当前位置:文档之家› 整体法在加速度不等系统中的应用

整体法在加速度不等系统中的应用

整体法在加速度不等系统中的应用
整体法在加速度不等系统中的应用

整体法在加速度不等系统中的应用

浙江省义乌中学(322000) 傅可钦

【摘要】整体法与隔离法是解决连接体问题的两种重要方法,其中,利用整体法思路清晰,步骤简洁,本文重点分析其在加速度不等系统中应用的思路和注意要点,以期引导学生能在较复杂情景中灵活自如地运用整体法。

【关键词】整体法 加速度不等系统

【问题引入】

如图1,一只质量为m 的小猫跳起来抓住悬吊在天花板上质量为M 的

竖直木杆,在这瞬间悬绳断了,当小猫继续向上爬时,使得小猫离地的高度 不变,在此过程中,木杆下落的加速度多大?

解析:取猫为研究对象,它相对地面静止,故有mg f =。

再取杆为研究对象,由牛顿第二定律得:Ma f Mg =+/

又由牛顿第三定律可得,猫对杆的摩擦力f f =/

由以上各式可得:g M

m M a += 在运用牛顿运动定律分析此类加速度不等的连接体问题时,通常用隔离法求解,那么,能否用整体法进行求解呢?

【评析点悟】

其实在加速度不等的系统中,牛顿第二定律同样适用,可以表述为:

系统所受的合外力等于系统中各部分物体质量与其对应加速度的乘积之和,即: 合F = +++332211a m a m a m

当系统内各部分加速度相同时,则有:合F =(1m +2m +3m +……)a m a 总=,此即我们熟悉的牛顿第二定律常用式。

下面就以上例题用整体法分析:猫相对地面静止,其加速度为零,杆下落的加速度待求,设为a ;对整体,猫和杆所受合外力只有两者的重力,即g m M )(+,故有:a g m M M )(=+,即可得结果。

与隔离法相比,整体法解题思路清晰,步骤简洁明快,避开了系统内相互作用力的分析,删繁就简,使牛顿运动定律在多对象问题中应用自如,有效地提高了学生应用动力学

知识解题的能力,下面通过较复杂情景中的应用与隔离法作一比较。

如图2,有一倾角为θ、质量M 的木楔ABC 静置于粗糙水平地

面上,有一质量m 的光滑物块在木楔上由静止开始沿斜面下滑。在

此过程中木楔没有动,求地面对木楔的摩擦力和支持力大小。

解析:利用隔离法解题:

先取物块m 为研究对象,受力分析如图3,

可得:θsin g a =

再取木楔为研究对象,受力分析如图4,

水平方向上:θsin /1N f =

由牛顿第三定律有:1/1N N =

而对物块m ,可得:θcos 1mg N =

由以上各式联立,可得:

θθθcos sin sin /1mg N f ==

竖直方向上:θθ2/12cos cos mg Mg N Mg N +=+=

如利用整体法分析,受力分析与运动分析如图5,其中

将物块加速度沿水平、竖直方向正交分解。

在水平方向上,由加速度的水平分量不难确定地面对木楔的

摩擦力方向水平向左,大小由牛顿第二定律可得:

θθθcos sin cos mg ma f ==

竖直方向上:θθ2sin sin mg ma N mg Mg ==-+

可得:θθ22cos )sin 1(mg Mg mg Mg N +=-+=

通过以上比较不难看出,在加速度不等的系统中应用整体法解题优势明显,其实,不管是定性分析,还是定量求解,该法较隔离法更能全面把握问题关键,凸显运动和力的关系,有效提高解题速度,更深入地理解牛顿运动定律。下面就此类问题进行实战演练。

【应用巩固】

练习1:(2004年全国理综)如图6,在倾角为a 的固定光滑斜

面上,有一用绳子拴着的长木板,木板上站着一只猫。已知木板的质

量是猫的质量的2倍。当绳子突然断开时,猫立即沿着板向上跑,以

保持其相对斜面的位置不变,则此时木板沿斜面下滑的加速度为( ) A. a g sin 21 B. a g sin C.a g sin 2

3 D.a g sin 2 解析:当绳子突然断开,猫保持相对斜面的位置不变,即相对地面的位置不变,处于平衡状态,木板沿斜面下滑,取猫和木板整体为研究对象进行受力分析,由牛顿第二定律可得:ma a mg 2sin 3=,即可得答案为C 。

变式训练1:倾角为θ的光滑斜面上,放有一质量为M 的木板,其上表面粗糙,为使木板在斜面上静止不动,今有一质量为m 的猫在上奔跑,试确定猫的运动方向及加速度大小。

(参考答案:猫应具有沿斜面向下的加速度,大小为θsin g m

m M +) 练习2:如图7,在某箱子内的竖直杆上套有一金属环,设箱子和竖直

杆的质量之和为M ,金属环的质量为m ,现给箱子一个竖直向上的恒力F

的作用,使箱子以加速度a 匀加速上升,环以g 5.0的加速度匀加速下滑,

试求 F 的大小。

解析:取箱子和环为研究对象,由牛顿第二定律可得:

g m Ma mg Mg F 5.0)(?-=+-

可解:mg a g M F 2

1)(++= 变式训练2:如图8,某箱子放在水平地面上,箱内固定一竖直杆, 在杆上套着一个环,箱和杆的质量为M ,环的质量为m ,已知环沿着

杆以加速度a (g a <)加速下滑,试分析此时箱对地面的压力。

(参考答案:ma mg Mg -+)

变式训练3:如图9,A 为电磁铁,C 为胶木秤盘,A 和C(包括支架)

的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬于o 点,当电

磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小为 ( )

A.mg F =

B.g m M F Mg )(+<<

C.g m M F )(+=

D.g m M F )(+>

(参考答案:D )

【温馨提醒】

通过以上分析可以明确:在加速度不等系统中应用整体法,简化了隔离法的繁枝冗节,有利于我们更全面深入地理解牛顿第二定律,但我们也应该清醒地认识到,此方法在带来简捷思路的同时,也增大了出错风险。应用其解题关键是:对整体的受力分析与系统各部分的正确全面的运动分析,尤其要注重加速度的分析,方能得心应手,否则欲速则不达。

点的合成运动习题解答

2- 1凸轮以匀角速度绕°轴转动,杆AB的A端搁在凸轮上。图示瞬时AB杆 处于水平位置,°A为铅直。试求该瞬时AB杆的角速度的大小及转向解:V a V e V r 其中,v e. r2e2 V a V e tg e v e 所以AB a(逆时针) 求当0时,顶杆的速度 2-2.平底顶杆凸轮机构如图所示 转动,轴0位于顶杆轴线上为 R,偏心距OC e, 顶杆AB可沿导轨上下移动, 工作时顶杆的平底始终接触凸轮表面 凸轮绕轴0转动的角速度为 偏心圆盘绕轴0 该凸轮半径 ,0C与水平线成夹角 A

(1)运动分析 轮心C 为动点,动系固结于AB ;牵连运动为上下直线平移,相对运动为与平底 平行直线,绝对运动为绕0圆周运动。 (2)速度分析,如图b 所示 V - V - V a e r 方向 丄OC 1 - 大小 ? ? y 肋二人二 v a cos

逐差法教学

逐差法教学 逐差法是在教学过程中一个难点。有关匀变速直线运动纸带的求法。对于偶数段加速度的计算,可以平分成两段。这是两个相邻相等时间间隔对应的位移。用公式△X=aT2,算出位移差,选对时间间隔,即可将加速度准确的求出来。对于奇数段加速度的计算,则有好多种做法。常用的可以选择首末两端,用公式求解。还可以剔除首段或者末段,然后用偶数段的求法进行求解。这样必然出现好多种答案。所以老师说:“有关逐差法求奇数段加速度的问题,相当混乱,不要对学生讲的太多,不然会混乱的。” 在求解过程中。这种做法是这样的。举例说明。 对于分成六段的纸带。取前三段,后三段。分别求出前三段后三段的平均速度,根据平均速度等于此段中间时刻的瞬时速度的推论,代替这两个时刻的速度。然后找出这两段的时间隔,代入公式即可求出。 例子:如图是某同学在做探究小车速度随时间变化的规律实验时,从若干纸带中所选中的一条纸带的一部分,他每隔4个点取一个计数点,数据如图示。(单位:cm) O A B C D E F 2.8 4.4 5.95 7.57 9.1 10.71 S1 S2 S3 S4 S5 S5 O A B C D E F 2.8 4.4 5.95 7.57 9.1 10.71 S1 S2 S3 S4 S5 S5 OC中间时刻的速度可以用V OC=OC/t OC CE中间时刻的速度可以用V CE=CE/t CE OC中间时刻和CE中间时刻的时间间隔为总时间的一半,即0.3s。用公式 a=△V/△T,即可求出加速度。 用OC间的平均速度代替中间时刻的瞬时速度V OC,用CF间的平均速度代替中间时刻的瞬时速度V CF,两者之间的时间间隔△T=(3*0.1)s。 用加速度的公式a=△V/△T=(V CF-V OC)/△T,可以求出来。 其实,对于偶数段来说,学生的这种做法跟用逐差法求解是一样的,通过公式变换可以相互转换。a=△V/△T=(V CF-V OC)/△T=(X CF/△T-X OC/△T)/ △T’ ,其中△T=△T’ =(3*0.1)s, 故a=X CF/△T2-X OC/△T2=△X=aT2。由此可见,在处理偶数段的问题上,二者本质是相同的。(我们姑且称第二种方法为公式法) 在学生这种做法的引导下,我想到了奇数段是否也可以用如此方法求呢?举例说明。 因为选择段数的不同,亦会造成不同结果。以五段为例,有的选择前两段后三段,有的会选择前三段后两段,甚至有的会选择前四段后一段,或者前一段后四段。这样会使结果产生很大的误差,使计算更加混乱。是的,李老师的问题直接击中了这个做法的要害。到底该如何做呢? 我们退而求其次,看看各种做法到底会产生多大的误差。还是以上面这个题做例子。 要确定纸带打出的纸带是不是匀速直线运动,因为只有匀变速直线运动才满足ΔX=at2。 EF-DE=1.61,DE-CD=1.53,CD-BC=1.62 , BC-AB=1.55,4个ΔX近似相等,可以当成匀变速直线运动,可以用逐差法,以及我提到的那种方法可以用。 经过几个月的教学,渐渐发觉自己研究的这个问题有点钻牛角尖的感觉。逐差法的目的是尽可能使更多的数据用到计算中,这样可以减小误差;而公式法也是如此,只不过多用了一段数据而已。这样做,仅仅是减小误差而已。没有多大的研究价值。 原来对于求加速度的问题,最准确的办法是通过图像来求解。对于匀变速直线运动,那些误差大的点可以一目了然,直接在图像中剔除掉,剩下的在直线上,或直线两侧,这样会使数据最准确。

详解逐差法

和逐差法求加速度应用分析 一、由于匀变速直线运动的特点是:物体做匀变速直线运动时,若加速度为a,在各个连续相等的时间T内发生的位移依次为S1、S2、S3、……S n,则有 S2-S1=S3-S2=S4-S3=……=S n-S n-1=aT2即任意两个连续相等的时间内的位移差相符,可以依据这个特点,判断原物体是否做匀变速直线运动或已知物体做匀变速直线运动,求它的加速度。 例1:某同学在研究小车的运动的实验中,获得一条点迹清楚的纸带,已知打点计时器每隔0.02s打一个计时点,该同学选A、B、C、D、E、F六个计数点,对计数点进行测量的结果记录在下图中,单位是cm。 试计算小车的加速度为多大? 解:由图知:S1=AB=1.50cm S2=BC=1.82cm S3=CD=2.14cm S4=DE=2.46cm S5=EF=2.78cm 可见:S2-S1=0.32cm S3-S2=0.32cm S4-S3=0.32cm S5-S4=0.32cm 即又

说明:该题提供的数据可以说是理想化了,实际中不可能出现S2-S1= S3-S2= S4-S3= S5-S4,因为实验总是有误差的。 例2:如下图所示,是某同学测量匀变速直线运动的加速度时,从若干纸带中选出的一条纸带的一部分,他每隔4个点取一个计数点,图上注明了他对各计算点间距离的测量结果。试验证小车的运动是否是匀变速运动? 解:S2-S1=1.60 S3-S2=1.55 S4-S3=1.62 S5-S4=1.53 S6-S5=1.63 故可以得出结论:小车在任意两个连续相等的时间里的位移之差,在实验误差允许的范围内相等,小车的运动是匀加速直线运动。 上面的例2只是要求我们判断小车在实验误差内做什么运动。若进一步要我们求出该小车运动的加速度,应怎样处理呢?此时,应用逐差法处理数据。 由于题中条件是已知S1、S2、S3、S4、S5、S6共六个数据,应分为3组。 即

通过纸带求加速度方法总结与步骤(新)

通过纸带求加速度的两种方法 在学完第二章《匀变速直线运动的研究》内容以后,老师布置这样一道题:某同学在做“测定匀变速直线运动的加速度”实验时,从打下的若干纸带中选出了如图所示的一条(每两点间还有4个点没有画出来),图中上部的数字为相邻两个计数点间的距离。打点计时器的电源频率为50Hz 。由这些已知数据计算: (1)求下列各点的瞬时速度:1v = m/s ;2v = m/s ;3v = m/s ;4v = m/s ;5v = m/s 。 (2)思考:如何得出O v = m/s ; v 6= m/s 。 (3)根据提供的数据你能用几种方法求出该匀变速直线运动的加速度a =___m/s 2。(答案均要求保留3位有效数字) 由于两个相邻记数点间的时间间隔为T=0.1s,利用匀变速直线运动的中间时刻瞬时速度等于这一段时间的平均速度同学们很快得出了V 1、、V 2、V 3、V 4、V 5分别为0.605m/s 、0.810m/s 、1.01m/s 、1.21m/s 、1.42m/s.同样道理由于01v =S 1/ T=( V O +V 1)/2, 56v == S 6/T=(V 5+V 6)/2,可得V O 、、V 6为0.395m/s 、1.60m/s . 对于第三个问题,同学们展开了热烈的讨论,经过一段时间的讨论与演练,同学共提出了几种不同的方法,老师让几位同学在黑板上板演了自己的做法。 一位同学解法:△S 1=S 2-S 1=2.10cm, △S 2=S 3-S 2=2.00cm, △S 3=S 4-S 3=1.90cm, △S 4=S 5-S 4=2.20cm, △S 5=S 6-S 5=1.90cm,由于△S 不等,所以s ?=(△S 1+△S 2+△S 3+△S 4+△S 5)/5=2.02 cm.a =s ? /T 2=2.02m/s 2 另一位同学利用坐标纸,根据得出的V 1、、V 2、 V 3、V 4、V 5的大小作出V-t 图象,通过求图象的斜率△V /△t 求加速度a 。 第三位同学根据求出的V 1、、V 2、V 3、V 4、V 5的大小先求各阶段的加速度:a 1= (V 2-V 1)/T ,a 2= (V 3- V 2)/T ,a 3=(V 4-V 3)/T , a 4=(V 5-V 4)/T ,然后a =(a 1+a 2+a 3+a 4)/4得到平均加速度. 分析:下面我们一起来分析一下这三位同学的做法: 第一位同学的做法看起来非常有道理,下面我们对这种做法作一分析: /551234/55521324346()/561 2()/5612 s s s s s s s s s s s s s s s s s s s a s s T T ?? ??? ?? ??? ?=?+?+?+?+?=-+-+-+-+-=-?==-

逐差法练习题

逐差法 1. 物体从静止开始做匀加速直线运动,已知第4s 内与第2s 内的位移之差是12m ,则可知:( ) A . 第1 s 内的位移为3 m B. 第2s 末的速度为8 m /s C. 物体运动的加速度为2m /s 2 D. 物体在5s 内的平均速度为15 m /s 2.在做《研究匀变速直线运动》的实验时,所 用电源频率为50Hz ,取下一段纸带研究,如图所示。设0点为记数点的起点,相邻 两记数点间还有四个点,则第一个记数点与起始点间的距离 s 1=_______cm ,物体的加速度a = m/s 2,物体经第4个记数点的瞬时速度为v = m/s 。 3.一质点做匀变速直线运动。第2s 和第7s 内位移分别为2.4m 和3.4m ,则其运动加速度a 为________m/s 2. 4.如图所示,某同学在做“研究匀速直线运动”实验中,由打点计时器得到表示小车运动过程的一条清晰纸带,纸带上两相邻计数点的时间间隔为T =0.10s ,其中X 1=7.05cm 、X 2=7.68cm 、X 3=8.33cm 、X 4=8.95cm 、X 5=9.61cm 、X 6=10.26cm ,则A 点处瞬时速度的大小是________m/s ,小车运动的加速度计算表达式为________________________,加速度的大小是_________m/s 2。 5. 一物体做匀变速直线运动,从某时刻开始计时,即0t =,在此后连续两个2s 内物体通过的位移分别为8m 和16m ,求: (1)物体的加速度大小。 (2)0t =时物体的速度大小。

6. (1)使用打点计时器来分析物体运动情况的实验中,有如下基本步骤: A、把打点计时器固定在桌子上 B、安好纸带 C、松开纸带让物体带着纸带运动 D、接通低压交流电源 E、取下纸带 F、断开开关 这些步骤正确的排列顺序为_____ __。 (2)用打点计时器记录了被小车拖动的纸带的运动情况,在纸带上确定出A 、B 、C 、D 、E 、F 、G 共7个计数点。其相邻点间的距离如图所示,每两个相邻的计数点之间还有4个打印点未画出。 ①试根据纸带上各个计数点间的距离,计算出打下B 、C 、D 、E 、F 五个点时小车的瞬时速度,并将各个速度值填入下表(要求保留3位有效数字) ②将B 、C 、D 、E 、F 各个时刻的瞬时速度标在直角坐标系中,并画出小车的瞬时速度随时间变化的关系图线。 ③由所画速度—时间图像求出小车加速度为_______m/s 2 (该空保留两位有效数字) 1.A 2. 4,1,0.75 3. 0.2m/s 2. 4、0.86, [( X 4+X 5+X 6)- ( X 2+X 2+X 3)]/9T 2 , 0.64 5 (1) 2 2 /m s ;(2)2ms 6. (1)ABDCFE (2) ①0.400; 0.721; ②0.84(0.80~0.85)

高中物理逐差法求加速度应用分析新人教版必修1

和逐差法求加速度应用分析 新编高一物理对利用纸带判断物体运动的性质和求加速度。仍为教学重点内容。 一、由于匀变速直线运动的特点是:物体做匀变速直线运动时,若加速度为a,在各个连续相等的时间T内发生的位移依次为S1、S2、S3、……S n,则有 S2-S1=S3-S2=S4-S3=……=S n-S n-1=aT2即任意两个连续相等的时间内的位移差相符,可以依据这个特点,判断原物体是否做匀变速直线运动或已知物体做匀变速直线运动,求它的加速度。 例1:某同学在研究小车的运动的实验中,获得一条点迹清楚的纸带,已知打点计时器每隔0.02s打一个计时点,该同学选A、B、C、D、E、F六个计数点,对计数点进行测量的结果记录在下图中,单位是cm。 试计算小车的加速度为多大? 解:由图知:S1=AB=1.50cm S2=BC=1.82cm S3=CD=2.14cm S4=DE=2.46cm S5=EF=2.78cm 可见: S2-S1=0.32cm S3-S2=0.32cm S4-S3=0.32cm S5-S4=0.32cm 即又

说明:该题提供的数据可以说是理想化了,实际中不可能出现S2-S1= S3-S2= S4-S3= S5-S4,因为实验总是有误差的。 例2:如下图所示,是某同学测量匀变速直线运动的加速度时,从若干纸带中选出的一条纸带的一部分,他每隔4个点取一个计数点,图上注明了他对各计算点间距离的测量结果。试验证小车的运动是否是匀变速运动? 解: S2-S1=1.60 S3-S2=1.55 S4-S3=1.62 S5-S4=1.53 S6-S5 =1.63 故可以得出结论:小车在任意两个连续相等的时间里的位移之差,在实验误差允许的范围内相等,小车的运动是匀加速直线运动。 上面的例2只是要求我们判断小车在实验误差内做什么运动。若进一步要我们求出该小车运动的加速度,应怎样处理呢?此时,应用逐差法处理数据。 由于题中条件是已知S1、S2、S3、S4、S5、S6共六个数据,应分为3组。 即 = 即全部数据都用上,这样相当于把2n个间隔分成n个为第一组,后n个为第二组,这样起到了减小误差的目的。

理论力学点的合成运动

第六章点的合成运动 一、是非题 1、不论牵连运动的何种运动,点的速度合成定理v a=v e+v r皆成立。() 2、在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。() 3、当牵连运动为平动时,相对加速度等于相对速度对时间的一阶导数。() 4、用合成运动的方法分析点的运动时,若牵连角速度ωe≠0,相对速度υr≠0,则一定有不为零的科氏加速度。() 5、若将动坐标取在作定轴转动的刚体上,则刚体内沿平行于转动轴的直线运动的动点,其加速度一定等于牵连加速度和相对加速度的矢量和。() 6、刚体作定轴转动,动点M在刚体内沿平行于转动轴的直线运动,若取刚体为动坐标系,则任一瞬时动点的牵连加速度都是相等的。() 7、当牵连运动定轴转动时一定有科氏加速度。() 8、如果考虑地球自转,则在地球上的任何地方运动的物体(视为质点),都有科氏加速度。() 二、选择题 1、长L的直杆OA,以角速度ω绕O轴转动,杆的A端铰 接一个半径为r的圆盘,圆盘相对于直杆以角速度ωr,绕A轴 转动。今以圆盘边缘上的一点M为动点,OA为动坐标,当AM 垂直OA时,点M的相对速度为。 ①υr=Lωr,方向沿AM; ②υr=r(ωr-ω),方向垂直AM,指向左下方; ③υr=r(L2+r2)1/2ωr,方向垂直OM,指向右下方; ④υr=rωr,方向垂直AM,指向在左下方。 2、直角三角形板ABC,一边长L,以匀角速度ω绕B轴转动,点M以S=Lt的规律自A向C运动,当t=1秒时,点M的相对加速度的大小α r= ;牵连加速度的大小αe = ;科氏 加速度的大小αk = 。方向均需在图中画出。 ①Lω2; ②0; ③3Lω2;

逐差法求加速度

逐差法求加速度 核心思想:尽可能多的用上所有数据,从而减小误差。 一、常用公式 位移差公式:连续相等的时间T 思考:如果不连续怎么样?例如第m、第n之间? ※例1:如下图所示,是某同学测量匀变速直线运动的加速度时,从若干纸带中选出的一条纸带的一部分,他每隔4个点取一个计数点,图上注明了他对各计算点间距离的测量结果。试验证小车的运动是否是匀变速运动。若是,请求出小车的加速度。 二、逐差法公式 同学们在平常做题中主要遇到两种情形,给定的位移段数为偶数和奇数。 (1)偶数段: (2)奇数段 补充说明: ①如果题目中数据理想情况,发现S2-S1=S3-S2=S4-S3=…… 此时不需再用逐差法,直接使用 即可求出 ②若给定条件只有像 高一物理逐差法求加速度专项训练学案 1.在“测定匀变速直线运动加速度”的实验中,得到的记录纸带如下图所示,图中的点为记数点,在每两相邻的记数点间还有4个点没有画出,则小车运动的加速度为( ) A.0.2m/s2 B.2.0m/s2 C.20.0m/s2 D.200.0m/s2 2 aT x= ?

2.在“探究小车速度随时间变化的规律”的实验中,如图11所示,是一条记录小车运动情况的纸带,图中A、B、 C、D、E为相邻的计数点,每相邻的两个计数点之间还有4个点没有画出,交流电的频率为50 Hz. (1)在打点计时器打B、C、点时,小车的速度分别为v B=________ m/s;v C=________ m/s; (2)计算小车的加速度多大? 3.如图所示是某同学测量匀变速直线运动的加速度时,从打点计时器打出的若干纸带中选出的一条纸带的一部分(电源频率为50Hz).他每隔4个点取一个计数点,且在图中注明了他对各个计数点间距离的测量结果.(单位: cm) B点的速度为 m/s 。,则由此可算出小车的加速度为 m/s2 4.在某次实验中获得的纸带上取6个计数点,标记为0、1、2、3、4、5,相邻的两个计数点间有打点计时器打出的1个点未标出.每个计数点相对起点的距离如图1-9-7所示.由纸带测量数据可知,从起点0到第5个计数点的这段时间里小车的平均速度为________ m/s,打3这个计数点时小车的瞬时速度v3=__________ m/s小车运动的加速度为________ m/s2. 5.(4分)在“探究小车速度随时间变化的规律”的实验中,得到一条纸带如图2所示,A、B、C、D、E、F为相邻的6个计数点,若相邻两计数点的时间间隔为0.1 s,则粗测小车的加速度为______ m/s2. 6.在测定匀变速直线运动的加速度的实验中,打点计时器所用电源的频率为50 Hz.图3所示为做匀变速直线运动的小车带动的纸带上记录的一些点,在每相邻的两点中间都有四个点未画出.按时间顺序取1、2、3、4、5、6六个点,用刻度尺量出2、3、4、5、6点到1点的距离分别是8.78 cm、16.08 cm、21.87 cm、26.16 cm、28.94 cm,由此得出小车加速度的大小为___________m/s2,方向与初速度方向___________.小车做___________运动(填加速、减速)

逐差法

逐差法 逐差法的优点 逐差法是为提高实验数据的利用率,减小了随机误差的影响,另外也可减小中仪器误差分量,因此是一种常用的数据处理方法。 逐差法 所谓逐差法,就是把测量数据中的因变量进行逐项相减或按顺序分为两组进行对应项相减,然后将所得差值作为因变量的多次测量值进行数据处理的方法。 逐差法是针对自变量等量变化,因变量也做等量变化时,所测得有序数据等间隔相减后取其逐差平均值得到的结果。其优点是充分利用了测量数据,具有对数据取平均的效果,可及时发现差错或数据的分布规律,及时纠正或及时总结数据规律。他也是物理实验中处理数据常用的一种方法。逐差法求最大公约数 两个正整数,以其中较大数减去较小数,并以差值取代原较大数,重复步骤直至所剩两数值相等,即为所求两数的最大公约数。 例如: 259,111 ==>259-111=148 148,111 ==>148-111=37 111,37 ==>111- 37=74 74 ,37 ==> 74- 37=37 37 ,37 ==> 259与111的最大公约数为37 还可以用来求高中物理匀变速直线运动纸带方面的题 运用公式△X=at^2; X1-x2=X4-X3 逐差法求加速度原理 如果物体做匀变速直线运动,S1,S2……Sn为其在连续相等时间内的位移,a为其加速度,T为相等时间间隔值,则有 假如用相邻的距离之差ΔS1,ΔS2……ΔSn-1分别除以T的平方,再取其平均值,有

从上式中可以看成,在取算术平均值的过程中,中间各数值S2,S3,S4……Sn-1都被消去,只剩下首尾两个数值S1、Sn起作用,因而不能起到利用多个数据减少偶然误差的作用。 解决这一类问题的合适方法是用逐差法。其方法是把连续的数据(必须是偶数个)S1,S2,S3……Sn从中间对半分成两组,每组有m=n/2个数据,前一半为S1,S2,S3……Sm,后一半为Sm+1,Sm+2……Sn,将后一半的第一个数据减去前一半的第一个数据得 ,后一半的第二个数据减去前一半的第二个数据 ,则由这些差值求得的加速度分为: 。 取这样得到的加速度的平均值 从上式可以看出,所有的数据S1,S2……Sn都用到了,因而减少了偶然误差。 仔细总结逐差法求加速度的表达式有什么特点? 如果有数据三组:S1,S2,S3则加速度表达式为 a= (S3- S1)/2T2 即舍去了第二组数据,如果有四组数据S1,S2,S3,S4则加速度表达式为a={( S3+ S4)- (S1+S2)}/4 T2.如果有五组数据S1,S2,S3,S4,S5则加速度表达式为a={( S4+ S5)- (S1+S2)}/6 T2。即舍去了中间的一组数据。有六组数据S1,S2,S3,S4,S5,S6则加速度表达式为a={( S4+ S5+ S6)- (S1+S2+ S3)}/9 T2。

第四节 牵连运动为转动时点的加速度合成定理

※第四节 牵连运动为转动时点的加速度合成定理 。 取动点为小球M ,动系固结于圆盘,定系固 结于地面。动点M 的的相对运动为匀速率圆周运 动,相对速度为r v ,故相对加速度r a 的大小为 r v a a r n r r 2 == (a ) 方向指向圆心O 。牵连运动是圆盘以匀角速度e ω绕O 轴转动,故动点M 的牵连速度e v 的大小为 r v e e ω=,方向与r v 一致;牵连加速度e a 的大小 为 2e n e e r a a ω== (b ) 方向也指向圆心O 。由于r v 和e v 方向相同,故点M 的绝对速度的大小为 =+=+=r e r e a v r v v v ω常数 可见,动点M 的绝对运动也是也是匀速圆周运动,于是M 的绝对加速度a a 的大小为 ()r e r e r e a n a a v r v r r v r r v a a ωωω22222++=+=== (c ) 方向也是指向圆心O 。考虑到(a )、(b )两式,有 r e r e a v a a a ω2++= (d ) 从上式可以看出,动点的绝对加速度除了牵连加速度和相对加速度两项外,还多了一项r e v ω2,可见牵连运动为转动时,动点的绝对加速度并不等于牵连加速度与相对加速度的矢量和,而多出的一项与牵连转动e ω和相对速度r v 有关,多出的这一项称为科氏加速度。 牵连运动为转动时点的加速度合成定理为:牵连运动为转动时,动点在某瞬时的绝对加速度等于该瞬时它的牵连加速度、相对加速度与科氏加速度的矢量和。即 C r e a a a a a ++= (14-7) 式中a c 为科氏加速度,它等于动系角速度矢与点的相对速度矢的矢积的两倍,即 r e C v ωa ?=2 (14-8) 刚体的角速度矢的模等于角速度的大小,其方位沿刚体的转轴, 指向用右手螺旋法则来确定(右手四指代表角速度的转向,拇指表示 角速度矢的指向)。 C a 的大小为 θωsin 2r e C v a = 其中θ为e ω与r v 两矢量间的最小夹角。矢C a 垂直于e ω与r v ,指向按 右手法则确定,如图14-11所示。 当e ω与r v 平行时( 0=θ或180°),0=C a ;当e ω与r v 垂直时,r e C v a ω2=。常见的平面机构中,e ω与r v 是相互垂直的,此时r e C v a ω2=;且r v 按e ω转向转过90°就是C a 的指向。 科氏加速度是由于牵连运动为转动时,牵连运动与相对运动相互影响而产生的。 图 14-11 图 14-10

逐差法物理实验

逐差法求加速度 一、用逐差法求加速度的原因: 如果物体做匀变速直线运动,S1,S2……Sn为其在连续相等时间T内的位移,a为其加速度,T为相等时间间隔值,则有 假如用相邻的距离之差ΔS1,ΔS2……ΔSn-1分别除以T的平方,再取其平均值,有 从上式中可以看成,在取算术平均值的过程中,中间各数值S2,S3,S4……Sn-1都被消去,只剩下首尾两个数值S1、Sn起作用,因而不能起到利用多个数据减少偶然误差的作用。 二、逐差法 (1)偶数段 逐差法是把连续的数据(必须是偶数个)S1,S2,S3……Sn从中间对半分成两组,每组有m=n/2个数据,前一半为S1,S2,S3……Sm,后一半为Sm+1,Sm+2……Sn,将后一 半的第一个数据减去前一半的第一个数据得,后一半的第二个数据减去前一半的第二个数据,则由这些差值求得的加速度分为: 。 取这样得到的加速度的平均值 从上式可以看出,所有的数据S1,S2……Sn都用到了,因而减少了偶然误差。

例:以下纸带记录了某匀变速运动物体的位移,每段位移时间间隔均为T 。 如果计算该物体的加速度,可以将这四段位移分成两大段:S OB 和S BD ,每段的时间均为2T ,所以加速度为212342) 2()()()2(T S S S S T S S a OB BD +-+=-= (2)奇数段 如果连续的数据是奇数个S1,S2,S3……Sn ,则舍去最中间的数据,其余分成两组,每组有m =(n-1)/2个数据,前一半为S1,S2,S3……Sm ,后一半为Sm+2,Sm+3……Sn ,将后一半的第一个数据减去前一半的第一个数据得2121)1(aT m S S S m +=-=?+,后一半的第二个数据减去前一半的第二个数2232)1(aT m S S S m +=-=?+,第n 个数据减去前一半最后一个数据2)1(aT m S S S m n m +=-=?,则由这些差值求得的加速度分为: 2222211)1(,)1(,)1(T m s a T m s a T m s a m m +?=+?=+?=。 取这样得到的加速度的平均值 2 13222121)1()()()1(T m m S S S S S T m m s s s m a a a a m n m m m m ++-++=+?+?+?=++=++ 例:以下纸带记录了某匀变速运动物体的位移,每段位移时间间隔均为T 。 如果计算该物体的加速度,可以舍去第4段,再分成两大段:S OC 和S DG ,每一大段有 3小段,其中第5段和第1段差4aT 2,所以加速度为 2123567243)()(43T S S S S S S T S S a OC DG ?++-++=?-=

逐差法求加速度的应用分析

实验中应用逐差法求加速度 物理实验中,准确记录及有效利用测量数据,具有非常重要的意义。在实验“利用打点计时器测定匀变速直线运动的加速度”,为尽量减少偶然误差带来的影响,一般采取多次测量而后取平均值的方法,在处理数据时用到“逐差法”。 一、由于匀变速直线运动的特点是:物体做匀变速直线运动时,若加速度为a ,在各个连续相等的时间T 内发生的位移依次为x 1、x 2、x 3、……x n ,则有x 2-x 1=x 3-x 2=x 4-x 3=……=x n -x n-1=aT 2即任意两个连续相等的时间内的位移差相等,可以依据这个特点,判断物体是否做匀变速直线运动或已知物体做匀变速直线运动时,求它的加速度。 一、若题目给出的条件是偶数段,如4段、6段、8段等。 都要分组进行求解,分别对应 :2 213422) ()(T x x x x a ?+-+= 2 32165433) ()(T x x x x x x a ?++-++= 2 43218 76544) ()(T x x x x x x x x a ?+++-+++= 例1:如下图所示,是某同学测量匀变速直线运动的加速度时,从若干纸带中选出的一条纸带的一部分,他每隔4个点取一个计数点,图上注明了他对各计算点间距离的测量结果。试验证小车的运动是否是匀变速运动? 若是匀加速直线运动,请求出加速度 . 二、若在练习中出现奇数段,如3段、5段、7段等。这时我们发现不能恰好分成两组。考虑到实验时中间段的数值较接近真实值,应分别采用下面求法: 2 1 32T x x a -= 2 215432) ()(T x x x x a ?+-+= 2 32176543) ()(T x x x x x x a ?++-++= 例2. 某次用打点计时器研究匀变速运动的实验中,用打点计时器打出小车带动的纸带如图,电源的频率为50Hz .在纸带上按时间顺序取0、1、2、3、4、5共六个计数点,每相邻的两点间均有四个点未画出.用米尺量出1、 2、3、4、5点到0点的距离标在了纸带下面,则小车的加速度大小为________,方向 _________. 三、另外,还有两种特殊情况,说明如下: ①如果题目中数据比较理想,发现x 2-x 1=x 3-x 2=x 4-x 3=……此时不需再用逐差法,直接使用2 aT x =?即可求出2T x a ?= 。 例3:某同学在研究小车的运动的实验中,获得一条点迹清楚的纸带,已知打点计时器每隔0.02s 打一个计时点,该同学选A 、B 、C 、D 、E 、F 六个计数点,对计数点进行测量的结果记录在下图中,单位是cm 。试计算小车的加速度为多大?

通过纸带求加速度方法总结与步骤(新)

高中纸带求加速度的两种方法 在学完第二章《匀变速直线运动的研究》内容以后,老师布置这样一道题:某同学在做“测定匀变速直线运动的加速度”实验时,从打下的若干纸带中选出了如图所示的一条(每两点间还有4个点没有画出来),图中上部的数字为相邻两个计数点间的距离。打点计时器的电源频率为50Hz 。由这些已知数据计算: (1)求下列各点的瞬时速度:1v = m/s ;2v = m/s ;3v = m/s ;4v = m/s ;5v = m/s 。 (2)思考:如何得出O v = m/s ; v 6= m/s 。 (3)根据提供的数据你能用几种方法求出该匀变速直线运动的加速度a =___m/s 2。(答案均要求保留3位有效数字) 由于两个相邻记数点间的时间间隔为T=0.1s,利用匀变速直线运动的中间时刻瞬时速度等于这一段时间的平均速度同学们很快得出了V 1、、V 2、V 3、V 4、V 5分别为0.605m/s 、0.810m/s 、1.01m/s 、1.21m/s 、1.42m/s.同样道理由于01v =S 1/ T=( V O +V 1)/2, 56v == S 6/T=(V 5+V 6)/2,可得V O 、、V 6为0.395m/s 、1.60m/s . 对于第三个问题,同学们展开了热烈的讨论,经过一段时间的讨论与演练,同学共提出了几种不同的方法,老师让几位同学在黑板上板演了自己的做法。 一位同学解法:△S 1=S 2-S 1=2.10cm, △S 2=S 3-S 2=2.00cm, △S 3=S 4-S 3=1.90cm, △S 4=S 5-S 4=2.20cm, △S 5=S 6-S 5=1.90cm,由于△S 不等,所以s ?=(△S 1+△S 2+△S 3+△S 4+△S 5)/5=2.02 cm.a =s ? /T 2=2.02m/s 2 另一位同学利用坐标纸,根据得出的V 1、、V 2、 V 3、V 4、V 5的大小作出V-t 图象,通过求图象的斜率△V /△t 求加速度a 。 第三位同学根据求出的V 1、、V 2、V 3、V 4、V 5的大小先求各阶段的加速度:a 1= (V 2-V 1)/T ,a 2= (V 3- V 2)/T ,a 3=(V 4-V 3)/T , a 4=(V 5-V 4)/T ,然后a =(a 1+a 2+a 3+a 4)/4得到平均加速度. 分析:下面我们一起来分析一下这三位同学的做法: 第一位同学的做法看起来非常有道理,下面我们对这种做法作一分析: 所给的六个位移数据只有两个派上用场,误差比较大。 为了将六个位移数据都派 /551234/55521324346()/561 2()/5612 s s s s s s s s s s s s s s s s s s s a s s T T ?? ??? ?? ??? ?=?+?+?+?+?=-+-+-+-+-=-?==-

第5章点的合成运动习题解答080814

第五章 点的合成运动 本章要点 一、绝对运动、相对运动和牵连运动 一个动点, 两个参照系: 定系,动系; 三种运动:绝对运动、相对运动和牵连运动, 包括三种速度:绝对速度、相对速度和牵连速度; 三种加速度:绝对加速度、相对加速度和牵连加速度; 牵连点:动参考系上瞬时与动点相重合的那一点称为动参考系上的牵连点。 二、速度合成定理 动点的绝对速度,等于它在该瞬时的牵连速度与相对速度的矢量和,即 r e a v v v += 解题要领 1 定系一般总是取地面,相对定系运动的物体为动系,动点不能在动系上. 2 牵连速度是牵连点的速度. 3 速度合成定理中的三个速度向量,涉及大小方向共六个因素,能且只能存在两个未知数方能求解,因此,至少有一个速度向量的大小方向皆为已知的. 4 作速度平行四边形时,注意作图次序:一定要先画大小方向皆为已知的速度向量,然后再根据已知条件画上其余两个速度向量,特别注意,绝对速度处于平行四边形的对角线位置. 5 用解三角形的方法解速度合成图. 三、加速度合成定理 1 牵连运动为平移时的加速度合成定理 当牵连运动为平移时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和,即 r e a a a a +=, 当点作曲线运动时,其加速度等于切向加速度和法向加速度的矢量和,因此上式还可进一步写成 n r t r n e t e n a t a a a a a a a +++=+ 其中 t v a d d a t a =,a 2a n a ρv a =,t v a d d e t e =,e 2e n e ρv a =,t v a d d r t r =,r 2r n r ρv a =,r e a ,,ρρρ依次为绝 对轨迹、牵连轨迹和相对轨迹的曲率半径。

逐差法物理实验

逐差法物理实验 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

逐差法求加速度 一、用逐差法求加速度的原因: 如果物体做匀变速直线运动,S1,S2……Sn为其在连续相等时间T内的位移,a 为其加速度,T为相等时间间隔值,则有 假如用相邻的距离之差ΔS1,ΔS2……ΔSn-1分别除以T的平方,再取其平均值,有 从上式中可以看成,在取算术平均值的过程中,中间各数值S2,S3,S4……Sn -1都被消去,只剩下首尾两个数值S1、Sn起作用,因而不能起到利用多个数据减少偶然误差的作用。 二、逐差法 (1)偶数段 逐差法是把连续的数据(必须是偶数个)S1,S2,S3……Sn从中间对半分成两组,每组有m=n/2个数据,前一半为S1,S2,S3……Sm,后一半为Sm+1,Sm+2……Sn,将后一半的第一个数据减去前一半的第一个数据得,后一半的第二个数据减去前一半的第二个数据

,则由这些差值求得的加速度分为: 。 取这样得到的加速度的平均值 从上式可以看出,所有的数据S1,S2……Sn 都用到了,因而减少了偶然误差。 例:以下纸带记录了某匀变速运动物体的位移,每段位移时间间隔均为T 。 如果计算该物体的加速度,可以将这四段位移分成两大段:S OB 和S BD ,每段的时间均为2T ,所以加速度为2 12342)2()()()2(T S S S S T S S a OB BD +-+=-= (2)奇数段 如果连续的数据是奇数个S1,S2,S3……Sn ,则舍去最中间的数据,其余分成两组,每组有m =(n-1)/2个数据,前一半为S1,S2,S3……Sm ,后一半为Sm+2,Sm+3……Sn ,将后一半的第一个数据减去前一半的第一个数据得2121)1(aT m S S S m +=-=?+,后一半的第二个数据减去前一半的第二个数2232)1(aT m S S S m +=-=?+,第n 个数据减去前一半最后一个数据

点的合成运动 习题解答

2-1 凸轮以匀角速度ω绕O 轴转动,杆AB 的A 端搁在凸轮上。图示瞬时AB 杆处于水平位置,OA 为铅直。试求该瞬时AB 杆的角速度的大小及转向。 解: r e a v v v += 其中,22e r v e -=ω e v v e a ωφ==tg 所以 l e l v a AB ωω== (逆时针) 2-2. 平底顶杆凸轮机构如图所示,顶杆AB 可沿导轨上下移动,偏心圆盘绕轴O 转动,轴O 位于顶杆轴线上。工作时顶杆的平底始终接触凸轮表面。该凸轮半径为R ,偏心距e OC =,凸轮绕轴O 转动的角速度为ω,OC 与水平线成夹角?。求当?=0?时,顶杆的速度。 (1)运动分析 轮心C 为动点,动系固结于AB ;牵连运动为上下直线平移,相对运动为与平底平行直线,绝对运动为绕O 圆周运动。

(2)速度分析,如图b 所示 2-3. 曲柄CE 在图示瞬时以ω0绕轴E 转动,并带动直角曲杆ABD 在图示平面运动。若d 为已知,试求曲杆ABD 的角速度。 解:1、运动分析:动点:A ,动系:曲杆O 1BC ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。 2、速度分析:r e a v v v += 0a 2ωl v =;0e a 2ωl v v == 01e 1 ωω== A O v BC O (顺时针) 2-4. 在图示平面机构中,已知:AB OO =1,cm 31===r B O OA ,摇杆D O 2在 D 点与套在A E 杆上的套筒铰接。OA 以匀角速度rad/s 20=ω转动, cm 332==l D O 。试求:当?=30?时,D O 2的角速度和角加速度。

第5章点的合成运动习题解答080814讲课稿

第5章点的合成运动习题解答080814

第五章 点的合成运动 本章要点 一、绝对运动、相对运动和牵连运动 一个动点, 两个参照系: 定系,动系; 三种运动:绝对运动、相对运动和牵连运动, 包括三种速度:绝对速度、相对速度和牵连速度; 三种加速度:绝对加速度、相对加速度和牵连加速度; 牵连点:动参考系上瞬时与动点相重合的那一点称为动参考系上的牵连点。 二、速度合成定理 动点的绝对速度,等于它在该瞬时的牵连速度与相对速度的矢量和,即 r e a v v v += 解题要领 1 定系一般总是取地面,相对定系运动的物体为动系,动点不能在动系上. 2 牵连速度是牵连点的速度. 3 速度合成定理中的三个速度向量,涉及大小方向共六个因素,能且只能存在两个未知数方能求解,因此,至少有一个速度向量的大小方向皆为已知的. 4 作速度平行四边形时,注意作图次序:一定要先画大小方向皆为已知的速度向量,然后再根据已知条件画上其余两个速度向量,特别注意,绝对速度处于平行四边形的对角线位置. 5 用解三角形的方法解速度合成图. 三、加速度合成定理 1 牵连运动为平移时的加速度合成定理 当牵连运动为平移时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和,即 r e a a a a +=,

当点作曲线运动时,其加速度等于切向加速度和法向加速度的矢量和,因此上式还可进一步写成 n r t r n e t e n a t a a a a a a a +++=+ 其中 t v a d d a t a =,a 2a n a ρv a =,t v a d d e t e =,e 2e n e ρv a =,t v a d d r t r =,r 2r n r ρv a =,r e a ,,ρρρ依次 为绝对轨迹、牵连轨迹和相对轨迹的曲率半径。 解题要领 1牵连运动为平移时的加速度合成定理只对“牵连运动为平移时”成立,因此,判定牵连运动是否为平移至关重要. 2 牵连运动为平移时的加速度合成定理涉及的三个加速度,每一加速度都可能有切向和法向加速度。但是,法向加速度只与速度有关,因此,可以通过速度分析予以求解,从而在此处是作为已知的。剩下的三个切向加速度的大小方向共有六个因素,能且只能有2个未知量时方可求解。 3 因加速度合成定理涉及的矢量较多,一般不用几何作图的方法求解,而是列投影式计算,千万不能写成“平衡方程”的形式。 4 在加速度分析中,因动点和动系的选择不当而出现了一种似是而非的分析过程。教材中例5.3.5的一个典型错误解法如下: 例:半径为r 的半圆凸轮移动时,推动靠在凸轮上的杆OA 绕O 轴转动,凸轮底面直径DE 的延长线通过O 点,如图所示。若在 30=?的图示瞬时位置,已知凸轮向左的移动速度为u ,加速度为a 且与u 反向,求此瞬时OA 杆的角速度ω与角加速度α。 (a ) (b)

逐差法求加速度练习

逐差法求加速度及匀变速直线运动规律习题 1、在“探究小车速度随时间变化的规律”的实验中,如图11所示,是一条记录小车运动情况的纸带,图中A、B、C、D、E为相邻的计数点,每相邻的两个计数点之间还有4个点没有画出,交流电的频率为50 Hz. (1)在打点计时器打B、C、点时,小车的速度分别为v B=________ m/s;v C=________ m/s; (2)计算小车的加速度a=________m/s2 2、某同学在“用打点计时器测速度”的实验中,用打点计时器记录了被小车拖动的纸带的运动情况,在纸带上确定出A、B、C、D、E、F、G共7个计数点。其相邻点间的距离如图所示,每两个相邻的测量点之间的时间间隔为0.10s。试根据纸带上各个计数点间的距离,求小车的加速度a=________m/s2。(要求保留3位有效数字) 3、某同学在研究小车的运动实验中,获得一条点迹清楚的纸带,如图7所示,已知打点计时器每隔0.02 s打一个点,该同学选择了A、B、C、D、E、F六个计数点,测量数据如图所示,单位是cm. (1)试计算瞬时速度vB=________ m/s (2)计算小车的加速度a=________m/s2 4、在做“探究小车速度随时间变化的规律”的实验时,所用交流电源频率为50 Hz,取下一段纸带研究,如图所示,设0点为计数点的起点,每5个点取一个计数点,则第1个计数点与起始点间的距离x1=________cm,计算此纸带的加速度大小a=________m/s2;经过第3个计数点的瞬时速度v3=________ m/s. 5、有一个做匀变速直线运动的质点,它在两段连续相等的时间内通过的位移分别是24m 和64m,连续相等的时间为4s,求质点的初速度和加速度大小. 6、一质点做匀加速直线运动,第三秒内的位移2m,第四秒内的位移是2.5m,那么以下说法中正确的是( ) A.这两秒内平均速度是2.25m/s B.第三秒末即时速度是2.25m/s C.质点的加速度是0.125m/s2 D.质点的加速度是0.5m/s2 7、作匀加速直线运动的质点先后经过A、B、C三点, AB = BC.质点在AB段和BC段的平均速度分别为20 m/s、30 m/s,根据以上给出的条件可以求出( ) A.质点在AC段运动的时间 B.质点的加速度 C.质点在AC段的平均速度 D.质点在C点的瞬时速度

相关主题
文本预览
相关文档 最新文档