当前位置:文档之家› 预期回收率new

预期回收率new

预期回收率new
预期回收率new

违约风险下银行住房抵押贷款预期回收率模型研究

骆桦沈红梅

(浙江理工大学理学院)

【摘要】:住房按揭是商业银行贷款的主要组成部分,但由于房价的波动性下跌,容易造成借款者违约,从而使银行遭受损失。本论文主要研究在违约风险条件下住房抵押贷款的预期回收率。众所周知,住房价值影响违约事件的发生,我们基于结构模型框架研究预期银行回收率。并且用数值方法分别分析了在贷款期限内不同时刻违约时的回收率,和不同贷款期限、违约成本、贷款额对预期回收率的影响。

关键词:违约风险;预期回收率;违约成本;结构模型

中图分类号:F830.5 文献标识码:A

The Expected Recovery Rate Model Of Housing Mortgage

Under The Risk Of Default

LUO Hua SHEN Hong-mei

(College of Science , Zhejiang Sci-Tech University , Hangzhou 30018, China)

Abstract: Housing mortgage loans is the main loans of commercial banks. However, due to the house prices volatility plummeting, easily leads the borrower to default, so that the bank suffers huge losses. Our paper studies the excepted recovery rate model of housing mortgage under the risk of default. As it is known, the housing value impact on default event, we study the bank’s except ed recovery rate based on the framework of structure models. We also use numerical methods to analyze how the different loan time of maturity, default cost, amount of loans impact the recovery rate, and obtain the recovery rate when the lender defaults at different time.

Key words: default risk; expect recovery rate; default cost; structure models

0.引言

住房抵押贷款是一种有效的住房消费信贷模式。消费者通过将拟购住房产权抵押给银行,可以从银行获得一笔购房贷款。近年来随着住房制度改革的深化和住房分配货币化的全面实施,个人住房抵押贷款已成为一种趋势,相关业务风险逐渐体现。为促进个人住房贷款健康发展,有必要对已经显现或潜在的风险进行认真研究。现存在着难以预测和控制的风险,如住房毁损风险、债务人信用风险、贷款条件风险、抵押物处理风险等。而回收率是商业银行实施内部评级高级法的一个重要因素,是银行评量贷款的风险调整度量的重要指标,它是指债务人违约后资产的回收程度,可以估计出信用风险的严重程度。

本文获得基金:浙江省科技厅科研项目(编号2005C25011)和浙江理工大学教研项目资助,编号:114329B2A07022。

若借款者发生违约行为,则银行损失了贷款余额,取而代之的是获得借款者的住房所 有权。一般在房地产价格下降到住房抵押贷款余额价值以下时会引发借款者的违约行为。这时候银行就会考虑到一个回收率的问题,以便更好的估计现有资产的损失和价值。

1. 违约回收率的研究现状

回收率的估计方法较多,主要包括历史数据平均法、非参数方法(如核密度估计法)、因素模型法、以及人工智能法等。而常见的信用风险模型主要分为两大类:信用定价模型和信贷组合模型。信用定价模型又可分为:结构模型和简约 模型。许多信用风险管理软件中模型的设定都是基于结构模型的思想框架而改进的,如著名风险管理软件公司KMV 公司的产品。简约模型就假设回收率是一个外生变量,Kamakura 公司就是简约模型的创立者和研究者。常见的信贷组合模型有:JP 摩根的CreditMetrics 、瑞士信贷的CreditRisk+、麦肯锡公司的CreditPortfolioview 和KMV 公司的Credit Port —folio

Manager 。Robert C Merton [1]

在1974年发表的“On the Pricing of Corporate Debt: the Risk Structure of Interest Rate ”是现代信贷概率和回收率分析的理论基础文章。在Merton 模型中将违约回收率隐含为随机,但不足之处是没有解决信用资产质量的实际观测问题。

Carty 和Lieberman [2]

(1996)以穆迪公司1989-1996年间58例优先担保违约应行贷款为对象,根据其次级市场交易价格进行实证研究,结果表明平均回收率为71%,中位数为77%,标准差

为32%。研究发现回收率明显向高端偏离。Altman 和Brady [3]

研究发现回收率和违约概率之间存在负相关关系。

总体来说目前的研究中对债券回收率的研究较多,对商业银行违约贷款回收率的研究较少,对零售贷款(如住房按揭和信用卡)或特殊贷款(如项目融资)回收率的研究更少。所以本论文希望结合已有模型来研究有违约风险的住房抵押贷款回收率模型。 2. 预备知识——贷款余额计算

目前个人住房贷款主要有两种还款方式[4,5]。一是等额本息还款法,即在一定的期限内

借款人每月以相等的金额偿还贷款本息,又称等额法,在贷款期间内,每个月的贷款偿付额是固定的。二是等额本金法。即在一定期限内借款人每月以等额偿还本金,贷款利息随本金递减,还款额逐月递减,因此又称递减法。

贷款余额()M t 根据等额本息还款法和等额本金还款法有两种计算方法: 等额本息还款法:

(1)(1)1

n n P i i A i ??+=+-

则在第t 期时的贷款余额为:

()(1)[(1)*]M t M t A M t i =----(1)(1)i M t A =+--

等额本金还款法:

1(1)l P l A P i n n

-=

+-?? 则在第t 期时的贷款余额为:

()(1)[(1)*]l M t M t A M t i =----(1)(1)l i M t A =+--

其中:A ——每月还本付息额,P ——初始贷款额,i ——贷款月利率,n ——按月计算的还款总期数。

以上每月还款额和贷款余额的定价法是在离散事件下的,为了以下模型的计算,我们主要考虑连续时间下的连续支付情形.

设(0)M 为借款总额,首期付款额为L ,则(0)M 应为风险资产(0)H 与首期付款额之差,即(0)(0)M H L =-。假定c 为固定月贷款利率,T 表示贷款期限,A 表示借款者每月还本付息额(假设为等额本息还款法),若看做连续支付,则t 时刻剩余贷款额()M t 满足以下常微分方程:

()()dM t cM t dt Adt =- ()0M T =

易得:(0)

1cT

cM A e

-=- 解得:()

(0)()(1)1c T t cT

M M t e e

---=--

3. 住房抵押贷款预期回收率模型 3.1 基本假设

(1)考虑连续时间的金融市场,时间区间[0,]T ,0表示现在,T 表示到期日;

(2)市场是无套利的,可假设为有效的,无摩擦的,存在风险中性的鞅测度;(3)房产价格()H t 服从几何Brown 运动:

()

()()

H H H t dH t q dt dW H t μσ=-+ (1) 由Iton 引理可知:21ln ()()2

H

H H H t H t q dt dW μσσ=--+

对上式两边积分可得:

21

()(0)exp[()]2

H t H t H q t μσ=--+

其中H μ和H σ分别表示房价的瞬时漂移率和瞬时波动率,q 为住房服务收益系数(相当于同期住房租金,为住房价格的一定比例); (4)市场无风险利率为常数r ;

(5)允许借款人在任意一个付款期内以抵押贷款的当前价值将住房出售给贷款机构,即违约可以发生在贷款发放和到期日之间的任何时间。

3.2 银行预期回收率

如果在贷款期内,发生违约情况,期权持有人将房产权抵押给银行,银行有权将房屋出售以挽回因借款者违约引起的损失。那么银行的预期回收价值是依赖于房价和贷款余额的,它可以分成两部分:在t 时刻,当()()H t M t >没有违约时,银行预期能收回贷款总额;

当()()H t M t <时,龙海明等[6]

发现借款者不会立即选择违约的,因为考虑到违约成本约束,包括信用等级降低、搬迁成本、房产变现交易成本等违约成本来看,借款者会慎重考虑是否违约,假设违约成本为k ,当()()H t k M t +<,借款者会选择理性违约。这时银行预期能回收已付贷款额(0)()M M t -和房屋价值()H t 。

所以银行到期的回收价值为:

()()()()()(0)[(0)()()]H t k M t H t k M t G t M I M M t H t I +>+<=?+-+?,

其中{}A B I >表示式性函数:

{}0

1

A B if A B I if

A B

>

>?

则回收价值的贴现值为:

()()()()E()[(0)[(0)()()]]H t k M t H t k M t G E M I M M t H t I +>+<=?+-+?

我们在贷款初始时刻,若考虑违约因素下预测在t 时刻银行能回收的价值,则在违约条件下,预期回收价值为:

()()[((0)()())]

[/]H t k M t E M M t H t I E G X PD

+<-+?=

其中X 表示借款者发生违约的条件。 违约概率为:

(

)21()()(0)exp[()]()2H H H t PD P H t k M t P H q t M t k μσσ??

=+<=--+<- ???

2()1ln ()()H H H t M t k q t P W N a μσ-?

?--- ? =<

= ?? 其中:

2

()1ln

()H H M t k q t a μσ----=

则借款者违约时银行预期回收率为:

[/]

(0)

E G X RR M =

所以计算回收率我们关键是计算[/]E G X 。

2

2

2

()()2

2

()()()()

22

()()[/][((0)()())]

[(0)()]()[(0)()]()(0)exp[()]2

[(0)()]H t k M t z z H t k M t H t k M t z H

H H

H t k M t E G X E M M t H t I M M t I dz H t I dz M M t N a H q t I dz

M M t N σμσ+<+∞

+∞--+<+<-∞-∞

+∞

-+<-∞

=-+?=-?+?=-?+--

+?=-???

?

()()()()0H q t H t k M t a H I μ+∞

-+<-∞

+?

()e

其中a 是由以下概率等式决定的:

()()22[](()())((0)exp[()]())2

()ln ()[P H t k M t H

H H S H E I Q H t k M t Q H q t M t k M t k

q t

Q Z σμσσμ+<=+<=--

+<-----=<

所以:

2()ln ()S H M t k

q t

a σμ----= 接下来计算:

()()()0H q t H t k M t H I μ+∞

-+<-∞

?

()e

按下式定义一个等价的鞅测度Q :

21

exp()2

dQ z dP γγτ=-- 其中:

γ=-; Z Z γ=+

则Z 是P 下的标准正态随机变量,Z 是Q 下的标准正态随机变量,则:

()()()[/][((0)()())][(0)()]()0()

H H t k M t q t

E G X E M M t H t I M M t N a H N b μ+<-=-+?=-?+()e

则b 是由以下的概率等式决定的:

()(1)()2

2[](()())((0)exp[()())2

()ln ()[Q H t k M t H

H H H H H E I Q H t k M t Q H q t Z M t k M t k

q t

Q Z σμσσσμ+<=+<=--

++<----+=<

所以:

2()ln ()S H M t k

q t

b σμ---+= 则预期回收率为:

()()()()()[((0)()())]

(0)()

1(0)()(1)1(0)()(1)(0)()()1(0)()

H H H t k M t c T t q t

cT

cT ct q t

cT E M M t H t I RR M N a e H N b e M N a e e H N b N a e M N a μμ+<--------+?=

?-=-?+--=?+-e e

22()()ln ()ln ()S S H H H

M t k

M t k

q t

q t

a b a σσμμσ-------+=

=-=

3.3 数据分析

下面用具体实例说明本文的银行住房抵押贷款回收率模型。

(1)首先考虑若借款者在时刻t 违约,则银行预期回收率和时刻t 存在一下关系:

0510

15202530

在t 时刻违约的回收率

t

R R (t )

图1 在t 时刻违约时,t 与回收率的关系图

注: 贷款总额M(0)=7000,初始时刻房价H(0)=10000,贷款期限为30年,合同贷款利率R=0.08,住房瞬时回收率H μ=0.1,住房瞬时波动率H σ=0.15,住房服务系数为0.075,违约成本费c=300,t=0.01……29。

表1 违约时刻t 与回收率的关系

概在中间时刻违约时银行的回收率最低,即在中间时刻损失最大。从初始时刻至中期时段回收率递减,从中期至到期时段回收率递增。从表1可以看出贷款期限与回收率负相关,也就是说,贷款期限越长,借款者违约时,银行遭受的损失越大。 (2)不同的违约成本对预期回收率的影响。

100

150200250300

350400450500550

600

违约成本与回收率的关系

k

R R (k )

图2 违约成本与回收率的关系

注: 贷款总额M(0)=7000,初始时刻房价H(0)=10000,贷款期限为20年,合同贷款利率R=0.08,住房瞬时回收率H μ=0.1,住房瞬时波动率H σ=0.15,住房服务系数为0.075,在时刻t=10的时候违约,违约成本费k=100……600。

① 若在t=0时刻违约,则a 和b 趋向无穷,为了得到计算结果,我们取初始时刻为t=0.01。

② 若在t=30贷款末期违约,则贷款余额为零,而且很明显在贷款末期违约的预期回收率为100%,所以我们假设在t=29的时候违约。

表2 违约成本与回收率的关系

从图2和表2可以表明违约成本与预期回收率负相关,违约成本越高,回收率越低,这是因为我们计算回收率的前提条件是已发生违约下的预期回收率,当在同样的时刻违约时,违约成本越高,对应同一时刻的房价就越低,从而回收率越低。所以违约成本越高,虽然违约发生的概率降低,但发生违约情况下,回收率越低。因而银行应综合考虑设置违约成本,使违约概率和违约后回收率最优化。

(3)不同的贷款额对预期回收率的影响

5000

55006000

650070007500

8000

贷款总额与回收率的关系

M0

R R (M 0)

图3:贷款额与回收率的关系

注:初始时刻房价H(0)=10000,贷款期限为20年,合同贷款利率R=0.08,住房瞬时回收率

H μ=0.1,住房瞬时波动率H σ=0.15,住房服务系数为0.075,违约成本费c=300,违约时刻

t=10。贷款总额M0=5000 (8000)

图3和表2表明贷款总额与预期回收率从整体上是负相关。这从实际的贷款抵押分析,

M H),借款人越容易违约,预期回收率就如果贷款额越高,也就是抵押率越高((0)(0)

越低。因此银行可以调整抵押率来控制违约风险。

4. 总结

本模型主要是建立违约风险下的预期回收率模型,并通过模型用数值计算方法分析了不同违约时刻的回收率,不同的贷款期限、违约成本和不同贷款额对回收率的影响。得到的结论是贷款期限、违约成本和贷款额均与预期回收率负相关。银行可以调整影响回收率的风险因子,有效评估违约风险。

目前商业银行在评级体系评定企业信用等级时并没有匹配的期限和金额,这就影响了风险评估的准确性。如何根据已知抵押品价值和个人信用等级来得到匹配的贷款期限、贷款金额,使得风险最低、收益最高,这是本论文没有研究到了,还有待进一步研究。

参考文献

[1] Merton,R.1974.On the Pricing of Corporate Debt:the Risk Structure of Interest Rate[J].Journal of Financ.

[2] Carty,L.v. and Lieberman,1996.Corpoorate Bond Defaults and Default Rates,Moody’s Investor Services,Global Credit Research,January.

[3] Altman,E.,B.Brady,A.Resti and A.Sironi.2005.The Link between Default and Recovery Rates:Theory,Empirical Evidence and Implications[J].Journal of Business.

[4] 戴建国:《住房抵押贷款供给与期权定价模型及其分析》,上海交通大学博士学位论文,2001.

[5] 坚雄飞、易法槐:《常利率抵押贷款模型及其自由边界问题》[J].数学年刊,2008.

[6]龙海明、唐小蔓、谈咪梅:《固定利率住房抵押贷款违约行为及其定价研究》[J]. 财经理论与实践,2008.

[7]史健忠:《股票抵押贷款预期回收率比较分析》[J],金融论坛第4期,2008.

加标回收率计算方法

加标回收率 有空白加标回收和样品加标回收两种 空白加标回收:在没有被测物质的空白样品基质中加入定量的标准物质,按样品的处理步骤分析,得到的结果与理论值的比值即为空白加标回收率。 样品加标回收:相同的样品取两份,其中一份加入定量的待测成分标准物质;两份同时按相同的分析步骤分析,加标的一份所得的结果减去未加标一份所得的结果,其差值同加入标准物质的理论值之比即为样品加标回收率。 加标回收率的测定,是实验室内经常用以自控的一种质量控制技术.对 于它的计算方法,给定了一个理论公式: 加标回收率=(加标试样测定值—试样测定值)加标量X 100%. 理论公式使用的约束条件 加标量不能过大,一般为待测物含量的0.5?2.0倍,且加标后的总含量不应超过方法的测定上限;加标物的浓度宜较高,加标物的体积应很小,一般以不超过原始试样体积的1%为好。加标后引起的浓度增量在方法测定上 限浓度C的0.4~0.6(C)之间为宜。对分光光度计来说,吸光度A在0.7以下,读数较为准确。 回收率计算结果不受加标体积影响的几种情况 F列情况下,均可以采用公式(2)计算加标回收率 (1) 样品分析过程中有蒸发或消解等可使溶液体积缩小的操作技术时,尽

管因加标而增大了试样体积,但样品经处理后重新定容并不会对分析结果产生影响?比如采用酚二磺酸分光光度法分析水中的硝酸盐氮(GB7480287),样品及加标样品经水浴蒸干后,需要重新定容到50 mL再行测定。 ⑵样品分析过程中可以预先留出加标体积的项目,比如采用离子选择电 极法分析水中的氟化物(GB7484287),当样品取样量为35 mL、加标样取 5.0mL以内时,仍可定容在50 mL ,对分析结果没有影响。 (3)当加标体积远小于试样体积时,可不考虑加标体积的影响?比如采用4- 氨基安替比林萃取光度法分析水中的挥发酚(GB7490287),加标体积若为 1.0 mL ,而取样体积为250 mL时,加标体积引起的误差可以忽略不计。 理论公式约束条件的含义 加标物的浓度宜较高,加标物的体积应很小”的含义便更加清晰:在计算加标试样浓度C2时,应尽可能减小标准溶液的取样体积V 0.只有这样,分别采用公式(3)和(4)的计算结果才会相等.由此可见,采用浓度值法计算加标回收率时,任意加大加标试样的体积,将会导致回收率测定结果偏低。 对加标量的规定: 1. 加标量应尽量与样品中待测物质含量相等或相近,并注意对样品容积的 影响 2. 当样品中待测物质含量接近方法检出限时,加标量应控制在校准曲线的 低浓度范围;当样品中待测物含量小于方法检出限时,以检出限的量作 为待测物质的含量加标

回收率包括绝对回收率和相对回收率

回收率包括绝对回收率和相对回收率。 绝对回收率也称提取回收率,包括萃取回收率。提取回收率在最新的“化学药物临床药代动力学研究的技术指导原则"z中是这样定义的”从生物样品基质中回收得到分析物质的响应值除以标准品产生的响应值即为分析物的提取回收率。也可以说是将供试生物样品中分析物提取出来供分析的比例。”其具体做法是取标准品,以流动相(最好同样品进样溶剂)溶解,做一个5点的标准曲线,另取三个浓度的标准品,加入到空白生物基质中,处理后进样测定,每浓度5个样品,这样来计算绝对回收率。 相对回收率的做法和上面不同的是标准曲线也是加入到基质中配成的。 如果做绝对回收率时,如果标准曲线不是直接进样,而是同样品处理,只是不加基质是不对的,因为这样会使操作和系统的其它一些影响因素被掩盖。比如有机相的转移不完全,处理容器的吸附等。绝对回收率的目的就是要看你能将分析物从样品中提取出来用于分析的比例。 之所以用标准曲线,而不是单点相比,是因为萃取回收率小于100%,有的只有百分之二三十或更低,依药物性质和方法而定,这样一来峰面积只有标准品峰面积的百分之几十,如果峰面积浓度的关系不是过原点的直线,而是有截距或线性不好,那么就有偏差了,这个好理解。另外单点也是需要进几次样来重复的,不然也有误差。既然进几次,不如换成几个点做标准曲线,几种误差都可以消去。 峰面积与浓度是对应关系的,我不认为这两者的比有什么差别。实际也是拿峰面积代进去算。 to lydialydia 比如有一个药绝对回收率设三个点20、100、500ng/ml,取相应标准品加入空白基质中,使成此三个浓度(每浓度5个样品),处理后进样。另取标准品以回收率样品进样溶剂溶解,5个点分别为10、50、100、250、500ng/ml。样品峰面积代入标准曲线算出浓度,与理论浓度比即得回收率。相对回收率只是将标准曲线的5个点也是加入空白基质处理。 1)绝对回收率(萃取回收率或提取回收率) 反映方法的萃取效率,与样品检测灵敏度有关。例如:分别取一定量被测药物标准品两份,其中一份加到空白样品中,按设定方法处理、进样测定,测定色谱峰面积A测,另一份用纯品溶剂溶解并稀释至同浓度,进样测得峰面积A真,回收率=A测/A真×100% 应考察高、中、低三个浓度,高浓度在标准曲线上限附近,低浓度在定量限附近,中间取一个浓度。 对于回收率的大小与变异不宜苛求,一般添加量在10-6~10-9g,绝对回收率达50%~80%令人满意。 内标法:分别取相同量的药物标准品和内标物两份,其中一份加到空白样品中,按设定方法处理,测定药物和内标峰面积,求出比值R测=A药/A内。另一份用纯溶剂溶液进样,测得药物和内标峰面积,计算其比值,回收率=R测/R真×100%。 内标法中要求药物与内标物各自用外标法测得的绝对回收率应相近,两者相差小于10%,否则回收率偏离100%太远。 2)方法回收率 取一系列浓度的药物标准品加到空白体液中,按设定的分析方法测定,根据标准品浓度及相应的测定信号绘制标准曲线,然后取高、中、低浓度的药物标准品加到空白体液中,按标准曲线制备方法同法测定,每个浓度至少平行测定5份,测得值代入方程,与加入量比较,即为方法回收率,除定量限外,各浓度测得的平均值偏离实际加入量应小于15%,定量限这点应小于20%。 回收率测定时,不管采用何种方法,要求添加的药物量必需与实际测量相近;必须与实际存在的状态相似;必须同时做空白实验。否则测得结果不可靠,因此报道方法的回收率时,必须说明添加量。

加标回收试验

在测定样品得同时,于同一样品得子样中加入一定量得标准物质进行测定,将其测定结果扣除样品得测定值,以计算回收率 注意点 1.加标物得形态应该与待测物得形态相同 2.加标量应与样品中所含待测物得测量精密度控制在相同得范围内,一般情况下作如下规定: 1)加标量尽量与样品中待测物含量相等或相近,并应注意对样品容器得影响 2)当样品中待测物含量接近方法检出限时,加标量控制在校准曲线得低浓度范围 3)在任何情况下加标量均不得大于待测物含量得3倍 4)加标后得测定值不应超过方法得测量上限得90% 5)当样品中待测物浓度高于校准曲线得中间浓度时,加标量应控制在待测物浓度得半量 空白加标回收:在没有被测物质得空白样品基质中加入定量得标准物质,按样品得处理步骤分析,得到得结果与理论值得比值即为空白加标回收率。 样品加标回收:相同得样品取两份,其中一份加入定量得待测成分标准物质;两份同时按相同得分析步骤分析,加标得一份所得得结果减去未加标一份所得得结果,其差值同加入标准物质得理论值之比即为样品加标回收率。 加标回收率得测定, 就是实验室内经常用以自控得一种质量控制技术、对于它得计算方法, 给定了一个理论公式: 加标回收率=(加标试样测定值-试样测定值)÷加标量×100%. 1、1 理论公式使用得前提条件 文献&#91;1 &#93;中对加标回收率得解释就是:“在测定样品得同时, 于同一样品得子样中加入一定量得标准物质进行测定, 将其测定结果扣除样品得测定值, 以计算回收率、"因此,使用理论公式时应当满足以下2 个条件:①同一样品得子样取样体积必须相等; ②各类子样得测定过程必须按相同得操作步骤进行。 1.2 理论公式使用得约束条件 文献[2&#93;中强调指出:加标量不能过大,一般为待测物含量得0、5~ 2、0倍, 且加标后得总含量不应超过方法得测定上限; 加标物得浓度宜较高, 加标物得体积应很小,一般以不超过原始试样体积得1%为好。 1。3 理论公式得不足之处 ( 1)各文献对公式中“加标量"一词得定义, 均未准确给定, 使其含义不就是十分明确.从公式得分子上分析,加标量应为浓度单位; 从公式得分母上理解,应为加入一定体积得标准溶液中所含标准物质得量值, 为质量单位。 (2) 若公式中得加标量为浓度单位,此时得加标量并不就是指标准溶液得浓度, 而应该就是加标体积所含标准物质得量值除以试样体积(或除以试样体积与加标体积之与)所得得浓度值. 这里存在着浓度换算, 而在理论公式中并没有明确予以表现出来。? 2

选矿名词解释和选矿指标

选矿名词解释和选矿指标 金属回收率所谓金属回收率,就是精矿中所含的金属重量与原矿中该金属重量的比值,常用百分数来表示。处理原矿品位(克/吨)=处理原矿含金量(克) / 处理原矿量(吨)选矿理论回收率(%)=精矿品位*(原矿品位-尾矿品位)/(原矿品位*(精矿品位-尾矿品位) )*100%.=( 氰原矿金属量(克)-浸渣金属量(克) )/氰原矿金属量(克)*100%.=( 氰原矿金属量(克)-浸渣金属量(克) -排液金属量(克))/( 氰原矿金属量(克)-浸渣金属量(克) )*100%. 选矿指标处理原矿品位是指入选处理的原矿中所含铁金属量占原矿处理量的百分比。铁精矿品位是指选矿厂最终产品铁精矿中所含铁金属量占铁精矿量的百分比。选矿金属回收率是指选出的铁精矿金属量占处理原矿金属量的百分比。实际金属回收率(%)= 铁精矿量(吨)*铁精矿品位(%)*100%.(2)为了便于综合汇总,理论金属回收率的母项为原矿金属量,其于项为理论精矿金属量,它是以理论金属回收率与原矿金属量的乘积反求而得。 矿床开发总利润估算矿床开发总利润估算。静态总利润是指矿床可采储量经工业开发后,可能获利总水平的一项静态指标。假设其矿石品位Cu为0.91%、每吨原矿生产成本为16.25元、采矿回收率91%、贫化率5%、选矿回收率88.23%、精矿品位14%、每吨精矿售价4160元、可能的矿山年生产规模99万t。因为NPVR2>NPVR1,说明如果该矿床年开采规模加大到120万t,生产服务年限减少到20年,则较年产99万t原矿、生产服务年限27年的方案,能获得更加显著的经济效益。 矿石的成本计算方式吨矿生产完全成本:为每吨原矿所分摊的采矿、选矿和原矿运输成本、企业管理、精矿销售、矿山维检和矿权使用等费用的总和。如:某地采矿成本50元/吨,选矿成本40元/吨,原矿运输成本30元/吨,企业管理费20元/吨,精矿销售费20元/吨, 矿山维检费15元/吨,矿权使用费20元/吨,共计吨矿生产成本195元/吨。铜含量为20.00%标准时正常结算,铜精矿结算价格=上海金属交易所1#电解铜期货月平均结算价*铜精矿计价系数+铜品位变化差价。 铁矿资源回收与尾矿综合利用铁矿资源回收与尾矿综合利用铁矿资源回收与尾矿综合利用。2003年全国主要铁矿山的平均入选品位30.77%、铁精矿品位67.56%、尾矿品位8.86%、选矿回收率83.56%,其统计数据中包括攀枝花矿山公司、包钢白云鄂博等难选矿区,沉积变质型贫矿所占比例高于山东省,可以看出山东省铁矿山选矿技术指标尚存在一定差距。3.3 做好铁矿尾矿再选工作开展铁矿尾矿再选是提高资源利用率、减少尾矿排放的重要措施。 矿石选矿加工工艺原矿一般由有用矿物和脉石所组成,含有用成分的矿物称为有用矿物;为了满足冶炼的要求,对于品位低的贫矿石,在冶炼之前就需要用选矿的方法,将矿石中的有用矿物和脉石分离,使有用矿物富集,得到适合于冶炼或其它部门要求的高品位原料。由此可知,选矿的目的就是将矿石中的有用矿物和脉石分离,提高矿石的品位,降低有害杂质的含量;由此可见,冶炼前对矿石进行选矿,不仅在技术上是必须的,而且在经济上也是非常重要的。 选矿方法和选矿过程(1) 选矿方法:矿石中的各种矿物,都具有各自固有的物理化学性质,如:粒度、形状、颜色、光泽、比重、摩擦系数、磁性、电性、表面的润湿性等。最常用的选矿方法有重选、浮选、磁选、电选、化学选矿、光电选、摩擦选和手选等。重选(全称重力选矿法):是根据矿物比重的不同而分离矿物的选矿方法。光电选矿法:是基于矿物之间的光电性质(颜色、反射率、受激发光和透明度等)的区别,利用光电效应,采用机械分拣矿物的选矿方法。 如何提高浮选精矿品位?如何提高浮选精矿品位?要提高浮选精矿品位,首先要弄清哪些因素影响精矿品位。解决的办法是增加现有磨矿物料细度,或者增设精矿再磨作业,以提高目的矿物单体解离度。 四、由于多种矿物可浮性相近,导致在精矿中互含高而影响精矿品位。(三)在优先浮选或等可浮选流程中,对第一种矿物或第二种矿物采用捕收力较弱,选择性较好的捕收剂或实行饥饿式给药的弱捕收原则,最大限度的减少无用矿物的上浮,以便提高第一种矿物的精矿质量。

海德能RO膜回收率计算

海德能RO膜回收率计算 一、海德能RO膜性能评价指标: ①单位面积上透水量大,脱盐率高; ②机械强度好,多孔支撑层的压实作用小; ③化学稳定性好,耐酸、碱腐蚀和微生物侵蚀; ④结构均匀,使用寿命长,性能衰降慢; ⑤制膜容易,价格便宜,原料充足。 因此对海德能RO膜的评价指标可以从以下几个方面分析: 1、脱盐率和透盐率 脱盐率――通过海德能RO膜从系统进水中去除可溶性杂质浓度的百分比。 透盐率――进水中可溶性杂质透过膜的百分比。 脱盐率=(1-产水含盐量/进水含盐量)100% 透盐率=100%-脱盐率 GE海德能RO膜元件的脱盐率在其制造成形时就已确定,脱盐率的高低取决于反渗透膜元件表面超薄脱盐层的致密度,脱盐层越致密脱盐率越高,同时产水量越低。反渗透对不同物质的脱除率主要由物质的结构和分子量决定,海德能RO膜元件对高价离子及复杂单价离子的脱除率可以超过99%,对单价离子如:钠离子、钾离子、氯离子的脱除率稍低,但也超过了98%;对分子量大于100的有机物脱除率也可达到98%。

2、产水量(水通量) 产水量(水通量)――指反渗透系统的产能,即单位时间内透过膜水量,通常用吨/小时或加仑/天来表示。 渗透流率――渗透流率也是表示海德能RO膜元件产水量的重要指标。指单位膜面积上透过液的流率,通常用加仑每平方英尺每天(GFD)表示。过高的渗透流率将导致垂直于膜表面的水流速加快,加剧膜污染。 3、回收率 回收率――指膜系统中给水转化成为产水或透过液的百分比。膜系统的回收率在设计时就已经确定,是基于预设的进水水质而定的。回收率通常希望最大化以便提高经济效益,但是应该以膜系统内不会因盐类等杂质的过饱和发生沉淀为它的极限值。 回收率=(产水流量/进水流量)100%

农残回收率计算

回收率的计算方法 有机磷类 国标: 假设取5PPM某农药0.5毫升加入到10克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其10克蔬菜样品中农药浓度为X=(5×0.5)/10=0.25PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) 因此,通过假设可知,V1(提取液体积)和V2(分取体积)应该一样均为100毫升二氯甲烷,因为有机磷农药前处理未进行分取,是100%浓缩的。注ρ=5PPM。 所以,ρ×100×2×1×A1 ρ×A1 W(含量)= = 10×100×1×A 5A W(含量)ρA1 回收率= ×100% = X X×5A 农业部行标: 假设取5PPM某农药0.5毫升加入到25克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其25克蔬菜样品中农药浓度为X=(5×0.5)/25=0.1PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) ρ×50×5×1×A1 ρ×A1 W(含量)= = 25×10×1×A A W(含量)ρA1 回收率= ×100% = X X×A

菊酯类 国标: 假设取5PPM某农药0.5毫升加入到20克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其20克蔬菜样品中农药浓度为X=(5×0.5)/20=0.125PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) 因此,通过假设可知,V1(提取液体积)为30毫升正己烷加30毫升丙酮,总计为60毫升。V2(分取体积)为3毫升过柱体积。注ρ=5PPM。 所以,ρ×60×1×1×A1 ρ×A1 W(含量)= = 20×3×1×A A W(含量)ρA1 回收率= ×100% = X X×A 农业部行标: 同有机磷计算方法。 注:以上W(含量)即为准确测量的蔬菜样品农药残留浓度,单位为PPM或mg/kg ,若换算成μg/kg 则需要乘以1000。

重复性和再现性不确定度

量具重复性与再现性分析:GR&R 是用来检定检测产品的人员是否具备识别产品特性的能力,正常的产品是否会误判,不正常的产品是否会漏判,也就是检定“检测系统是否正常”的一个工具。GR&R是研究重复性和再现性的,是计量型分析。 1.简称:重复性(EV)(equipment variance)设备偏差、(再现性AV)(appriser variance)人員偏差、产品偏差(PV)(products variance), 2.重复性(Repeatability):重复性是用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所作多个单次测试结果,在95%概率水平两个独立测试结果的最大差值。在中国仪器中当测量条件是在以下4个状况下实验时,相同的待测量的测量结果有一致性的称为重复性,4个条件如下:a、相同的测量环境b、相同的测量仪器及在相同的条件下使用c、相同的位置d、在短时间内的重复 3.再现性(Reproducibility)是指两个不同的实验室对同一物料进行测定两个分析结果接近的程度.再现性的值总是大于或等于重复性,因为再现性的测量结果把重复性引起的偏差考虑进去了。在很多实际工作中,最重要的再现性指由不同操作者、采用相同的方法、仪器,在相同的环境条件下,检测同一被测物的重复检测结果之间的一致性,即检测条件的改变只限于操作者的改变。也就是说别人用你说的方法和仪器也能做出同样的结果来,这就是试验的再现性。当然,这样的试验就叫做再现性实验。 4.测量结果的重复性:是指“在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性”。上述定义中的“一致性”是定量的,可以用重复性条件下对同一量进行多次测量所得结果的分散性来表示。而表示测量结果分散性的量,最为常用的是实验标准。重复性条件。质言之,就是在尽量相同的条件下,包括程序、人员、仪器、环境等,以及尽量短的时间间隔内完成重复测量任务。这里的“短时间”可理解为:保证前四个条件相同或保持不变的时间段,它主要取决于人员的素质、仪器的性能以及对各种影响量的监控。从数理统计和数据处理的角度来看,在这段时间内测量应处于统计控制状态,即符合统计规律的随机状态。通俗地说,它是测量处于正常状态的时间间隔。重复观测中的变动性,正是由于各种影响量不能完全保持恒定而引起的。重复性标准差有时也称为组内标准差。 5.活动介绍:1)每个作业员检测二次,每次检验产品50PCS,50PCS中混有不合格品也有合格品,检验员需在同一次内发现该次的不良品,不良品数不定。不良项目在日常不良中可以发现的,为常见的不良现象。2)评价员会先前对合格的产品混入不良品,且此不良品会作好相应标识,作业员在检查过程中在正常检验的情况下需发现该不良,且不良项目与评价员为一致。示为达标,合格员。若未能发现相应的不良品,或发现的不良项目不能对应,或误判。需将检验员重新作合适相应的培训。3)此项测试为个人评价,作业员需独立完成,外部人员不得参与。6.量具重复性和再现性(GRR)的可接受准则是:a) 低于10%的误差—测量系统可以被接受;b) 10%至30%的误差—根据应用的重要性、量具成本、维修的费用等确定是否是可接受的;c) 大于30%的误差—测量系统需要改进;d) 过程能力被测量系统区分开的分级数(ndc)应该大于或等于5(取整数). 不确定度测量不确定度:是目前对于误差分析中的最新理解和阐述,以前用测量误差来表述,但两者具有完全不同的含义.现在更准确地定义为测量不确定度.是指测量获得的结果的不确定的程度. 不确定度的计算: 不确定度的值即为各项值距离平均值的最大距离。 例:有一列数。A1,A2, ... , An, 他们的平均值为A,则不确定度为:max{ |A - Ai|, i = 1, 2, ..., n}

加标回收率计算方法的探讨 (1)

加标回收率计算方法的探讨 摘要:阐述了加标回收率计算的理论公式的使用条件和不足, 并推导出5 种不同条件下适用的加标回收率计算方法的数学表达式。 关键词: 加标回收率; 理论公式; 计算方法 加标回收率的测定, 是实验室内经常用以自控的一种质量控制技术. 对于它的计算方法, 文献[1, 2 ]中均给定了一个理论公式: 加标回收率= (加标试样测定值-试样测定值)÷加标量×100%. 1 理论公式的使用条件与不足 1.1 理论公式使用的前提条件 文献[1 ]中对加标回收率的解释是:“在测定样品的同时, 于同一样品的子样中加入一定量的标准物质进行测定, 将其测定结果扣除样品的测定值, 以计算回收率. ”因此,使用理论公式时应当满足以下2 个条件:① 同一样品的子样取样体积必须相等; ②各类子样的测定过程必须按相同的操作步骤进行。 1.2 理论公式使用的约束条件 文献[2 ]中强调指出: 加标量不能过大,一般为待测物含量的0.5~ 2.0 倍, 且加标后的总含量不应超过方法的测定上限; 加标物的浓度宜较高, 加标物的体积应很小,一般以不超过原始试样体积的1%为好。 1.3 理论公式的不足之处 ( 1) 各文献对公式中“加标量”一词的定义, 均未准确给定, 使其含义不是十分明确. 从公式的分子上分析, 加标量应为浓度单位; 从公式的分母上理解, 应为加入一定体积的标准溶液中所含标准物质的量值, 为质量单位。 (2) 若公式中的加标量为浓度单位, 此时的加标量并不是指标准溶液的浓度, 而应该是加标体积所含标准物质的量值除以试样体积(或除以试样体积与加标体积之和)所得的浓度值. 这里存在着浓度换算, 而在理论公式中并没有明确予以表现出来。 2 加标回收率计算方法及数学表达式 2.1 以浓度值计算加标回收率理论公式可以表示为: P =(c2-c1)/c3× 100%. (1) 式中: P 为加标回收率;c1 为试样浓度, 即试样测定值, c1 =m 1/V 1;c2 为加标试样浓度,即加标试样测定值, c2 =m 2/V 2;c3 为加标量, c3 =c0 ×V 0/V 1或c3 =c0 ×V

选矿回收率怎么计算

选矿回收率怎么计算 添加时间:2010-04-11 一、名词解释 重力选矿法(简称重选法):是在运动介质(水)中,按粒度比重和粒度的差异进行分选的分法。 浮选法:是选金生产中,应用最广泛的一种选矿法。是利用矿物表面物理化学性质的差异来选分矿石的一种方法。 混汞法:是一种古老而又简易的选金方法。在矿浆中,金粒被汞(水银)选择性地润湿并形成金汞齐,使它和别的矿物及脉石互相分离,这种方法称为混汞法。 品位:就是矿石或选矿产物中该金属或选矿产物重量之比值,通常用百分数来表示。 产率:选矿产物的重量与原矿重量之比值,通常用百分数来表示。 选矿比:原矿重量与精矿重量的比值,它表示获得1吨精矿需要处理的原矿的吨位。 富矿比:精矿中有用成分的品位和原矿中有用成分的品位之比值。它表示精矿中有用成分的品位和原矿中有用成分的品位高出的倍数。 回收率:选矿的目的就是要把原矿中所含的金属,最大限度地选入到品位更高的精矿中。这个选分过程的完全程度,可以用金属回收率来评定。所谓金属回收率,就是精矿中所含的金属重量与原矿中该金属重量的比值,常用百分数来表示。 二、选矿指标 处理原矿品位(克/吨)=处理原矿含金量(克) / 处理原矿量(吨) 精矿品位: 是指平均每吨精矿中的含金量,它是反映精矿质量的指标,计算公式为: 精矿品位(克/吨)=精矿含金量(克) / 精矿数量(吨) 精矿产率: 是指产出的精矿量占原矿量的百分比,它是反映选矿厂质量的指标。计算公式为: 精矿产率(%)=精矿数量(吨) /原矿数量(吨) ×100% 尾矿品位: 是指选矿厂排弃的尾矿中,平均每吨尾矿中的含金量。它是反映在选矿过程中金属损失程度的指标。计算公式为: 尾矿品位(克/吨)=尾矿含金量(克)/尾矿数量(吨) 尾矿量(吨)=处理原矿量(吨)-精矿量(吨) 选矿回收率: 是指采用各种选矿方法获得的最终产品含金量占处理原矿含金 量的百分比。按理论和实际回收率两种方法计算。 选矿理论回收率(%)=精矿品位×(原矿品位-尾矿品位)/(原矿品位×(精矿品位-尾矿品位) ×100%=理论回收的金属量(克) /处理原矿金属量(克)×100% 选矿实际回收率(%)=金精矿含金量(克)/原矿含金量(克)×100% (浮选回收率) 浸出率: 是指经浸出作业已溶解金的金属量占氰原矿金属量的百分比。计算公式为: 浸出率=已溶解金的金属量(克)/氰原矿金属量(克)×100%=( 氰原矿金属量(克)-浸渣金属量(克) )/氰原矿金属量(克)×100% 洗涤率: 是指贵液中含金量占浸出溶解金的金属量的百分比。计算公式为:

矿山行业回采率回收率综合利用率的名词解释

矿山行业回采率、回收率、综合利用率的名词解释 矿产资源节约与综合利用评价对象分为单个矿山和多个矿山,评价指标均为开采回采率(K )、选矿回收率(ε)、采选综合回收率(M )、综合利用率(R )、矿产资源综合利用效率(N )、矿产资源总回收率(T )。 一、单个矿山企业评价指标及计算方法 (一)开采回采率。 指采出资源储量占动用资源储量的百分比。计算公式如下: %100动用?= 资源储量采出资源储量 K (1) (二)选矿回收率。 指精矿中有用组分(可以是元素、化合物或者矿物,下同)的 质量与入选原矿中该有用组分质量的百分比。计算公式如下: %100?= 原矿中有用组分质量 精矿中有用组分质量 ε (2) (三)采选综合回收率。 指采矿和选矿生产过程中回收的有用组分占动用资源储量中有用组分的百分比。计算公式如下: M=开采回采率×选矿回收率 (3) (四)综合利用率。 矿产资源综合利用率是指矿山企业开发利用的主、共伴生矿产资源及其生产过程中所产生的尾矿、废石、废水、废气、废渣等的综合利用程度。矿产资源综合利用率主要是估算主、共伴生

矿产资源的综合利用程度。 综合利用率:指采选利用的(主)共伴生有用组分的质量和与动用资源储量中(主)共伴生有用组分质量和的百分比。计算公式如下: % 100?= 共伴生有用组分质量和主动用资源储量中共伴生有用组分质量和 主采选利用的)()(R (4) 为解决不同矿种、储量单位差异的综合利用率计算,引入当量品位对计算公式进行修正。修正后计算公式如下: % 100R 1 i 1 i i ???= ∑∑==m i n i 当量品位 当量品位选矿回收率开采回采率修正 (5) 式中:m —矿床内有用组分的种类数; n —已回收利用的有用组分的种类数; 选矿回收率i —第i 种有用组分的选矿回收率; 当量品位i —第i 种有用组分的当量品位。 其中,当量品位是按价格比法将矿床中某共伴生有用组分的品位,折算成主要组分的品位。即 式中:某组分的品位为地质品位,单价均为元每吨。 (五)矿产资源综合利用效率。 指矿产资源开发利用的总产值与动用资源储量中主、共伴生有用组分质量和的比值。计算公式如下: %100?? =共伴生有用组分质量和 动用资源储量中主矿产开发利用总产值 价格调整系数、N (6) 其中,价格调整系数为上一调查年度平均价格与本调查年度

重复性和再现性分析

重复性和再现性分析 1、重复性和再现性分析的定义: 重复性(设备误差):是指测量一个零件的某特性时,一位评价人用同一量具多次测量的变差。 再现性(评价人变差):指测量一个零件的某特性时,不同评价人用同一量具测量的平均值变差。 2、分析步骤: 1)、获取一个样本零件数>5(一般取10样本零件),应代表实际的或期望的过程变差范围. 2)、选择评价人A 、B、C等.零件的号码从1到n ,评价人不能看到零件的编号. 3)、如果是正常测量系统程序的一部份,应校准量具.主评价人以随机顺序测量n 个零件,将测量结果输入相应的表格中. 4)、求出对于每个评价人每个零件3个测量值的平均值和极差. 5)、求出每个评价人的对所有的零件的测量总平均值(A X 、B X 、C X )和总极差(A R 、B R 、C R ). 6)、求出每个零件的测量平均值P X ,并计算出测量总平均值X 和总极差P R . 7)、求出极差平均值()A B C R R R R ++=评价人数 。 8)、求出最大均值(max.)(min.)DIFF X X X =- 9)、求出均值上限值2X UCL X A R =+、均值下限值2X LCL X A R =-和极差上限值4R UCL D R =、极差上限值30R LCL D R ==。并画出每个评价人的均值和极差图。 10)、进行测量系统分析。

①重复性—设备变差(EV ) 1EV R K =? ②再现性—评价人变差(A V )AV = ③重复性和再现性(R&R )&R R =④零件变差(PV )3p PV R K =? ⑤总变差(TV )TV = ⑥%总变差(TV ) %100(/)EV EV TV =? %100(/)AV AV TV =? %&100(&/)R R R R TV =? %100(/)PV PV TV =? 有效分辨率=1.41(PV / R&R ) 11)、量具重复性和再现性接收标准(之一) ①低于10%误差——测量系统可接收。 ②10%~30%误差——考虑重要性、量具成本、维修成本可能接收。 ③大于30%的误差——需改进。 12)、量具重复性和再现性接收标准(之二) ①在10零件的均值中有5个以上的零件落在控制限以外,说明测量系统是有效和适用的. ②所有的极差都落在控制限以内,说明操作者使用的测量系统是稳定良好的. ③nd c ≥5,该测量系统可以可靠地分辨,可以覆盖预期的产品变差的非重迭97%的自信度区间.

回收率

准备两份:一份待测样品A,一份加入一定量标准B,然后用加标测的结果减去理论值,回收率等于B-A/B*100% 4.6. 5. 回收率 4.6. 5.1. 在检测的样品中添加一定量的标准物质,测试添加进去的标准物质的回收率,可以衡量前处理或测试过程中的基体干扰、样品的交叉污染、样品损失、仪器性能等,故回收率试验一直是化学实验室质量控制中重要的手段之一。 4.6. 5.2. 进行回收率测试时,应选择具有代表性的样品,样品应均匀性良好,目标测试物质具有一定的含量。 4.6. 5.3. 回收率测试时,称取上述选择的经预处理的样品两份,其中一份中加入目标测试物质,加入量是样品中目标测试物质量的50%-150%。两份样品同时经过前处理后,同时上机测试,计算回收率。 4.6. 5.4. 回收率=(V2c2-V1c1)×100%/V0c0 其中:c2:加标样品测试值,ug/mL V2:加标样品体积,mL c1:未加标样品测试值,ug/mL V1:未加标样品体积,mL c0:加入标准溶液的浓度,ug/mL V0:加入标准溶液体积,mL 本计算公式是基于加标样品和未加标样品的质量一致的前提,如两者不一致,则应折算为一致的质量。 4.6. 5.5. 回收率的范围一般控制为80%-120%,根据项目的不同,由实验室技术指导进行适当调整。回收率的测定结果记录在《回收率测定记录表》中。 4.6. 5. 6. 回收率测试的另外一种形式是,如果怀疑样品溶液基体对测试结果有影响,则可以直接在样品溶液中加入一定体积的标准溶液,测试此加标液的浓度,计算加标回收率,此时可以衡量溶液基体对测试有无影响。 以上摘自我们公司的程序文件中关于结果质量保证中关于加标回收率测定, 回收率试验它也叫加标回收,即在测定样品的同时,于同一样品的子样品中加入一定量的标准物质进行测定,将其测定结果扣除样品的测定值,除以加入量,计算回收率。它可以反映测试结果的准确度。 目的就是控制实验的准确度。加标回收衡量准确度,做平行样是用来衡量精密度的.这两个手段是实验室质量保证上经常用到的措施. 测量方法确认技术分成以下几类。 (1)准确度试验(标准物质分析试验、回收率试验、不同方法的比对试验)。 (2)精密度试验(室内重复性、中间精密度、协同试验、极差试验)。 (3)检出限的确定。 (4)测量范围试验。 (5)影响结果因素的系统评价。

重复性与再现性

再现性(Reproducibility) 定义 在改变了的测量条件下,对同一被测量的测量结果之间的一致性,称为测量结果的再现性。再现性又称为复现性、重现性。 在给出再现性时,应详细地说明测量条件改变的情况,包括:测量原理、测量方法、观测者、测量仪器、参考测量标准、地点、使用条件及时间。这些内容可以改变其中一项、多项或全部。同测量重复性一样,这里的"一致性"也是定量的,可以用再现性条件下对同一量进行重复测量所得结果的分散性来表示,例如用再现性标准差来表示。再现性标准差有时也称为组间标准差。 作用 测量结果重复性和再现性的区别是显而易见的。虽然都是指同一被测量的测量结果之间的一致性,但其前提不同。重复性是在测量条件保持不变的情况下,连续多次测量结果之间的一致性;而再现性则是指在测量条件改变了的情况下,测量结果之间的一致性。 在很多实际工作中,最重要的再现性指由不同操作者、采用相同测量方法、仪器,在相同的环境条件下,测量同一被测量的重复测量结果之间的一致性,即测量条件的改变只限于操作者的改变。 用例 仪表技术性能指标的一种,它表示在同一工作条件下,在规定时间(一般为较长时间)内,对同一输入值从两个相反方向(上升和下降)上重复测量的输出值之间的相互一致程度。再现性包括滞环、死区、漂移和重复性。 重复性 定义 重复性是用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所作多个单次测试结果,在95%概率水平两个独立测试结果的最大差值。 在中国仪器超市中当测量条件是在以下4个状况下实验时,相同的待测量的测量结果有一致性的称为重复性,4个条件如下: 1、相同的测量环境 2、相同的测量仪器及在相同的条件下使用 3、相同的位置 4、在短时间内的重复 测量结果的重复性 是指“在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性”(5.6条)。 上述定义中的“一致性”是定量的,可以用重复性条件下对同一量进行多次测量所得结果的分散性来表示。而表示测量结果分散性的量,最为常用的是实验标准〔偏〕差(见5.8条)。在重复性条件下按贝塞尔(Bessel)公式算得的实验标准〔偏〕差被称为“重复性标准差”,并记以sr。下标r被称为“重复性限”,它是重复性条件下两次测量结果之差以95%的概率所存在的区间,即两次测量结果之差落于r这个区间内或这个差≤r的概率为95%。假定多次测量所得结果呈正态分布,而且算得的sr充分可靠(自由度充分大),则可求得,即重复性限约为重复

选矿常用名词术语及计算公式

一般概念 1、选矿:是把有用矿物与脉石矿物最大限度的分开,除去脉石,使有用矿物得到富集,或使 共生的有用矿物彼此分离,从而获得高品位的一种或多种精矿的过程。 2、岩石:由一种或多种矿物组成的矿物集合体称岩石。或者说,构成地球外壳岩石圈的物质。 3、矿石:指在现代技术条件下,能够加工告别或能直接提炼金属以及其他化合物的岩石。 4、矿物:在地壳中自然生成的具有固定化学组成与物理化学性质的自然元素或化合物。 5、有用矿物:能够为人类所利用的矿物、矿石、岩石。 6、脉石:矿石中没有工业价值或暂时不能为人类所利用的部分称脉石。 7、围石:矿体周围的矿石称围岩。矿体上部围岩称上盘或顶盘,矿体下部围岩称下盘或底盘, 夹在矿体中间的围岩称夹石。 8、废石:矿体围岩和夹岩称废石。实际上矿石和废石的概念是相对的。处于矿石边界品位以 下无工业价值的低品位矿石和围岩、夹石统称废石。 9、矿石品位:是指矿石中某种金属,非金属或其它有用组分含量的多少,一般用百分数表示, 有的用每吨矿石中含的克数来表示。 10、原矿品位:是指进入选厂的矿石中的某种金属,非金属或其它有用组分与原矿量的百分 比。 11、精矿品位:指精矿中所含某种金属(或非金属或其它有用组分)与精矿量的百分比。 12、尾矿品位:尾矿中所含某种金属(或非金属或其它有用组分)与尾矿量的百分比。 13、重力先矿:简称重选,是根据矿石中各种矿物比重(密度)的差异进行分选的选矿方法。 比重不同的矿物颗粒在运动的介质(水、空气、重介质)中受液体动力和其它机械力作用。形成分层,使轻、重矿物得到分离。 重选法连同下述的浮选法、磁选法、电选法是主要的选矿方法。 14、浮游选矿:简称浮选,浮选通常为泡沫浮选,它是根据矿物表面物理化学性质(主要是 润湿性、电性、吸附以及溶解、氧化等化学反应)的差异,经浮选药剂处理后,矿浆中各种矿物的表面性质差异变得更加明显,从而使矿物颗粒可以有选择地附着在气泡表面上,并把这些附着在气泡表面的矿物提升到矿浆表面上来的全过程。 泡沫浮选是一个复杂的过程。是一种选择性分离工艺。 15、磁力选矿:简称磁选,是根据矿物自然磁性的不同,在磁选机磁场作用下,使各矿物受 到不同的作用力,从而使矿物得到分离的方法。 16、电选法:是根据矿物导电率的差别进行分选的方法。 17、粗选:矿浆经调合后进入浮选的第一个工序,选出部分高于原矿品位,但一般达不到精 矿质量要求的粗精矿作业。 18、精选:将粗选所得到的粗精矿再选,并得到合格精矿的作业。 19、扫选:把粗选之后还不能做为最终尾矿丢弃的矿浆进行再选的作业。 为提高回收率,需降低尾矿品位,扫选也常进行多次。 20、精矿:矿石经选别作业后,除去了大部分脉石和杂质,使有用矿物得到充分富集的最终 产品。 21、中矿:在选别过程中得到的中间产品(通常为扫选作业的精矿和精选作业的尾矿)。 中矿品位一般介于最终精矿和尾矿品位之间。中矿一般需要返回某适当作业点进行再选或单独处理。 22、尾矿:矿石经选别作业后,主要有用成份富集于精矿中,所剩余的不再进行回收的部分。 尾矿中一般都含有一定数量有回收利用价值的矿物,只是由于受一定时期技术水平的限制或继续回收的费用太高而暂时丢弃。因此尾矿要妥善保管起来。 23、产率:在选矿过程中某产品的重量与原矿重量的百分比。 产率的计算(对整个选别过程或任意一个阶段或一个作业均适用)。

回收率计算

1.1 理论公式使用的前提条件 文献[1 ]中对加标回收率的解释是:“在测定样品的同时, 于同一样品的子样中加入一定量的标准物质进行测定, 将其测定结果扣除样品的测定值, 以计算回收率. ”因此,使用理论公式时应当满足以下2 个条件:①同一样品的子样取样体积必须相等; ②各类子样的测定过程必须按相同的操作步骤进行。 1.2 理论公式使用的约束条件 文献[2 ]中强调指出: 加标量不能过大,一般为待测物含量的0.5~2.0 倍, 且加标后的总含量不应超过方法的测定上限; 加标物的浓度宜较高, 加标物的体积应很小,一般以不超过原始试样体积的1%为好。 1.3 理论公式的不足之处 ( 1) 各文献对公式中“加标量”一词的定义, 均未准确给定, 使其含义不是十分明确. 从公式的分子上分析, 加标量应为浓度单位; 从公式的分母上理解, 应为加入一定体积的标准溶液中所含标准物质的量值, 为质量单位。 (2) 若公式中的加标量为浓度单位, 此时的加标量并不是指标准溶液的浓度, 而应该是加标体积所含标准物质的量值除以试样体积(或除以试样体积与加标体积之和)所得的浓度值. 这里存在着浓度换算, 而在理论公式中并没有明确予以表现出来。

2.1 以浓度值计算加标回收率理论公式可以表示为 : P =(c2-c1)/c3× 100%. (1) 式中: P 为加标回收率;c1 为试样浓度, 即试样测定值, c1 =m 1/V 1;c2 为加标试样浓度,即加标试样测定值, c2 =m 2/V 2;c3 为加标量, c3 =c0 ×V 0/V 2:m =c0 ×V 0;m 1为试样中的物质含量; m 2 为加标试样中的物质含量; m 为加标体积中的物质含量; V 1 为试样体积; V 2 为加标试样体积, V 2 = V 1 + V 0; V 0 为加标体积; c0 为加标用标准溶液浓度。 上述符号意义在下文中均相同。 (1) 在加标体积不影响分析结果的情况下, 即V 2= V 1, 当c3 =c0 ×V 0/V 1时, P =[(c2 - c1) ×V 1]/(c0 ×V 0)× 100% (2) (2) 在加标体积影响分析结果的情况下, 即V 2= V 1+ V 0, 当c3 =(c0 ×V 0)/(V 1 + V 0) 时, P =[(c2 - c1) ×(V 1 + V 0)]/(c0 ×V 0)× 100% (3) 2.2 以样品中所含物质的量值计算加标回收率 将理论公式中各项均理解为量值时, 则可以避开加标体积带来的麻烦, 简明易懂, 计算方便, 实用性强. 即 P =(m 2 - m 1)/m×100%,或

加样回收率

加样回收率 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

加样回收率液色迷人 加标回收率的测定可以反映测试结果的准确度。 进行加标回收率测定时应注意以下问题: 1)加标物的形态应和待测物的形态一致。 2)加标量应尽量与样品中待测物含量相近,并注意对样品容积的影响。 3)加标后的测定值不应超过方法的测定上限的90%。 计算方法一:(测定量-已含量)/加入量乘以100% 计算方法二:测定量/(已含量+加入量)乘以100% 以上两种计算方法不知哪种是可行的,还是都可以使用? 我认为方法一可行,更准确些 加样回收率(%)=(测得量一原有量)/加入量x100% =实际测得加入量/理论加入量 方法二不可行 加样回收率(%)=测定量/(已含量+加入量) x100% =实际测得总量/理论总量 从误差传递的角度,以第一种为宜 我认为方法一可行,2005年版药典一部附录加样回收率也是这样要求的。 关于加样回收率的实验设计:

1.高中低三个浓度的选取原则:高浓度应为样品浓度的120%左右、中浓度应为样品浓度 的100%左右、低浓度应为样品浓度的80%左右。 2.高中低三个浓度样品的制备:最好采用加入50%量的样品,然后分别加入70%、50%、 30%量的对照品储备液,制成供试样品,每个浓度三份。 3.测定:采用测定方法分别测定,这个时候要注意你之前制定的标准曲线的范围(线性 范围),是否能涵盖这九份样品的浓度范围?也就是说这九份样品的浓度都应该在你的 标准曲线范围内。 4.得到测定结果后的结算:应采用你的结果值,也就是每份样品的最终计算结果,而不 是测定过程中没有经过计算的数据,因为你的加样回收率要体现的是全部操作过程的准 确与变异程度,其中也包括数据计算。 关于药物定量分析中加样回收率实验的再探讨? 回收率包括绝对回收率和相对回收率。绝对回收率考察的是经过样品处理后能用于分析的药物的比例。因为不论是生物基质还是制剂辅料中的药物,经过样品处理都有一定的损失。做为一个分析方法,绝对回收率一般要求大于50%才行。它是在空白基质中定量加入药物,经处理后与标准品的比值。标准品为流动相直接稀释而来,而不是同样品一样处

相关主题
文本预览
相关文档 最新文档