两类。人工合成的阳离子树脂的官能团是有机酸,并按照酸性的强弱,分为强酸性和弱酸性两类。强酸性的官能团是苯磺酸,弱酸性的官能团则包括有机磷酸、羟基酸和酚等。酸主要以H+的形式与其他阳离子进行交换。例如,用H+与金属离子交换会使树脂变成盐的形式。强阳离子树脂除了酸形式R-O H外,生产厂家也会以钠盐R-O Nα的形式出售,分别称为氢型和钠型强阳离子交换树脂。 强酸性阳离子树脂含有大量的强酸性基团,如磺酸基?SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如?SO3H,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。树脂在使用一段时间后,要进行再生处理,即使用化学药品使离子交换反应向相反的方向进行,使树脂的官能基团恢复到原来的状态,以便重复利用。例如,上述的阳离子树脂一般使用强酸进行再生处理,此时树脂释放出被吸附的阳离子并与H+结合,进而恢复到原来的组成。 弱酸性阳离子树脂含有弱酸性基团,如羧基-COOH,能在水中离解出H+而呈酸性,但因其解离程度不高,因此一般仅程弱酸性,故而属于弱酸性阳离子树 -(R为碳氢链基团),可与溶液中脂。树脂离解后余下的负电基团,如R COO 的其他阳离子吸附结合,从而产生阳离子交换作用。如上所述,此类树脂的酸性即离解性较弱,在低pH下难以离解进而进行离子交换,只能在碱性、中性或微酸性溶液中(如pH值为5~14)起作用。这类树脂也是用酸进行再生,其再生性较强阳离子交换树脂更好。 1.2阴离子交换树脂 阴离子交换树脂的官能团包括有各种胺类,强碱性的官能团是季胺;弱碱性的官能团则有伯胺、仲胺和叔胺等。季胺一般为氯盐和氢氧根型,即R-N(CH3)3Cl,R-N(CH3)3OH,其中R代表碳链骨架。

相关主题
文本预览
相关文档 最新文档