当前位置:文档之家› 离散数学第十三章

离散数学第十三章

离散数学第十三章
离散数学第十三章

华南农业大学 离散数学 期末考试2013试卷及答案

华南农业大学期末考试试卷(A 卷) 2013-2014学年第 一 学期 考试科目: 离散结构 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 ①本试题分为试卷与答卷2部分。试卷有四大题,共6页。 ②所有解答必须写在答卷上,写在试卷上不得分。 一、选择题(本大题共 25 小题,每小题 2 分,共 50 分) 1、下面语句是简单命题的为_____。 A 、3不是偶数 B 、李平既聪明又用功 C 、李平学过英语或日语 D 、李平和张三是同学 2、设 p:他主修计算机科学, q:他是新生,r:他可以在宿舍使用电脑,下列命题“除非他不是新生,否则只有他主修计算机科学才可以在宿舍使用电脑。”可以符号化为______。 A 、r q p →?∧? B 、r q p ?→∧? C 、r q p →?∧ D 、r q p ∧→ 3、下列谓词公式不是命题公式P →Q 的代换实例的是______。 A 、)()(y G x F → B 、),(),(y x yG y x xF ?→? C 、))()((x G x F x →? D 、)()(x G x xF →? 4、设个体域为整数集,下列公式中其值为 1的是_____。 A 、)0(=+??y x y x B 、)0(=+??y x x y C 、)0(=+??y x y x D 、)0(=+???y x y x

2 5、下列哪个表达式错误_____。 A 、 B x xA B x A x ∧??∧?)())(( B 、B x xA B x A x ∨??∨?)())(( C 、B x xA B x A x →??→?)())(( D 、)())((x xA B x A B x ?→?→? 6、下述结论错误的是____。 A 、存在这样的关系,它可以既满足对称性,又满足反对称性 B 、存在这样的关系,它可以既不满足对称性,又不满足反对称性 C 、存在这样的关系,它可以既满足自反性,又满足反自反性 D 、存在这样的关系,它可以既不满足自反性,又不满足反自反性 7、集合A 上的关系R 为一个等价关系,当且仅当R 具有_____。 A 、自反性、对称性和传递性 B 、自反性、反对称性和传递性 C 、反自反性、对称性和传递性 D 、反自反性、反对称性和传递性 8、下列说法不正确的是:______。 A 、R 是自反的,则2R 一定是自反的 B 、R 是反自反的,则2R 一定是反自反的 C 、R 是对称的,则2R 一定是对称的 D 、R 是传递的,则2R 一定是传递 9、设R 和S 定义在P 上,P 是所有人的集合,=R {x P y x y x ∧∈><,|,是y 的父亲},=S {x P y x y x ∧∈><,|,是y 的母亲},则关系{y P y x y x ∧∈><,|,是的x 外祖父}的表达式是:______。 A 、11--R R B 、11--S R C 、11--S S D 、11--R S 10、右图描述的偏序集中,子集},,{f e b 的上界为_____。 A 、c b , B 、b a , C 、b D 、c b a ,, 11、以下整数序列,能成为一个简单图的顶点度数序列的是_____。 A 、1,2,2,3,4,5

第十二章习题答案

第12章习题答案 1.设T 是一个非平凡树,证明T 中最长基本链的起点和终点的次数为1。 证明:假设P 是T 中最长的基本链,P 的起点或终点的次数不为1,即它的次数至少是2,则至少有一个顶点,令其为u ,与P 的起点或终点邻接。若u 在P 上,则构成圈,与T 是树矛盾,若u 不在P 上,则存在比P 更长的基本链,这与P 是T 中最长的基本链矛盾。因此,非平凡树T 中最长基本链的起点和终点的次数必为1。 2.证明恰好有两个顶点的次数为1的树必为一基本链。 证明:假设T 是任意一个恰好有两个顶点的次数为1的树,如果T 不是一基本链,则至少有一个分支顶点的次数大于2。设T 有n 个顶点,则T 有n-2个分支顶点,n-1条边。根据定理9.1,T 的顶点的次数之和等于T 的边数的2倍,可知 2(n-1)>2+2(n-2) 因此得到2n-2>2n-2,矛盾。故T 必为一基本链。即恰好有两个顶点的次数为1的树必为一基本链。 3.一个树有n 2个顶点次敉为2,n 3个顶点次数为3,…,n k 个顶点次数为k ,问这个树有几片树叶? 解:设这个树为T ,有x 片树叶,则T 有x +n 2+n 3+…+n k -1条边。根据定理9.1,T 的顶点的次数之和等于T 的边数的2倍,有 x +2n 2+3n 3+…+k n k =2(x +n 2+n 3+…+n k -1) 解得 x =n 3+2n 4+3n 5+…+(k-2)n k +2 即这个树有n 3+2n 4+3n 5+…+(k-2)n k +2片树叶。 7.证明在完全二元树中,弧的总数等于2(n t -1),这里n t 是树叶的数目。 证明:设完全二元树T 有n 个顶点,m 条弧。因为它有n t 片树叶,所以除树叶以外的顶点有n -n t 个。由于在完全二元树中,除树叶以外的顶点的引出次数均为2,每片树叶的引出次数均为0,故所有顶点的引出次数之和为2(n -n t ),它等于弧的总数m 。又因为1-=n m , 故有2(n -n t )=1-n ,解得n =2n t -1。因此m=n-1=2(n t -1)。 11. 图12.11给出了一个有序树,试求其对应的位置二元树。 解:把该树顶点标记i u 的下标i 作为序, 利用将有序树转化为位置二元树的算法, 求得其对应的位置二元树如右图所示。 4u 3 u 5 u 7 u 0u 1 u 2 u 6 u 8 u 9 u 10

中国石油大学大学《离散数学》期末复习题及答案

《离散数学》期末复习题 一、填空题(每空2分,共20分) 1、集合A上的偏序关系的三个性质是、 和。 2、一个集合的幂集是指。 3、集合A={b,c},B={a,b,c,d,e},则A?B= 。 4、集合A={1,2,3,4},B={1,3,5,7,9},则A?B= 。 5、若A是2元集合, 则2A有个元素。 6、集合A={1,2,3},A上的二元运算定义为:a* b = a和b两者的最大值,则 2*3= 。 7、设A={a, b,c,d }, 则∣A∣= 。 8、对实数的普通加法和乘法,是加法的幂等元, 是乘法的幂等元。 9、设a,b,c是阿贝尔群的元素,则-(a+b+c)= 。 10、一个图的哈密尔顿路是。 11、不能再分解的命题称为,至少包含一个联结词的命题称 为。 12、命题是。 13、如果p表示王强是一名大学生,则┐p表示。 14、与一个个体相关联的谓词叫做。 15、量词分两种:和。 16、设A、B为集合,如果集合A的元素都是集合B的元素,则称A是B 的。 17、集合上的三种特殊元是、 及。 18、设A={a, b},则ρ(A) 的四个元素分别 是:,,,。

19、代数系统是指由及其上的或 组成的系统。 20、设是代数系统,其中是*1,*2二元运算符,如果*1,*2都满 足、,并且*1和*2满足,则称是格。 21、集合A={a,b,c,d},B={b },则A \ B= 。 22、设A={1, 2}, 则∣A∣= 。 23、在有向图中,结点v的出度deg+(v)表示,入度deg-(v)表示 以。 24、一个图的欧拉回路是。 25、不含回路的连通图是。 26、不与任何结点相邻接的结点称为。 27、推理理论中的四个推理规则 是、、、。 二、判断题(每题2分,共20分) 1、空集是唯一的。 2、对任意的集合A,A包含A。 3、恒等关系不是对称的,也不是反对称的。 4、集合{1,2,3,3}和{1,2,2,3}是同一集合。 5、图G中,与顶点v关联的边数称为点v的度数,记作deg(v)。 6、在实数集上,普通加法和普通乘法不是可结合运算。 7、对于任何一命题公式,都存在与其等价的析取范式和合取范式。 8、设(A,*)是代数系统,a∈A,如果a*a=a,则称a为(A,*)的等幂元。 9、设f:A→B,g:B→C。若f,g都是双射,则gf不是双射。 10、无向图的邻接矩阵是对称阵。 11、一个集合不可以是另一个集合的元素。 12、映射也可以称为函数,是一种特殊的二元关系。 13、群中每个元素的逆元都不是惟一的。

大学离散数学期末重点知识点总结(考试专用)

1.常用公式 p ∧(P →Q)=>Q 假言推论 ┐Q ∧(P →Q)=>┐P 拒取式 ┐p ∧(P ∨Q)=>Q 析取三段式 (P →Q) ∧(Q →R)=>P →R 条件三段式 (PQ) ∧(QR)=>PR 双条件三段式 (P →Q)∧(R →S)∧(P ∧R)=>Q →S 合取构造二难 (P →Q)∧(R →S)∧(P ∨R)=>Q ∨S 析取构造二难 (?x)((Ax)∨(Bx)) <=>( ?x)(Ax)∨(?x)(Bx) (?x)((Ax)∧(Bx)) <=>(?x)(Ax)∧(?x)(Bx) —┐(?x)(Ax) <=>(?x)┐(Ax) —┐(?x)(Ax) <=>(?x)┐(Ax) (?x)(A ∨(Bx)) <=>A ∨(?x)(Bx) (?x)(A ∧(Bx)) <=>A ∧(?x)(Bx) (?x)((Ax)→(Bx)) <=>(?x)(Ax)→(?x)(Bx) (?x)(Ax) →B <=>(?x) ((Ax)→B) (?x)(Ax) →B <=>(?x) ((Ax)→B) A →(?x)(Bx) <=>(?x) (A →(Bx)) A →(?x)(Bx) <=>(?x) (A →(Bx)) (?x)(Ax)∨(?x)(Bx) =>(?x)((Ax)∨(Bx)) (?x)((Ax)∧(Bx)) =>(?x)(Ax)∧(?x)(Bx) (?x)(Ax)→(?x)(Bx) =>(?x)((Ax)→(Bx)) 2.命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P ,Q,R 的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n 个变元共有n 2个极小项或极大项,这n 2为(0~n 2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P 规则,T 规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 3.谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n 个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 4.集合 1.N ,表示自然数集,1,2,3……,不包括0; 2.基:集合A 中不同元素的个数,|A|; 3.幂集:给定集合A ,以集合A 的所有子集为元素组成的集合,P(A); 4.若集合A 有n 个元素,幂集P(A)有n 2个元素,|P(A)|=||2A =n 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A 的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 5.关系 1.若集合A 有m 个元素,集合B 有n 个元素,则笛卡尔A ×B 的基数为mn ,A 到B 上可以定义mn 2种不同的关系; 2.若集合A 有n 个元素,则|A ×A|=2n ,A 上有22n 个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全封闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x 组成的集合; 后域(ranR):所有元素y 组成的集合; 5.自反闭包:r(R)=RU Ix ; 对称闭包:s(R)=RU 1-R ; 传递闭包:t(R)=RU 2R U 3R U …… 6.等价关系:集合A 上的二元关系R 满足自反性,对称性和传递性,则R 称为等价关系; 7.偏序关系:集合A 上的关系R 满足自反性,反对称性和传递性,则称R 是A 上的一个偏序关系; 8.covA={|x,y 属于A ,y 盖住x}; 9.极小元:集合A 中没有比它更小的元素(若存在可能不唯一); 极大元:集合A 中没有比它更大的元素(若存在可能不唯一); 最小元:比集合A 中任何其他元素都小(若存在就一定唯一); 最大元:比集合A 中任何其他元素都大(若存在就一定唯一); 10.前提:B 是A 的子集 上界:A 中的某个元素比B 中任意元素都大,称这个元素是B 的上界(若存在,可能不唯一); 下界:A 中的某个元素比B 中任意元素都小,称这个元素是B 的下界(若存在,可能不唯一); 上确界:最小的上界(若存在就一定唯一); 下确界:最大的下界(若存在就一定唯一); 6.函数 1.若|X|=m,|Y|=n,则从X 到Y 有mn 2种不同的关系,有m n 种不同的函数; 2.在一个有n 个元素的集合上,可以有2n2种不同的关系,有nn 种不同的函数,有n!种不同的双射; 3.若|X|=m,|Y|=n ,且m<=n ,则从X 到Y 有A m n 种不同的单射; 4.单射:f:X-Y ,对任意1x ,2x 属于X,且1x ≠2x ,若f(1x )≠f(2x ); 满射:f:X-Y ,对值域中任意一个元素y 在前域中都有一个或多个元素对应; 双射:f:X-Y ,若f 既是单射又是满射,则f 是双射; 5.复合函数:f og=g(f(x)); 5.设函数f:A-B ,g:B-C ,那么 ①如果f,g 都是单射,则f og 也是单射; ②如果f,g 都是满射,则f og 也是满射; ③如果f,g 都是双射,则f og 也是双射; ④如果f og 是双射,则f 是单射,g 是满射; 7.代数系统 1.二元运算:集合A 上的二元运算就是2A 到A 的映射; 2. 集合A 上可定义的二元运算个数就是从A ×A 到A 上的映射的个数,即从从A ×A 到A 上函数的个数,若|A|=2,则集合A 上的二元运算的个数为2*22=42=16种; 3. 判断二元运算的性质方法: ①封闭性:运算表内只有所给元素; ②交换律:主对角线两边元素对称相等; ③幂等律:主对角线上每个元素与所在行列表头元素相同; ④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同; ⑤有零元:元素所对应的行和列的元素都与该元素相同; 4.同态映射:,,满足f(a*b)=f(a)^f(b),则f 为由的同态映射;若f 是双射,则称为同构; 8.群 广群的性质:封闭性; 半群的性质:封闭性,结合律; 含幺半群(独异点):封闭性,结合律,有幺元; 群的性质:封闭性,结合律,有幺元,有逆元; 2.群没有零元; 3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律; 4.循环群中幺元不能是生成元; 5.任何一个循环群必定是阿贝尔群; 10.格与布尔代数 1.格:偏序集合A 中任意两个元素都有上、下确界; 2.格的基本性质: 1) 自反性a ≤a 对偶: a ≥a 2) 反对称性a ≤b ^ b ≥a => a=b 对偶:a ≥b ^ b ≤a => a=b 3) 传递性a ≤b ^ b ≤c => a ≤c 对偶:a ≥b ^ b ≥c => a ≥c 4) 最大下界描述之一a^b ≤a 对偶 avb ≥a A^b ≤b 对偶 avb ≥b 5)最大下界描述之二c ≤a,c ≤b => c ≤a^b 对偶c ≥a,c ≥b => c ≥avb 6) 结合律a^(b^c)=(a^b)^c 对偶 av(bvc)=(avb)vc 7) 等幂律a^a=a 对偶 ava=a 8) 吸收律a^(avb)=a 对偶 av(a^b)=a 9) a ≤b <=> a^b=a avb=b 10) a ≤c,b ≤d => a^b ≤c^d avb ≤cvd 11) 保序性b ≤c => a^b ≤a^c avb ≤avc 12) 分配不等式av(b^c)≤(avb)^(avc) 对偶 a^(bvc)≥(a^b)v(a^c) 13)模不等式a ≤c <=> av(b^c)≤(avb)^c 3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc); 4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构; 5.链格一定是分配格,分配格必定是模格; 6.全上界:集合A 中的某个元素a 大于等于该集合中的任何元素,则称a 为格的全上界,记为1;(若存在则唯一) 全下界:集合A 中的某个元素b 小于等于该集合中的任何元素,则称b 为格的全下界,记为0;(若存在则唯一) 7.有界格:有全上界和全下界的格称为有界格,即有0和1的格; 8.补元:在有界格内,如果a^b=0,avb=1,则a 和b 互为补元; 9.有补格:在有界格内,每个元素都至少有一个补元; 10.有补分配格(布尔格):既是有补格,又是分配格; 布尔代数:一个有补分配格称为布尔代数; 11.图论 1.邻接:两点之间有边连接,则点与点邻接; 2.关联:两点之间有边连接,则这两点与边关联; 3.平凡图:只有一个孤立点构成的图; 4.简单图:不含平行边和环的图; 5.无向完全图:n 个节点任意两个节点之间都有边相连的简单无向图; 有向完全图:n 个节点任意两个节点之间都有边相连的简单有向图; 6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边; 7.r-正则图:每个节点度数均为r 的图; 8.握手定理:节点度数的总和等于边的两倍; 9.任何图中,度数为奇数的节点个数必定是偶数个; 10.任何有向图中,所有节点入度之和等于所有节点的出度之和; 11.每个节点的度数至少为2的图必定包含一条回路; 12.可达:对于图中的两个节点i v ,j v ,若存在连接i v 到j v 的路,则称i v 与j v 相互可达,也称i v 与j v 是连通的;在有向图中,若存在i v 到j v 的路,则称i v 到j v 可达; 13.强连通:有向图章任意两节点相互可达; 单向连通:图中两节点至少有一个方向可达; 弱连通:无向图的连通;(弱连通必定是单向连通) 14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集; 割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点; 15.关联矩阵:M(G),mij 是vi 与ej 关联的次数,节点为行,边为列; 无向图:点与边无关系关联数为0,有关系为1,有环为2; 有向图:点与边无关系关联数为0,有关系起点为1终点为-1, 关联矩阵的特点: 无向图: ①行:每个节点关联的边,即节点的度; ②列:每条边关联的节点; 有向图: ③所有的入度(1)=所有的出度(0); 16.邻接矩阵:A(G),aij 是vi 邻接到vj 的边的数目,点为行,点为列; 17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A (G)+3A (G)+4A (G) 可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路; A(G)中所有数的和:表示图中路径长度为1的通路条数; 2A (G)中所有数的和:表示图中路径长度为2的通路条数; 3A (G)中所有数的和:表示图中路径长度为3的通路条数; 4A (G)中所有数的和:表示图中路径长度为4的通路条数; P(G)中主对角线所有数的和:表示图中的回路条数; 18.布尔矩阵:B(G),i v 到j v 有路为1,无路则为0,点为行,点为列; 19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0; 20.生成树:只访问每个节点一次,经过的节点和边构成的子图; 21.构造生成树的两种方法:深度优先;广度优先; 深度优先: ①选定起始点0v ; ②选择一个与0v 邻接且未被访问过的节点1v ; ③从1v 出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次; 广度优先: ①选定起始点0v ; ②访问与0v 邻接的所有节点v1,v2,……,vk,这些作为第一层节点; ③在第一层节点中选定一个节点v1为起点; ④重复②③,直到所有节点都被访问过一次; 22.最小生成树:具有最小权值(T)的生成树; 23.构造最小生成树的三种方法: 克鲁斯卡尔方法;管梅谷算法;普利姆算法; (1)克鲁斯卡尔方法 ①将所有权值按从小到大排列; ②先画权值最小的边,然后去掉其边值;重新按小到大排序; ③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序; ④重复③,直到所有节点都被访问过一次; (2)管梅谷算法(破圈法) ①在图中取一回路,去掉回路中最大权值的边得一子图; ②在子图中再取一回路,去掉回路中最大权值的边再得一子图; ③重复②,直到所有节点都被访问过一次; (3)普利姆算法 ①在图中任取一点为起点1v ,连接边值最小的邻接点v2; ②以邻接点v2为起点,找到v2邻接的最小边值,如果最小边值比v1邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v ,连接1v 现在的最小边值(除已连接的边值); ③重复操作,直到所有节点都被访问过一次; 24.关键路径 例2 求PERT 图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径. 解:最早完成时间 TE(v1)=0 TE(v2)=max{0+1}=1 TE(v3)=max{0+2,1+0}=2 TE(v4)=max{0+3,2+2}=4 TE(v5)=max{1+3,4+4}=8 TE(v6)=max{2+4,8+1}=9 TE(v7)=max{1+4,2+4}=6 TE(v8)=max{9+1,6+6}=12 最晚完成时间 TL(v8)=12 TL(v7)=min{12-6}=6 TL(v6)=min{12-1}=11 TL(v5)=min{11-1}=10 TL(v4)=min{10-4}=6 TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间 TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: v1-v3-v7-v8 25.欧拉路:经过图中每条边一次且仅一次的通路; 欧拉回路:经过图中每条边一次且仅一次的回路; 欧拉图:具有欧拉回路的图; 单向欧拉路:经过有向图中每条边一次且仅一次的单向路; 欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路; 26.(1)无向图中存在欧拉路的充要条件: ①连通图;②有0个或2个奇数度节点; (2)无向图中存在欧拉回路的充要条件: ①连通图;②所有节点度数均为偶数; (3)连通有向图含有单向欧拉路的充要条件: ①除两个节点外,每个节点入度=出度; ②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1; (4)连通有向图含有单向欧拉回路的充要条件: 图中每个节点的出度=入度; 27.哈密顿路:经过图中每个节点一次且仅一次的通路; 哈密顿回路:经过图中每个节点一次且仅一次的回路; 哈密顿图:具有哈密顿回路的图; 28.判定哈密顿图(没有充要条件) 必要条件: 任意去掉图中n 个节点及关联的边后,得到的分图数目小于等于n ; 充分条件: 图中每一对节点的度数之和都大于等于图中的总节点数; 29.哈密顿图的应用:安排圆桌会议; 方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可; 30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图; 31.面次:面的边界回路长度称为该面的次; 32.一个有限平面图,面的次数之和等于其边数的两倍; 33.欧拉定理:假设一个连通平面图有v 个节点,e 条边,r 个面,则 v-e+r=2; 34.判断是平面图的必要条件:(若不满足,就一定不是平面图) 设图G 是v 个节点,e 条边的简单连通平面图,若v>=3,则e<=3v-6; 35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的; 36.判断G 是平面图的充要条件: 图G 不含同胚于K3.3或K5的子图; 37.二部图:①无向图的节点集合可以划分为两个子集V1,V2; ②图中每条边的一个端点在V1,另一个则在V2中; 完全二部图:二部图中V1的每个节点都与V2的每个节点邻接; 判定无向图G 为二部图的充要条件: 图中每条回路经过边的条数均为偶数; 38.树:具有n 个顶点n-1条边的无回路连通无向图; 39.节点的层数:从树根到该节点经过的边的条数; 40.树高:层数最大的顶点的层数; 41.二叉树: ①二叉树额基本结构状态有5种; ②二叉树内节点的度数只考虑出度,不考虑入度; ③二叉树内树叶的节点度数为0,而树内树叶节点度数为1; ④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立; ⑤二叉树内节点的总数=边的总数+1; ⑥位于二叉树第k 层上的节点,最多有12-k 个(k>=1); ⑦深度为k 的二叉树的节点总数最多为k 2-1个,最少k 个(k>=1); ⑧如果有0n 个叶子,n2个2度节点,则0n =n2+1; 42.二叉树的节点遍历方法: 先根顺序(DLR ); 中根顺序(LDR ); 后根顺序(LRD ); 43.哈夫曼树:用哈夫曼算法构造的最优二叉树; 44.最优二叉树的构造方法: ①将给定的权值按从小到大排序; ②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值; ③重复②,直达所有权值构造完毕; 45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值; 每个节点的编码:从根到该节点经过的0和1组成的一排编码;

离散数学12格和布尔代数

第十二章 格和布尔代数 12.1 设c b a ,,是格),( A 中的元素,求证:如果b a ,则)()(c a b c b a ∨∧∧∨ 证明 因为b a ,且)(c a a ∨ ,所以)(c a b a ∨∧ 。 又因为b c b ∧,且c a c c b ∨∧ ,所以)(c a b c b ∨∧∧ 。 即)(c a b ∨∧是a 和c b ∧的上界,从而有: )()(c a b c b a ∨∧∧∨ 。 12.2 设c b a ,,是格),( A 中的元素,求证: (1))()()(c a b a c b a ∨∧∨∧∨ (2))( )()(c b a c a b a ∨∧∧∨∧ (1)证明 因为c a a b a a ∨∨ ,,所以)()(c a b a a ∨∧∨ 。 又因为b a b c b ∨∧ ,且c a c c b ∨∧ ,所以)()(c a b a c b ∨∧∨∧ 。 即)()(c a b a ∨∧∨是a 和c b ∧的上界。 所以,)()()(c a b a c b a ∨∧∨∧∨ 。 (2)证明 因为a b a ∧,a c a ∧,则有a c a b a )()(∧∨∧。 又因为b b a ∧,有c b b b a ∨∧ ,同理c b c a ∨∧ 。从而有c b c a b a ∨∧∨∧ )()(。 即)()(c a b a ∧∨∧是a 和c b ∨的下界。 因此,)( )()(c b a c a b a ∨∧∧∨∧ 。 10.3 设),,(∧∨A 是一个代数系统,其中∨和∧是满足吸收律的二元运算,证明:∨和∧也满足等幂律。 证明

因为∨和∧是满足吸收律,所以a b a a =∨∧)(,a b a a =∧∨)(。于是有: )((b a a a a a ∧∨∧=∧ )(c a a ∨∧= (其中b a c ∧=) a = 同理可证,a a a =∨。 故∨和∧也满足等幂律。 10.4 证明:一个格是可分配的,当且仅当对于这个格中的任意元素a ,b 和c ,有 )()(c b a c b a ∧∨∧∨ 证明 (1)必要性 因为a c a ∧和c b c b ∧∧ ,所以)()()(c b a c b c a ∧∨∧∨∧ 。 又因为格为分配格,所以)()()(c b c a c b a ∧∨∧=∧∨。 因此,)()(c b a c b a ∧∨∧∨ 。 (2)充分性 因为对于c b a ,,?,有)()(c b a c b a ∧∨∧∨ ,则 )()()(c c b a c b a ∧∧∨=∧∨ (等幂律) c c b a ∧∧∨=))(( (结合律) c c b a ∧∧∨))(( (假设) c a c b ∧∨∧=))(( (交换律) )()(c a c b ∧∨∧ (假设) 又因为b a a ∨ ,c c ,所以c b a c a ∧∨∧)( ;同理,c b a c b ∧∨∧)( 因此,c b a c b c a ∧∨∧∨∧)()()( 综上所述,)()()(c b c a c b a ∧∨∧=∧∨ 故该格是可分配的。 10.5 证明一个格),( A 是分配的,当且仅当对A 中的任意元素a ,b 和c ,有 )()()()()()(a c c b b a a c c b b a ∨∧∨∧∨=∧∨∧∨∧

厦门大学离散数学2015-2016期末考试试题答案年

一(6%)选择填空题。 (1) 设S = {1,2,3},R 为S 上的二元关系,其关系图如右图所示,则R 具有( )的性质。 A. 自反、对称、传递; B. 反自反、反对称; C. 自反、传递; D. 自反。 (2) 设A = {1, 2, 3, 4}, A 上的等价关系 R = {, , , } A I , 则对应于R 的A 的划分是( )。 A. {{a }, {b , c }, {d }}; B. {{a , b }, {c }, {d }}; C. {{a }, {b }, {c }, {d }}; D. {{a , b }, {c , d }}。 二(10%)计算题。 (1) 求包含35条边,顶点的最小度至少为3的图的最大顶点数。 (2) 求如下图所示的有向图中,长度为4的通路的数目,并指出这些通路中有几条回路,几条由3v 到4v 的通路。 23 三 (14%) (1) 求 )()(p r q p →→∨ 的主析取范式,主合取范式及真值表; (2) 求 )()),(),((x xH y x yG y x xF ?→?→??的前束范式。 四 (8%) 将下列命题符号化:其中 (1), (2) 在命题逻辑中,(3), (4) 在一阶逻辑中。 (1) 除非天下雨,否则他不乘公共汽车上班; (2) 我不能一边听课,一边看小说; (3) 有些人喜欢所有的花; 厦门大学《离散数学》课程试卷 学院 系 年级 专业 主考教师: 张莲珠,杨维玲 试卷类型:(A 卷)

(4)没有不犯错的人。 五(10%)在自然推理系统P中构造下面推理的证明: 如果他是计算机系本科生或者是计算机系研究生,则他一定学过DELPHI语言且学过C++语言。只要他学过DELPHI语言或者C++语言,那么他就会编程序。因此如果他是计算机系本科生,那么他就会编程序。 六(10%)在自然推理系统中构造下面推理的证明(个体域:人类): 每个喜欢步行的人都不喜欢坐汽车,每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车,因而有的人不喜欢步行。 七(14%)下图给出了一些偏序集的哈斯图,判断其是否为格,对于不是格的说明理由,对于是格的说明它们是否为分配格、有补格和布尔格(布尔代数)。 八(12%)设S = {1, 2, 3, 4, 6, 8, 12, 24},“ ”为S上整除关系, (1)画出偏序集> ,S的哈斯图; < (2)设B = { 2, 3, 4, 6, 12},求B的极小元、最小元、极大元、最大元,下界,上界。 九(8%)画一个无向图,使它是: (1)是欧拉图,不是哈密尔顿图; (2)是哈密尔顿图,不是欧拉图; (3)既不是欧拉图,也不是哈密尔顿图; 并且对欧拉图或哈密尔顿图,指出欧拉回路或哈密尔顿回路,对于即不是欧拉图也不是哈密尔顿图的说明理由。 十(8%)设6个字母在通信中出现的频率如下: 12 13 :c :b% 45 :a% % :e% :f 9 5 : d% % 16 用Huffman算法求传输它们的最佳前缀码。要求画出最优树,指出每个字母对应的编码,n个按上述频率出现的字母需要多少个二进制数字。 并指出传输)2 ( n 10≥

离散数学复习

离散数学复习 第一章命题逻辑基本概念 1.掌握命题及相关概念 2.理解各联结词的逻辑关系 3.会将复合命题符号化 4.会求公式的真值表,并用它求公式的成真赋值、成假赋值及判断公式的类型 第二章命题逻辑等值演算 1.记住基本等值式,会应用它们进行公式的等值演算 2.了解简单析取式、简单合取式、析取范式、合取范式的概念 3.理解极大项、极小项的概念 4.掌握求主析取范式和主合取范式的方法(等值演算和真值表法) 5.会用主范式判断公式的类型及进行简单应用 6.了解联结词完备集的概念 第三章命题逻辑的推理理论 1.理解并记住推理形式结构的两种形式: (1) A1∧A2∧…∧A k→B (2) 前提:A1, A2, … , A k 结论:B 2.掌握判断推理是否正确的不同方法(如真值表法、等值演算法、主析取范式法等)3.记住自然推理系统P系统中的推理规则 4.掌握自然推理系统P系统中的推理方法 第四章一阶逻辑基本概念 1.会进行命题的符号化 2.理解公式的解释 3.理解永真式、矛盾式、可满足式的概念及相互之间的关系 4.对于给定的解释会判断公式的真值,或判定真值不确定(即仍不是命题) 第五章一阶逻辑等值演算与推理 1.理解并记住重要等值式,并能熟练地应用它们 2.会使用置换规则、换名规则(约束条变项)、代替规则(自由变项) 3.会求给定公式的前束范式 4.正确地使用UI, UG, EG, EI规则,特别要注意它们之间的关系 5.在F系统,对给定的推理,正确地构造出它的证明 第六章集合代数 1. 掌握集合的表示法 2.能够判别元素是否属于给定的集合 3.能够判别两个集合之间是否存在包含、相等、真包含等关系 第七章二元关系 1. 掌握二元关系、空关系、全域关系、恒等关系、关系的定义域、值域、域、逆关系、 左复合、右复合、限制、像的概念; 2.掌握关系的集合表达式、关系矩阵和关系图三种表示法; 3.掌握关系的基本运算和关系的幂的运算性质,掌握关系的五个性质:自反性、反自反性、对称性、反对称性和传递性等五个性质; 4.掌握关系的闭包的概念,会应用关系的性质求出关系的闭包(自反闭包、对称闭包和传递闭包);

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

哥伦比亚大学-离散数学-笔记-第9-12章-3

Discrete Mathematics Lecture Notes Chapter11:Graph Theory Scribe:Denis Tchaouchev December11,2017 1De?nitions ?A graph is a collection of nodes,vertices,and edges. –In a directed graph(digraph)?={a,b}={b,a}= ?A walk is a sequence of alternating vertices and edges. ?A trail is a walk with no repeated vertices. ?A circuit is a closed trail(starts and stops at the same place).?A Eulerian circuit is a circuit containing every edge. ?A Eulerian trail is a trail containing every edge. ?A Eulerian graph is a graph containing a Eulerian circuit. Figure1:Examples of Eulerian Circuits(Wendy Sparks) 1

2Konigsberg Bridge Problem Figure2:The Konigsberg Bridge Problem The Konigsberg Bridge Problem asks if it is possible to?nd a route,be-ginning at any location,that crosses every bridge and returns to its original starting point.Think of the bridges as edges and the land as vertices. Euler’s Theorem:A connected(9a path between every vertex)undirected graph G has a Eulerian circuit if and only if every vertex in G has an even degree. G has a Eulerian trail if and only if G has exactly two vertices of odd degree. 3Travelling Salesman Problem Figure3:Examples of Hamiltonian cirucit/path(Robert Almazan)?A Hamiltonian circuit is a circuit that visits each vertex at least once.?A Hamiltonian trail is a trail that visits each vertex at least once. 2

离散数学各章要点14

主要内容 1. 无向图与有向图. 2. 简单图与多重图. 3. 顶点的度数与握手定理. 4. 图的同构. 5. 完全图与正则图. 6. 子图与补图. 7. 通路与回路的定义. 8. n阶图中通路与回路的性质. 9. 无向图的连通性. 10 无向图中顶点之间的短程线及距离. 11 无向图的连通度. 12 有向图的连通性及其分类. 13 扩大路径法及极大路径. 14 二部图及判别定理. 学习要求 1. 熟练掌握握手定理及其推论的内容及其应用. 2. 掌握图同构的概念. 3. 加深对简单图、完全图、正则图、子图、补图等概念的理解. 4. 深刻理解通路与回路的定义及其分类. 5. 能正确地使用不同的表示法表示通路与回路. 6. 理解同构意义下与定义意义下通路与回路的区别与联系. 7.

深刻理解无向图中两个顶点之间的连通关系、短程线、距离、图的连通性等概念. 8. 深刻理解点割集、边割集、点连通度、边连通度等概念. 9. 理解有向图中, 顶点之间的可达、相互可达关系、短程线、距离等概念. 10 深刻理解有向图的连通性及分类, 以及判别定理. 11 理解并会使用扩大路径法. 12 理解无向图与有向图关联矩阵的概念. 13 会求无向图与有向图的关联矩阵. 14 深刻理解有向图的邻接矩阵与可达矩阵的概念. 15 熟练掌握求有向图的邻接矩阵及各次幂的方法, 并利用它们求D中定义意义下的通路与回路数. 典型习题 1. 无向图G有16条边, 3个4度顶点, 4个3度顶点, 其余顶点的度数均小于3, 问G的阶数n至少为几? 2. 9阶图G中, 每个顶点的度数不是5就是6, 证明G中至少有5个6度顶点或至少有6个5度顶点. 3. 在一次象棋比赛中, n名选手中的任意两名选手之间至多只下一盘, 又每人至少下一盘, 证明:总能找到两名选手, 他们下棋的盘数相同. 4. 下面两组数, 是否是可以简单图化的?若是, 请给出尽量多的非同构的无向简单图以它为度数 列. 5. 的所有非同构的生成子图. 画出K 4 6. 设无向图G中只有两个奇度顶点u与v, 试证明u与v必连通. 7. 设D=为有向简单图, 已知δ(D)≥2, 且δ-(D)>0, δ+(D)>0, 证明D中存在长度大于等于 max{δ-(D),δ+(D)}+1的圈. 8. 设n阶无向简单图G有m条边, 已知m≥(n-1)(n-2)+1, 证明G必连通. 9. 设G为n阶无向简单图, 证明以下题目:

相关主题
文本预览
相关文档 最新文档