当前位置:文档之家› 线性模组分类

线性模组分类

线性模组分类
线性模组分类

线性模组分类

V A V直线模组大致分为两类,一类是皮带模组,二类似丝杆模组。两类模组的定位精度有所差异。丝杆模组的精度略高于皮带模组。皮带模组适用包装机械、喷涂或印刷机械等对精度要求不那么高的机械。

两类模组在维护方面也有不同。皮带模组的零件换取简单方面;丝杆驱动模组由于结构的整体性,换取模组零件比较复杂。

皮带模组的特点:

皮带线性模组又分为同步带线性模组与同步带线轨线性模组,其区别是同步带线轨线性模组里面有加微轨,稳定性,精度,负载更好,

1.皮带模组经过特定的设计,在一侧可以控制皮带运动的松紧,方便设备在生产过程中的调试。

2.可以通过调节皮带的宽度来增加模组的负载。

3.V A V皮带模组中使用的皮带里面都是带钢丝的,使其不容易破损。

4.V A V同步带线性模组常用于龙门架Y轴与X轴使用,

5.V A V同步带模组长度更长,最长可做6米

V A V皮带线性模组主要型号有:BOH40、BOH50、BOH100、BOH100N、BIHM15M、BIH40、BIHM40、BOHM40N2、BOHM40N、BOHM40、BIHM50、BIH50、BOHM50N、BOHM50、BIH100N、BIH84、BIVM84、BOVM158、BIVM158、BIH80、BIVM100UN、BOVM100H、BOVM100N、BOHM50N2、BRHM40、BRHM50、BRHM60、BRVM100等众多皮带模组。

丝杆模组的特点:

丝杆模组又为分滚珠丝杆模组与滚珠丝杆线轨模组,其区别是滚珠丝杆线轨模组里面有加微轨,稳定,精度,钢性更好

1.丝杆模组负载更大

2.丝杆模组精度更小

3.常用于Z轴,省掉配用刹车电机,

V A V丝杆模组主要型号有:SRHM60、SRHM84、SRHM106、SRHM156、SIM95、SIVM-95、SIM100UN、SIM100、SOM100、SIM84、SIM84N、SOM50、SOM40等众多丝杆模组。

本文由V AV公司整理发布,未请允许请误转载!余:183********QQ:2850385809

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

简单的线性规划教案[1]

简单的线性规划教案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

简单的线性规划【教学目标】 1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题; 2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。 【教学重点】用图解法解决简单的线性规划问题 【教学难点】准确求得线性规划问题的最优解 【教学过程】 1.课题导入 [复习提问] 1、二元一次不等式0 +C Ax在平面直角坐标系中表示什么图形? By + > 2、怎样画二元一次不等式(组)所表示的平面区域应注意哪些事项 3、熟记“直线定界、特殊点定域”方法的内涵。 2.讲授新课 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。 1、下面我们就来看有关与生产安排的一个问题:

引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件: 设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组: 2841641200 x y x y x y +≤??≤?? ≤??≥?≥?? (1) (2)画出不等式组所表示的平面区域: 如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。 (3)提出新问题: 进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大? (4)尝试解答: 设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为: 当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少? 把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z 的直线。 当z 变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,

作业二基于Fisher准则线性分类器设计

作业二 F i s h e r 线性判别分类器 一 实验目的 本实验旨在让同学进一步了解分类器的设计概念,能够根据自己的设计对线性分类器有更深刻地认识,理解Fisher 准则方法确定最佳线性分界面方法的原理,以及Lagrande 乘子求解的原理。 二 实验条件 Matlab 软件 三 实验原理 线性判别函数的一般形式可表示成 0)(w X W X g T += 其中 根据Fisher 选择投影方向W 的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向W 的函数为: )(211*m m S W W -=- 上面的公式是使用Fisher 准则求最佳法线向量的解,该式比较重要。另外,该式这种形式的运算,我们称为线性变换,其中21m m -式一个向量,1 -W S 是W S 的逆矩阵,如21m m -是d 维,W S 和 1-W S 都是d ×d 维,得到的*W 也是一个d 维的向量。 向量* W 就是使Fisher 准则函数)(W J F 达极大值的解,也就是按Fisher 准则将d 维X 空间投影到一维Y 空间的最佳投影方向,该向量*W 的各分量值是对原d 维特征向量求加权和的权值。 以上讨论了线性判别函数加权向量W 的确定方法,并讨论了使Fisher 准则函数极大的d 维向量* W 的计算方法,但是判别函数中的另一项0W 尚未确定,一般可采用以下几种方法确定0W 如 或者 m N N m N m N W ~~~2 122110=++-= 或当1)(ωp 与2)(ωp 已知时可用 当W 0确定之后,则可按以下规则分类, 201 0ωω∈→-<∈→->X w X W X w X W T T

Fisher分类器设计

Fisher分类器设计 班级:自092 姓名:刘昌元学号:099064370 一、实验目的: 1:根据fisher准则设计线性分类器 2:由fisher分类器训练样本数据 3:由fisher分类器测试样本观察出错率并与贝叶斯分类器的出错率比较判断两种分类器的性能优劣 4:将测试数据和决策面画在一张图上直观显示

三、实验所用函数: 类均值向量:∑=∈i xj j i x N M χ1 类内离散度矩阵:T i j i i xj j i M x M x S ))((--∑ ∈=χ 总类内离散度矩阵:21S S S w += 类间离散度矩阵:T b M M M M S ))((2121--= 最有投影方向:)(211 * M M S W w -=- 决策函数:0) (w x w x G T += 阈值:)(2 1210M w M w w T T +-= 四、实验结果: 1:得到参数:最有投影向量和阈值 2:利用分类器输入身高和体重数据得到性别分类(实验结果如下) w=[ 0.0012; 0.0003] threshold =0.2318

classify(165,56) 结果为“女” classify(178,70) 结果为“男”3:fisher准则分类器的出错率统计: 测试test1: 测试test2: 4:bayes分类器测试出错统计: 测试test1:

测试test2: 结论:很显然bayes分类器比fisher分类器准确率高的多。4:分类面决策图:

五、程序: 程序1:求最有投影方向和阈值 %程序功能:应用fisher分类方法,使用训练数据获得阈值和最佳变换向量(投影方向)% function fisher(boys,girls) %调用男生和女生的训练样本数据% A=boys.'; B=girls.'; [k1,l1]=size(A); [k2,l2]=size(B); M1=sum(boys); M1=M1.'; M1=M1/l1; %求男生身高与体重的均值% M2=sum(girls); M2=M2.'; M2=M2/l2; %求女生身高与体重的均值% S1=zeros(k1,k1); S2=zeros(k2,k2); for i=1:l1 S1=S1+(A(:,i)-M1)*((A(:,i)-M1).'); %求类内离散度矩阵S1% end for i=1:l2 S2=S2+(B(:,i)-M2)*((B(:,i)-M2).'); %求类内离散度矩阵S2% end for i=1:2 for j=1:2 Sw(i,j)=S1(i,j)+S2(i,j); %求总类内离散度矩阵Sw% end end w=inv(Sw)*(M1-M2) %求最有投影方向% wT=w.'; for i=1:l1 Y1(i)=wT(1,1)*A(1,i)+wT(1,2)*A(2,i); %由分类函数g(x)=wT*x求男生身高和体重的阈值% end for i=1:l2 Y2(i)=wT(1,1)*B(1,i)+wT(1,2)*B(2,i); %由分类函数g(x)=wT*x求女生身高和体重的阈值% end m1=sum(Y1)/l1; %阈值平均% m2=sum(Y2)/l2; %阈值平均% threshold=(l1*m1+l2*m2)/(l1+l2) %求fisher决策面的阈值%

简单的线性规划 习题含答案

线性规划教案 1.若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 2.不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为 () A、4 B、1 C、5 D、无穷大解:如图,作出可行域,△ABC的面 积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选 B 3.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥ ? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D 四、求线性目标函数中参数的取值范围 4.已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使 z=x+ay(a>0)取得最小值的最优解有无数个,则a的值 为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函 数z=x+ay(a>0)取得最小值的最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选 D 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产

简单的线性规划练习-附答案详解

简单的线性规划练习 附答案详解 一、选择题 1.在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( ) A .(-∞,1) B .(1,+∞) C .(-1,+∞) D .(0,1) 2.若2m +2n <4,则点(m ,n )必在( ) A .直线x +y -2=0的左下方 B .直线x +y -2=0的右上方 C .直线x +2y -2=0的右上方 D .直线x +2y -2=0的左下方 3.不等式组???? ? x ≥0x +3y ≥4 3x +y ≤4 所表示的平面区域的面积等于( ) A.32 B.23 C.43 D.3 4 4.不等式组???? ? x +y ≥22x -y ≤4 x -y ≥0所围成的平面区域的面积为( )A .3 2 B .6 2 C .6 D .3 5.设变量x ,y 满足约束条件???? ? y ≤x x +y ≥2 y ≥3x -6,则目标函数z =2x +y 的最小值为( )A .2 B .3 C .5 D .7 6.已知A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及边界运动,则z =x -y 的最大值及最小值分别是( ) A .-1,-3 B .1,-3 C .3,-1 D .3,1 7.在直角坐标系xOy 中,已知△AOB 的三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即坐标均为整数的点)的总数为( )A .95 B .91

C .88 D .75 8.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( )A .12万元 B .20万元 C .25万元 D .27万元 9.已知实数x ,y 满足???? ? x -y +6≥0x +y ≥0 x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为( ) A .a ≥1 B .a ≤-1 C .-1≤a ≤1 D .a ≥1或a ≤-1 10.已知变量x ,y 满足约束条件???? ? x +4y -13≥02y -x +1≥0 x +y -4≤0,且有无穷多个点(x ,y )使目标函数 z =x +my 取得最小值,则m =( ) A .-2 B .-1 C .1 D .4 11.当点M (x ,y )在如图所示的三角形ABC 区域内(含边界)运动时,目标函数z =kx +y 取得最大值的一个最优解为(1,2),则实数k 的取值范围是( ) A .(-∞,-1]∪[1,+∞) B .[-1,1] C .(-∞,-1)∪(1,+∞) D .(-1,1) 12.已知x 、y 满足不等式组???? ? y ≥x x +y ≤2 x ≥a ,且z =2x +y 的最大值是最小值的3倍,则a =( )

Bayes分类器设计

实验一 Bayes 分类器设计 【实验目的】 对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。 【实验条件】 Matlab 软件 【实验原理】 根据贝叶斯公式,给出在类条件概率密度为正态分布时具体的判别函数表达式,用此判别函数设计分类器。数据随机生成,比如生成两类样本(如鲈鱼和鲑鱼),每个样本有两个特征(如长度和亮度),每类有若干个(比如50个)样本点,假设每类样本点服从二维正态分布,随机生成具体数据,然后估计每类的均值与协方差,在下列各种情况下求出分类边界。先验概率自己给定,比如都为0.5。如果可能,画出在两类协方差不相同的情况下的分类边界。 若第一类的样本为{}12,,n x x x ,则第一类均值的估计为1 1?n k k x n μ==∑,协方差的估计为1 1???()()n T k k k x x n μμ=∑=--∑。则在两类协方差不相同的情况下的判别函数为: 判别边界为g1(x)-g2(x)=0,是一条一般二次曲线(可能是椭圆、双曲线、抛物线等)。 【实验内容】 1、 自动随机生成两类服从二维正态分布的样本点 2、 计算两类样本的均值和协方差矩阵 3、 按照两类协方差不相同情况下的判别函数,求出判别方程曲线。 4、 通过修改不同的参数(均值、方差、协方差矩阵),观察判别方程曲线的变化。 【实验程序】 clear all; close all;

samplenum = 50;%样本的个数 n1(:,1) = normrnd(8,4,samplenum,1);%产生高斯分布的二维随机样本,第一个参数为均值,第二个为方差 n1(:,2) = normrnd(6,4,samplenum,1);%产生高斯分布的二维随机样本,第一个参数为均值,第二个为方差 n2(:,1) = normrnd(14,4,samplenum,1);%产生高斯分布的二维随机样本,第一个参数为均值,第二个为方差 n2(:,2) = normrnd(16,4,samplenum,1);%产生高斯分布的二维随机样本,第一个参数为均值,第二个为方差 scatter(n1(1:samplenum,1),n1(1:samplenum,2),'ro');%画出样本 hold on scatter(n2(1:samplenum,1),n2(1:samplenum,2),'g*');%画出样本 u1 = mean(n1);%计算第一类样本的均值 e1=0; for i=1:20 e1 = e1+(n1(i,:)-u1)'*(n1(i,:)-u1);%计算协方差矩阵 end; u2 = mean(n2);%计算第二类样本的均值 e2=0; for i=1:20 e2 = e2+(n2(i,:)-u2)'*(n2(i,:)-u2);%计算协方差矩阵 end; e2=e2/20;%计算协方差矩阵 e1=e1/20;%计算协方差矩阵 %-------------通过改变条件来完成不同的曲线--------- % e2 = e1; %-------------------------------------------------- u1 = u1'; u2 = u2'; scatter(u1(1,1),u1(2,1),'b+');%画出样本中心 scatter(u2(1,1),u2(2,1),'b+');%画出样本中心 line([u1(1,1),u2(1,1)],[u1(2,1),u2(2,1)]); %画出样本中心连线 %求解分类方程 W1=-1/2*inv(e1); w1=inv(e1)*u1; w10=-1/2*u1'*inv(e1)*u1-1/2*log(det(inv(e1)))+log(0.5);%假设w1的先验概率为0.5 W2=-1/2*inv(e2); w2=inv(e2)*u2; w20=-1/2*u2'*inv(e2)*u2-1/2*log(det(inv(e2)))+log(0.5);% 假设w2的先验概率为0.5 syms x y; fn = [x,y]*(W1-W2)*[x,y]'+(w1-w2)'*[x,y]'+w10-w20; ezplot(fn,[0,30]);

简单的线性规划问题附答案

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b , 当z 变化时,方程表示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,

可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题 例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题 例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.

简单的线性规划教案一

简单的线性规划教案一 【教学目标】 1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题; 2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。 【教学重点】 用图解法解决简单的线性规划问题 【教学难点】 准确求得线性规划问题的最优解 【教学过程】 1.课题导入 [复习提问] 1、二元一次不等式0>++C By Ax 在平面直角坐标系中表示什么图形? 2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项? 3、熟记“直线定界、特殊点定域”方法的内涵。 2.讲授新课 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。 1、下面我们就来看有关与生产安排的一个问题: 引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件: 设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组: 2841641200 x y x y x y +≤??≤?? ≤??≥?≥?? ……………………………………………………………….(1) (2)画出不等式组所表示的平面区域: 如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。 (3)提出新问题: 进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大? (4)尝试解答: 设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为: 当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少?

matlab-线性分类器的设计doc

线性分类器设计 1 问题描述 对“data1.m ”数据,分别采用感知机算法、最小平方误差算法、线性SVM 算法设计分类器,分别画出决策面,并比较性能。(注意讨论算法中参数设置的影响。) 2 方法描述 2.1 感知机算法 线性分类器的第一个迭代算法是1956年由Frank Rosenblatt 提出的,即具有自学习能力的感知器(Perceptron )神经网络模型,用来模拟动物或者人脑的感知和学习能力。这个算法被提出后,受到了很大的关注。感知器在神经网络发展的历史上占据着特殊的位置:它是第一个从算法上完整描述的神经网络,是一种具有分层神经网络结构、神经元之间有自适应权相连接的神经网络的一个基本网络。 感知器的学习过程是不断改变权向量的输入,更新结构中的可变参数,最后实现在有限次迭代之后的收敛。感知器的基本模型结构如图1所示: 图1 感知器基本模型 其中,X 输入,Xi 表示的是第i 个输入;Y 表示输出;W 表示权向量;w0是阈值,f 是一个阶跃函数。 感知器实现样本的线性分类主要过程是:特征向量的元素x1,x2,……,xk 是网络的输入元素,每一个元素与相应的权wi 相乘。,乘积相加后再与阈值w0相加,结果通过f 函数执行激活功能,f 为系统的激活函数。因为f 是一个阶跃函数,故当自变量小于0时,f= -1;当自变量大于0时,f= 1。这样,根据输出信号Y ,把相应的特征向量分到为两类。 然而,权向量w 并不是一个已知的参数,故感知器算法很重要的一个步骤即是寻找一个合理的决策超平面。故设这个超平面为w ,满足: 12 *0,*0,T T w x x w x x ωω>?∈

高中数学优秀教案 简单的线形规划简单的线性规划(一)

课题:7.4 简单的线性规划(一) 授课人:石家庄市第一中学孟庆善 教材分析: 本节课是在学生学习了直线与直线方程的关系,初步了解了二元一次方程的几何意义的基础上,引领学生进一步研究二元一次不等式的几何意义,为后面学习用图解法求二元函数最值问题创造条件.使学生体会数与形的转化过程,逐步加强学生应用几何图形解决代数问题的意识. 基于以上分析,在教学中应充分利用多媒体课件向学生展示代数条件与几何图形的对应关系,加强学生对问题的了解,培养学生学习数学的兴趣. 教学目标: 1.使学生了解二元一次不等式表示平面区域; 2. 掌握根据二元一次不等式(组)正确做出平面区域的方法,培养学生作图的能力. 3.让学生通过观察、联想,体验数学的作用,培养学生学习数学的兴趣,培养学生勤于思考、勇于探索和团结协作的精神。 教学重点: 二元一次不等式表示平面区域. 教学难点: 1.二元一次不等式表示平面区域; 2.根据二元一次不等式(组)正确做出平面区域. 教法分析:师生互动,探究、研讨、辨析、总结 鉴于高二学生已具有较好的数学基础知识和较强的分析问题、解决问题的能力,本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法.首先设置“问题”情境,激发学生解决问题的欲望;其次提供观察、探索、交流的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取知识.恰当的利用多媒体课件辅助教学,直观生动地呈现学生思维的形成过程,从而提高教学效率.在教学过程中,注重学生的探索经历和发现新知的体验,使其形成自己对数学知识的理解和有效的学习策略.

教学过程:

二元一次不等式表示平面区域的作图步骤:⑴作出直线;⑵取特殊点;⑶代入 表示的平面区域.

二元一次方程简单的线性规划要点

§3.3.1二元一次不等式(组)与 平面区域(1) 1.了解二元一次不等式的几何意义和什么是边界,会用二元一次不等式组表示平面区域; 2.经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力. 一、课前准备 复习1:一元二次不等式的定义_______________二元一次不等式定义________________________二元一次不等式组的定义_____________________ 复习2:解下列不等式: (1)210x -+>; (2)22320 41590 x x x x ?+-≥??-+>?? . 二、新课导学 ※ 学习探究 探究1:一元一次不等式(组)的解集可以表示为数轴上的区间,例如,30 40x x +>??-

并思考: 当点A 与点P 有相同的横坐标时,它们的纵坐标有什么关系?_______________ 根据此说说,直线x-y=6左上方的坐标与不等式6x y -<有什么关系?______________ 直线x-y=6右下方点的坐标呢? 在平面直角坐标系中,以二元一次不等式6x y -<的解为坐标的点都在直线x-y=6的_____;反过来,直线x-y=6左上方的点的坐标都满足不等式6x y -<. 因此,在平面直角坐标系中,不等式6x y -<表示直线x-y=6左上 方的平面区域;如图: 类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图: 直线叫做这两个区域的边界 结论: 1. 二元一次不等式0Ax By c ++>在平面直角坐标系中表示直线0Ax By c ++=某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2. 不等式中仅>或<不包括 ;但含“≤”“≥”包括 ; 同侧同号,异侧异号. ※ 典型例题 例1画出不等式44x y +<表示的平面区域. 分析:先画 ___________(用 线表示),再取 _______判断区域,即可画出. 归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当0C ≠时,常把原点作为此特殊点. 变式:画出不等式240x y -+-≤表示的平面区域. 例2用平面区域表示不等式组312 2y x x y <-+??

基于-Fisher准则线性分类器设计

基于Fisher准则线性分类器设计 专业:电子信息工程 学生:子龙 学号:201316040117

一、实验类型 设计型:线性分类器设计(Fisher 准则) 二、实验目的 本实验旨在让同学进一步了解分类器的设计概念,能够根据自己的设计对线性分类器有更深刻地认识,理解Fisher 准则方法确定最佳线性分界面方法的原理,以及Lagrande 乘子求解的原理。 三、实验条件 matlab 软件 四、实验原理 线性判别函数的一般形式可表示成 0)(w X W X g T += 其中 ????? ??=d x x X Λ1?????? ? ??=d w w w W Λ21 根据Fisher 选择投影方向W 的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类样本投影尽可能密集的要求,用以评价投影方向W 的函数为: 2 2 2122 1~~)~~()(S S m m W J F +-= )(211 *m m S W W -=- 上面的公式是使用Fisher 准则求最佳法线向量的解,该式比较重要。另外,该式这种

形式的运算,我们称为线性变换,其中21m m -式一个向量,1 -W S 是W S 的逆矩阵,如21m m -是d 维,W S 和1-W S 都是d ×d 维,得到的* W 也是一个d 维的向量。 向量* W 就是使Fisher 准则函数)(W J F 达极大值的解,也就是按Fisher 准则将d 维X 空间投影到一维Y 空间的最佳投影方向,该向量* W 的各分量值是对原d 维特征向量求加权和的权值。 以上讨论了线性判别函数加权向量W 的确定方法,并讨论了使Fisher 准则函数极大的d 维向量* W 的计算方法,但是判别函数中的另一项0W 尚未确定,一般可采用以下几种方法确定0W 如 2 ~~2 10m m W +-= 或者 m N N m N m N W ~~~2 12 2110=++- = 或当1)(ωp 与2)(ωp 已知时可用 []??????-+-+=2)(/)(ln 2 ~~212 1210N N p p m m W ωω …… 当W 0确定之后,则可按以下规则分类, 2 010ωω∈→->∈→->X w X W X w X W T T 使用Fisher 准则方法确定最佳线性分界面的方法是一个著名的方法,尽管提出该方法的时间比较早,仍见有人使用。 五、实验容 已知有两类数据1ω和2ω二者的概率已知1)(ωp =0.6,2)(ωp =0.4。 1ω中数据点的坐标对应一一如下:

SVM分类器设计

SVM分类器设计 1.引言 支撑矢量机(SVM)是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。SVM分类器在推广性和经验误差两方面能达到平衡,是目前比较盛行的分类器。 1.1 什么是SVM分类器 所谓支持向量机,顾名思义,分为两个部分了解,一什么是支持向量,简单来说,就是支持或者是支撑平面上把两类类别划分开来的超平面的向量点;二这里的“机”是什么意思。“机(machine,机器)”便是一个算法。在机器学习领域,常把一些算法看做是一个机器,如分类机(当然,也叫做分类器),而支持向量机本身便是一种监督式学习的方法它广泛的应用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点:⑴它是针对线性可分情况进行分析;(2)对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。 1.2 SVM分类器的优点和缺点 优点: (1)由于核函数隐含一个复杂映射,经验误差小,因此针对小样本数据利用支持向量能够完成线性或非线性规划问题;推广性和经验误差平衡。 (2)SVM 的最终决策函数只由靠近边界的少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。 (3)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。这种“鲁棒”性主要体现在:①增、删非支持向量样本对模型没有影响;②支持向量样本集具有一定的鲁棒性; ③有些成功的应用中,SVM 方法对核的选取不敏感 缺点: (1)在训练分类器时 ,SVM的着眼点在于两类的交界部分 ,那些混杂在另一类中的点往往无助于提高分类器的性能 ,反而会大大增加训练器的计算负担 ,同时它们的存在还可能造成过学习 ,使泛化能力减弱 .为了改善支持向量机的泛化能力。 (2)SVM算法对大规模训练样本难以实施。由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。 (3)用SVM解决多分类问题存在困难。经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器1.3 SVM分类器当前研究热点 (1)针对大样本数据训练难度问题,对SVM算法的改进。例如J.Platt的SMO算法、T.Joachims的SVM、C.J.C.Burges等的PCGC、张学工的CSVM以及O.L.Mangasarian等的SOR算法。 (2)如何降低边界混杂点(即所谓统计误差导致的“不干净”点)导致的不必要的训练计算负担,增强泛化能力。这种思路聚焦于样本数据预处理的探索,例如NN-SVM。 (3)分类器设计思想之间的融合以及取长补短。例如[2]采样支撑矢量机和最近邻分类相

简单的线性规划

简单的线性规划 一、本章节的地位及作用 1.“简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新大纲》中增加的一个新内容,反映了《新大纲》对数学知识应用的重视,体现了数学的工具性、应用性. 2.本节内容渗透了转化、归纳、数形结合数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材. 3.本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力. 二、教学目标 1.知识目标:能把实际问题转化为简单的线性规划问题,并能给出解答. 2.能力目标:培养学生观察、联想以及作图的能力,渗透化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力. 3.情感目标:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新. 三、教学重点与难点 1.教学重点:建立线性规划模型 2.教学难点:如何把实际问题转化为简单的线性规划问题,并准确给出解答. 解决重点、难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.为突出重点,突破难点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化. 四、教学方法与手段 1.教学方法 为了激发学生学习的主体意识,面向全体学生,使学生在获取知识的同时,各方面的能力得到进一步的培养.根据本节课的内容特点,本节课采用启发引导、讲练结合的教学方法,着重于培养学生分析、解决实际问题的能力以及良好的学习品质. 2.教学手段 新大纲明确指出:要积极创造条件,采用现代化的教学手段进行教学.根据本节知识本身的抽象性以及作图的复杂性,为突出重点、突破难点,增加教学容量,激发学生的学习兴趣,增强教学的条理性、形象性,本节课采用计算机辅助教学,以直观、生动地揭示二元一次不等式(组)所表示的平面区域以及图形的动态变化情况. 3.学生课前准备 坐标纸、三角板、铅笔和彩色水笔 五、教学过程设计 教学流程图

Bayes分类器设计

实验二 Bayes 分类器设计 一、实验目的 通过实验,加深对统计判决与概率密度估计基本思想、方法的认识,了解影响Bayes 分类器性能的因素,掌握基于Bayes 决策理论的随机模式分类的原理和方法。 二、实验内容 设计Bayes 决策理论的随机模式分类器。 假定某个局部区域细胞识别中正常(a 1)和非正常(a 2)两类先验概率分别 为 正常状态:P (a 1)=0.9; 异常状态:P (a 2)=0.1。 三、方法手段 Bayes 分类器的基本思想是依据类的概率、概密,按照某种准则使分类结果从统计上讲是最佳的。换言之,根据类的概率、概密将模式空间划分成若干个子空间,在此基础上形成模式分类的判决规则。准则函数不同,所导出的判决规则就不同,分类结果也不同。使用哪种准则或方法应根据具体问题来确定。 四、Bayes 算法 1.实验原理 多元正太分布的概率密度函数由下式定义 1122 11()exp ()()2(2)T d p X X X μμπ-??=--∑-????∑ 由最小错误概率判决规则,可得采用如下的函数作为判别函数 ()(|)(),1,2,,i i i g x p X P i N ωω== 这里,()i P ω为类别i ω发生的先验概率,(|)i p X ω为类别i ω的类条件概率密度函数,而N 为类别数。 设类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p X ω,i=1,2,……,N 服从正态分布,即有(|)i p X ω~(,)i i N μ∑,那么上式就可以写为 1122() 1()exp ()(),1,2,,2(2)T i i d P g X X X i N ωμμπ-??=--∑-=????∑ 由于对数函数为单调变化的函数,用上式右端取对数后得到的新的判别函数替代原来的判别函数()i g X 不会改变相应分类器的性能。因此,可取 111()()()ln ()ln ln(2)222 T i i i i i i d g X X X P μμωπ-=--∑-+-∑- 显然,上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。这样,判别函数()i g X 可简化为以下形式

简单的线性规划教学设计(二) 人教课标版(优秀教案)

《简单的线性规划》教学设计(二) 【教学目标】 巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值. 【重点难点】 理解二元一次不等式表示平面区域是教学重点. 如何扰实际问题转化为线性规划问题,并给出解答是教学难点. 【教学步骤】 一、新课引入 我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用. 线性规划 先讨论下面的问题 设2z x y =+,式中变量x 、y 满足下列条件 4335251x y x y x -≤-??+≤??≥? ① 求z 的最大值和最小值. 我们先画出不等式组①表示的平面区域,如图中 ABC ?内部且包括边界.点(0,0)不在这个三角形区域内,当0,0x y == 时,20z x y =+=,点(0,0)在直线0:20l x y +=上.作一组和0l 平等的直线:2,l x y t t R +=∈ 可知,当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>. 即0t >,而且l 往右平移时,t 随之增大,在经过不等式组①表示的三角形区域内的点且平行于l 的直线中,以经过点(5,2)A 的直线l ,所对应的t 最大,以经过点(1,1)B 的直线1l ,所对应的t 最小,所以 max 25212z =?+=min 2113z =?+= 在上述问题中,不等式组①是一组对变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,所以又称线性约束条件. 2x y +是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫做目标函数,由于2z x y =+又是x 、y 的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数2z x y =+在 =0

相关主题
文本预览
相关文档 最新文档