当前位置:文档之家› 控制图的基本原理

控制图的基本原理

控制图的基本原理
控制图的基本原理

控制图的基本原理

则称的分布为正态分布,记为

正态分布的概率密度函数如图5—1所示。

图5-l 正态分布概率密度曲线从图中我们叫以看出正态分布有如下

性质:

(1)曲线是对称的,对称轴是x=μ;

(2)曲线是单峰函数,当x=μ时取得最大值;

(3)当曲时,曲线以x轴为渐近线;

(4)在处,为正态分布曲线的拐点;

(5)曲线与x轴围成的面积为1。

另外,正态分布的数字特征值为:

平均值

标准偏差

数字特征值的意义:平均值μ规定了

图形所在的位置。根据正态分布的性质,在x=μ处,曲线左右对称且为其峰值点。

标准偏差,规定了图形的形状。图5-2给出了3个不同的值时正态分布密度曲线。当小时,各数据较多地集中于μ值附近,曲线就较“高”和“瘦”;当大时,数据向μ值附近集中的程度就差,曲线

的形状就比较“矮”和“胖”。这说明正态分布的形状由的大小来决定。在质量管理中,反映了质量的好坏,越小,质量的一致性越好。

图5-2 大小不同时的正态分布

在正态分布概率密度函数曲线下,介于坐标,,,间的面积,分别占总面积的58.26%,95.45%,99.73%和99.99%。它们相应的几何意义如图5-3听示。

图5-3 各种概率分布的几何意义二、控制图的轮廓线

控制图是画有控制界限的一种图表。如图5-4所示。通过它可以看出质量变动的情况及趋势,以便找出影响质量变动的原因,然后予以解决。

图5-4 控制图

我们已经知道:在正态分布的基本性质中,质量特性数据落在[μ±3]范围内的概率为99.73%,落在界外的概率只有

0.27%,超过一侧的概率只有0.135%,这是一个小概率事件。这个结论非常重要,控制图正是基于这个结论而产生出来的。

现在把带有μ±3线的正态分布曲线旋转到一定的位置(即正态分布曲线向右旋转9,再翻转),即得到了控制图的基本形式,再去掉正态分布的概率密度曲线,就得到了控制图的轮廓线,其演变过程如图5-5所示。

图5—5 控制图轮廓线的演变过程通常,我们把上临界线(图中的μ+3线)称为控制上界,记为UCL(Upper Control Limit),平均数(图中的μ线)称为中心线,记为CL (Central Line),下临界线(图中μ-3线)称为控制下界,记为LCL(Lower Control Limit)。控制上界与控制下界统称为控制界限。按规定抽取的样本值用点子按时间或批号顺序标在控制图中,称为描点或打点。各个点子之间用实线段连接起来,以便看出生产过程的变化趋势。若点子超出控制界限,我们认为生产过程有变化,就要告警。

三、两种错误和3方式

从前面的论述中我们已知,如果产品质量波动服从正态分布,那么产品质量特性值落在μ土3控制界限外的可能性是

0.27%,而落在一侧界限外的概率仅为0.135%。根据小概率事件在一次实验中不会发生的原理,若点子出界就可以判断生产有异常。可是0.27%这个概率数值虽然很小,但这类事件总还不是绝对不可能发生的。

当生产过程正常时,在纯粹出于偶然原因使点子出界的场合,我们根据点子出界而判断生产过程异常,就犯了错发警报的错误,或称第一种错误。这种错误将造成虚惊一场、停机检查劳而无功、延误生产等损失。

为了减少第一种错误,可以把控制图的界限扩大。如果把控制界限扩大到μ±4,则第一种错误发生的概率为0.006%,这就可使由错发警报错误造成的损失减小。可是,由于把控制界限扩大,会增大另一种错误发生的可能性,即生产过程已经有了异常,产品质量分布偏离了原有的典型分布,但是总还有一部分产品的质量特性值在上下控制界限之内,参见图5-6。

如果我们抽取到这样的产品进行检查,那么这时由于点子未出界而判断生产过

程正常,就犯了漏发警报的错误,或称第二种错误。这种错误将造成不良品增加等损失。

图5-6控制图的两种错误要完全避免这两种错误是不可能的,一种错误减小,另一种错误就要增大,但是可以设法把两种错误造成的总损失降低

到最低限度。也就是说,将两项损失之和是最小的地方,取为控制界限之所在。以μ±3 为控制界限,在实际生产中广泛应用时,两种错误造成的总损失为最小。如图5-7所示。这就是大多数控制图的控制界限都采用μ±3方式的理由。

图5—7 两种错误总损失最小点

(完整版)控制图的基本原理

控制图的基本原理 质量特性数据具有波动性,在没有进行观察或测量时,一般是未知的,但其又具有规律性,它是在一定的范围内波动的,所以它是随机变量。 一、正态分布 如果随机变量受大量独立的偶然因素影响,而每一种因素的作用又均匀而微小,即没有一项因素起特别突出的影响,则随机变量将服从正态分布。 正态分布是连续型随机变量最常见的一种分布。它是由高斯从误差研究中得出的一种分布,所以也称高斯分布。随机变量服从正态分布的例子很多。一般来说,在生产条件不变的前提下,产品的许多量度,如零件的尺寸、材料的抗拉强度、疲劳强度、邮件的内部处理时长、随机测量误差等等都是如此。 定义若随机变量的概率密度函数为: 则称的分布为正态分布,记为。 正态分布的概率密度函数如图5—1所示。

图5-l正态分布概率密度曲线 从图中我们叫以看出正态分布有如下性质: (1)曲线是对称的,对称轴是x=μ; (2)曲线是单峰函数,当x=μ时取得最大值; (3)当曲时,曲线以x轴为渐近线; (4)在处,为正态分布曲线的拐点; (5)曲线与x轴围成的面积为1。 另外,正态分布的数字特征值为: 平均值 标准偏差 数字特征值的意义:平均值μ规定了图形所在的位置。根据正态分布的性质,在x=μ处,曲线左右对称且为其峰值点。 标准偏差,规定了图形的形状。图5-2给出了3个不同的值时正态分布密度曲线。当小时,各数据较多地集中于μ值附近,曲线就较“高”和“瘦”;当大时,数据向μ值附近集中的程度就差,曲线的形状就比较“矮”和“胖”。这说明正态分布的形状由的大小来决

定。在质量管理中,反映了质量的好坏,越小,质量的一致性越好。 图5-2大小不同时的正态分布 在正态分布概率密度函数曲线下,介于坐标 ,,,间的面积,分别占总面积的58.26%,95.45%,99.73%和99.99%。它们相应的几何意义如图5-3听示。 图5-3各种概率分布的几何意义 二、控制图的轮廓线

控制图

控制图 一.前言: 为使现场的质量状况达成目标,均须加以管理。我们所说的“管理”作业,一般均用侦测产品的质量特性来判断“管理”作业是否正常。而质量特性会随着时间产生显著高低的变化;那么到底高到何种程度或低至何种状态才算我们所说的异常?故设定一合理的高低界限,作为我们分析现场制程状况是否在“管理”状态,即为控制图的基本根源。 控制图是于1924年由美国品管大师修哈特(W.A.Shewhart)博士所发明。而主要定义即是[一种以实际产品质量特性与依过去经验所研判的过程能力的控制界限比较,而以时间顺序表示出来的图形]。二.控制图的基本特性: 一般控制图纵轴均设定为产品的质量特性,而以过程变化的数据为刻度;横轴则为检测产品的群体代码或编号或年月日等,以时间别或制造先后别,依顺序点绘在图上。 在管制图上有三条笔直的横线,中间的一条为中心线(Central Line,CL),一般用蓝色的实线绘制;在上方的一条称为控制上限(Upper Control Limit,UCL);在下方的称为控制下限(Lower Control Limit,LCL)。对上、下控制界限的绘制,则一般均用红色的虚线表现,以表示可接受的变异范围;至于实际产品质量特性的点连线条则大都用黑色实线绘制。 控制状态: 96 品管七大手法 上控制界限(UCL) 中心线(CL)

三.控制图的原理: 1.质量变异的形成原因: 一般在制造的过程中,无论是多么精密的设备、环境,它的质量特性一定都会有变动,绝对无法做出完全一样的产品;而引起变动的原因可分为两种:一种为偶然(机遇)原因;一种为异常(非机遇)原因。 (1)偶然(机遇)原因(Chance causes): 不可避免的原因、非人为的原因、共同性原因、一般性原因,是属于控制状态的变异。 (2)异常(非机遇)原因(Assignable causes): 可避免的原因、人为的原因、特殊性原因、局部性原因等,不可让其存在,必须追查原因,采取必要的行动,使过程恢复正常控制状态,否则会造成很大的损失。 第七章 控制图 97 2.控制界限的构成: 控制图是以常态分配中的三个标准差为理论依据。中心线为平均 (偶然原因的变动) (异常原因的变动)

质量控制基本知识

质量控制基本知识 一栅栏技术 栅栏理论是德国食品专家L.Leistner提出的一套系统科学地控制食品贮藏保鲜期的理论。栅栏技术(hurdle techlogy)是指在饰品设计、加工和贮藏过程中,利用食品内部能阻止微生物生长繁殖方面,栅栏技术已经得到广泛应用。 1栅栏因子 食品防腐上最常用的栅栏因子,都是通过加工工艺或添加剂方式设置的,总计已在40个以上,这些因子均可用来保证食品微生物稳定性以及改善产品的质量。现将肉制品中几种主要的栅栏因子简介如下: 热加工(H) 高温热处理是最安全和最可靠的肉制品保藏方法之一。加热处理就是利用高温对微生物的致死作用。从肉制品保藏的角度,热加工指的是两个温度范畴:即杀菌和灭菌。 A、杀菌 杀菌是指将肉制品的中心温度加热到65-75℃的热处理操作。在此温度下,肉制品内几乎全部酶类和微生物均被灭活或杀死,但细菌的芽孢仍然存活。因此,杀菌处理应与产后的冷藏相结合,同时要避免肉制品的二次污染。 B、灭菌 灭菌是指肉制品的中心温度超过100℃的热处理操作。其目的在于杀死细菌的芽孢,以确保产品在流通温度下有较长的保质期。但经灭菌处理的肉制品中,仍存有一些耐高温的芽孢,只是量少并处于抑制状态。在偶然的情况下,经一定时间,仍有芽孢增殖导致肉制品腐败变质的可能。因此,应对灭菌之后的保存条件予以重视。灭菌的时间和温度应视肉制品的种类及其微生物的抗热性和污染程度而定。 低温保藏(t) 低温保藏环境温度是控制肉类制品腐败变质的有效措施之一。低温可以抑制微生物生长繁殖的代谢活动,降低酶的活性和肉制品内化学反应的速度,延长肉制品的保藏期。但温度过低,会破坏一些肉制品的组织或引起其它损伤,而且耗能较多。因此在选择低温保藏温度时,应从肉制品的种类和经济两方面来考虑。 肉制品的低温保藏包括冷藏和冻藏。 冷藏(refrigeration)就是将新鲜肉品保存在其冰点以上但接近冰点的温度,通常为–1-7℃。在此温度下可最大限度地保持肉品的新鲜度,但由于部分微生物仍可以生长繁殖,因此冷藏的肉品只能短期保存。另外,由于温度对嗜温菌和嗜冷菌的延滞生长期和世代时间影响不同,故在这二类微生物的混合群体中,低温可以起很重要的选择作用,引起肉品加工和储藏中微生物群体构成改变,使嗜温菌的比例下降。例如在同样的温度下,热带加工的牛肉就较寒带加工的牛肉保质期长,这主要是因为前者污染菌多为嗜温菌而后者多为嗜冷菌。 水分活性(aw) 水分活性是肉制品中的水的蒸汽压与相同温度下纯水的蒸汽压之比。当环境中的水分活性值较低时,微生物需要消耗更多的能量才能从基质中吸取水分。基质中的水分活性值降低至一定程度,微生物就不能生长。一般地,除嗜盐性细菌(其生长最低aw值为0.75)、某些球菌(如金黄色葡萄球菌,aw值为0.86)以外,大部分细菌生长的最低aw均大于0.94且最适aw均在0.995以上;酵母菌为中性菌,最低生长aw在0.88-0.94;霉菌生长的最低aw为0.74-0.94,aw在0.64以下任何霉菌都不能生长。

SPC控制图的分类

控制图选用原则 在质量管理工作中,通常用到各种控制图,用于分析或控制制程,本文在此对如何选用控制图简单归纳如下表,请大家参与讨论 计量型数据控制图 x--R 平均值—极差图 1、通常子组样本容量小于9,一般为4或5 2、此控制图,因使用方便,效果也好,故使用最普遍 X --S 平均值—标准差图 1、因标准差比极差描述产品或过程变异更优,故在有计算机时用此种图形更好 2、当子组样本容量大于9时,人工计算极差较困难时,常用计算机计算 3、通常用于分析制程用 X~-R 中位数图 1、通常用于现场操作者进行控制制程用 2、使用此图时,子组数通常为奇数,分析所得结果偏差比上两者都大 X-MR 单值移动极差图 1、通常在测量费用高时使用 2、测量数据输出比较一致时常用(如溶液的浓度) 3、检查过程的变化不如其它计量型控制图敏感 计数型数据控制图 p 不合格品率图 适用于测量在一批检验项目中不合格品项目的百分数,是一个比率,故各子组样本容量不一定要一样 np 不合格品数图 用来度量一个检验中的不合格品的数量,是一个数值,故各样本容量应固定 c 不合格数图 用来测量一个检验批内不合格的数量,它要求样本容量恒定或受检数量恒定 u 单位产品不合格数图 用来测量具有容量不同的样本的子组内,每检验单位之内的不合格数量

按控制图测量性质不同,控制图可分为计量型控制图和计数型控制图两大类。 前者反映产品或过程特性的计量数据,后者反映计数数据。 计量型控制图又可分为: 1)均值-极差(X-R)图:适用于长度,重量,时间,强度,成分以及某些电参数的控制 2)均值-标准差(X-S)图:适用于样本较大的过程控制 3)单值-移动差(X-Rs)图:只能获得一个测量值或测量成本较高的情形. 4)中位数-极差(X-R)图 计数型控制图: 1)缺陷数(C)控制图:计数检验的个数相对于被检验对象的总体很少时适用. 2)百分率(P)图:适用于计数的值所占的比例较大时. 2、按控制图用途不同,控制图可分为分析用控制图与控制用控制图。 常规控制图的作用 制造业的传统方法有赖于制造产品的生产,有赖于检验最终产品并筛选出不符合规范的产品的质量控制。这种检验策略通常是浪费和不经济的,因为它是当不合格品产生以后的事后检验。而建立一种避免浪费、首先就不生产无用产品 的预防策略则更为有效。这可以通过收集过程信息并加以分析,从而对过程本身采取行动来实现。 控制图是一种将显著性统计原理应用于控制生产过程的图形方法,由休哈 特(Walter Shewhart)博士于1924年首先提出。控制图理论认为存在两种变异。第一种变异为随机变异,由“偶然原因"(又称为"一般原因")造成。这种变异是由种种始终存在的、且不易识别的原因所造成,其中每一种原因的影响只构成总变异的一个很小的分量,而且无一构成显著的分量。然而,所有这些不可识别的偶然原因的影响总和是可度量的,并假定为过程所固有。消除或纠正这些偶然原因,需要管理决策来配置资源、以改进过程和系统。

检测质量控制图.doc

检测质量控制图 1 质量控制样的测量及参数计算 l.1 质量控制样的选用原则和要求 l.1.1 质量控制样的选用原则 (1)质量控制样的组成应尽量与所要分析的待测样品相似。 (2)质量控制样中待测参数应尽量与待测样品相近。 (3)如待测样品中待测参数值波动不大,则可采用一个位于其间的中等参数值的质量控制样,否则,应根据参数幅度采用两种以上参数水平的质量控制样。 l.1.2 对质量控制样的要求 (1)测量方法与待测样品相同。 (2)与待测样品同时进行测量。 (3)每次至少平行测量两次,测量结果的相对偏差不得大于标准测量方法中所规定的相对标准偏差(变异系数)的两倍,否则应重做。 (4)为建立质量控制图,至少需要积累质量控制样重复实验的20个数据,此项重复测量应在短期内陆续进行,例如每天测量平行质量控制样一次,而不应将20个重复实验的测量同时进行,一次完成。 (5)如果各次测量的时间隔较长,在此期间可能由于气温波动较大而影响测定结果,必要时可对质量控制样的测定值进行温度校正。

1.2测量数值的积累及参数的计算 l.2.1 测量数值的积累 当质量控制样的测量数据积累至20个以上时,即可按下列公式计算出总均值X、标准偏差s(此值不得大于标准测量方法中规定的相应参数水平的标准偏差值)、平均极差(或差距)R 等。 式中,X i和X为平行测量控制样的测量值和平均值。 l.2.2 质量控制图的参数的计算 各种类型的质量控制图的基本参数计算公式列入表1。表中给出的是3σ控制限的计算公式,有时用2σ控制限,因此使用时应注意二者的换算。 表1 质量控制图的参数计算公式 控制图类型中心线3σ控制限 平均值±A 1 或±A 2 标准偏差B 2(下)和 B 4(上) 极差D 3(下)和 D 4(上)

控制图的原理

控制图的原理 一、定义: 控制图:对过程质量特性值进行测定、记录、评估,以监察过程是否处于控制状态的一种用统计方法设计的图。(也称休哈特控制图) 二、控制图的形成 μ:平均值,表分布中心σ:标准差,表分散程度

三、控制图的基本结构 1、以随时间推移而变动着的样品号为横坐标,以质量特性值或其统计量为纵坐标; 2、三条具有统计意义的控制线:上控制线UCL 、中心线CL 、下控制线LCL ; 3、一条质量特性值或其统计量的波动曲线。 四、控制图原理的解释 第一种解释:“点出界就判异” 小概率事件原理:小概率事件实际上不发生,若发生即判异常。控制图就是统计假设检验的图上作业法。 第二种解释:“抓异因,弃偶因” 控制限就是区分偶然波动与异常波动的科学界限。 休哈特控制图的实质就是区分偶然因素与异常因素的。 五、常规控制图分类 UCL CL LCL 样本统计量数值x 12

六、按用途分类 1、分析用控制图——用于质量和过程分析,研究工序或设备状态;或者确定某一“未知的”工序是否处于控制状态; 2、控制用控制图——用于实际的生产质量控制,可及时的发现生产异常情况;或者确定某一“已知的”工序是 否处于控制状态。 七、控制图的应用 八、X-R控制图的绘制 1、确定控制对象(统计量) 一般应选择技术上最重要的、能以数字表示的、容易测定并对过程易采取措施的、大家理解并同意的关键质量特性进行控制。 2、选择控制图 控制图 缺陷数控制图 控制图 单位缺陷数控制图 泊松分布 计点型 控制图 不合格品数控制图 控制图 不合格品率控制图 二项分布 计件型 计数型 控制图 单值-移动极差控制图 控制图 中位数-极差控制图 控制图 均值-标准差控制图 控制图 均值-极差控制图 正态分布 计量型 简记 控制图 分布 数据类型 R X -S X -R X -~S R X -p np u c

全面质量管理基本原理

第6章全面质量管理基本原理 [教学目标] 通过教学,使学生了解全面质量管理理论的演变过程;阐述戴明14点质量管理方法的基本理念;概括朱兰的质量管理方法;解释克劳士比质量管理理论的精髓;阐述马奎斯的全面质量管理核心理论;理解现代质量管理理念中高效组织的特点。 [教学重点] 戴明14点质量方法、尤兰的质量管理方法、克劳士比质量管理理论、马奎斯全面质量管理核心理论、现代质量管理理念中高效组织的特点。 [教学难点] 让学生准确理解和掌握全面质量管理的基本原理以及进行全面质量管理的基本途径——创建高效组织。 [主要概念] 全面质量管理;缺陷率;质量理事会;高效组织 [教学方法] 课堂讲授、要点讨论 6.1 质量管理理论的演变 6.1.1事后检验阶段 科学管理公认的首创者是美国的泰罗。1911年他发表了经典著作《科学管理原理》,在该著作中,他主张把产品的检查从制造中分离出来,成为一道独立的工序。这促成了质量管理的第一阶段——事后检验阶段。 6.1.2统计质量检查阶段 二战初期,美国大批生产民用品的公司转为生产各种军需品。当时面临的一个严重的问题是由于事先没有办法控制废品的产生。1941年和1942年,美国制定了一系列战时质量管理标准。相对于检验把关的传统管理来说,统计质量管理是概念的更新、检查职能的更新,是质量管理方法上的一次飞跃。但这一阶段的质量管理侧重于制造过程,在实践当中难免过分强调数理方法的运用,而对有关的组织管理工作有所忽视。 6.1.3全面质量管理阶段 这一阶段从60年代开始一直延续至今。促使统计质量管理向全面质量管理过渡的原因主要

有以下几个方面: 1、科学技术和工业发展的需要 2、60年代在管理理论上出现了工人参与管理、共同决策、目标管理等新办法,在质量管理中出现了依靠工人进行自我控制的无缺陷运动和质量管理小组等等 3、保护消费者利益运动的兴起 (4)市场经济的发展,竞争剧烈 全面质量管理的雏形首先出现于19世纪60年代的日本,它对当时日本经济的发展起到了极大的促进作用。19世纪70年代这种质量管理方法引入美国,80年代得到普及。应该说,全面质量管理是一个组织以质量为中心,以全员参与为基础,目的在于通过让顾客满意和本组织所有成员及社会受益而达到长期成功的管理途径。 6.2 全面质量管理哲学 6.2.1戴明的14点质量方法 1、建立恒久的目标 2、采用新的理念 3、不依靠检查取得质量 4、不要根据价格标签评价企业 5、永恒不断地改进生产和服务系统 6、实行职业培训 7、实施有效领导 8、消除恐惧 9、消除部门之间的障碍 10、不空喊口号 11、消除工作指标(定额) 12、消除障碍使员工不因为工作质量而失去自尊 13、实施有生命力的教育和自我改进计划 14、让公司中的每个人都为完成改革任务而工作 戴明还提出了推行全面质量管理容易犯的七个致命错误:没有提供足够的人力、财力资源来支持质量改进计划;强调短期效益、股东收益;依靠观察与判断来评价年度业务状况;工作的忙碌造成管理不一致;不管管理的需要,采用易得的资料进行过程改进;过多的纠错成本;过多的法律花费。 6.2.1朱兰的质量管理

质量管理体系基本原理和术语

员工教育训练教材 质量管理体系——基本原理和术语、质量管理原则(以下为八项质量管理原则) a)以顾客为中心 b)领导作用 c)全员参与 d)过程方法 e)管理的系统方法 f )持续改进 g)基于事实的决策方法 h)互利的供方关系 、质量管理体系:(本标准适用于) a)通过实施质量管理体系寻求优势的组织。 b)对能满足其产品要求的供方寻求信任的组织。 c)产品的使用者。 d)就质量管理方面所使用的术语需要达成共识的人们(如:供方、顾客、行政执法机构)e)评价组织的质量管理体系或依据IS09001的要求审核其符合性的内部或外部人员和机构(如:审核员、行政执法机构、认证机构)。 f)对组织质量管理体系提出建议的内部或外部人员。 g)制定相关标准的人员。 、术语和定义 一)有关质量的术语 1.质量:产品、体系或过程的一组固有特性满足顾客和其他相关方要求的能力。 2.要求:明示的、习惯上隐含或必须履行的需求或期望。 3.质量要求:对产品、过程或体系的固有特性的要求。 4.等级:对功能用途相同但质量要求不同的产品、过程或体系所作的分类或分级。 5.顾客不满意:顾客对某一事项未能满足其需求和期望的程度的意见。 6.顾客满意:顾客对基本一事项已满足其需求和期望的程度的意见。 7.能力:组织、体系或过程实现产品并使其满足要求的本领。 二)有关管理的术语

1.体系(系统):相互关联或相互作用的一组要素。 2.管理体系:建立方针和目标并实现这些目标的体系。 3.质量管理体系:建立质量方针和质量目标并实现这些目标的体系。 4.质量方针:由最高管理者正式发布的与质量有关的组织总的意图和方向。 5.质量目标:与质量有关的,所追求的作为目的的事物。 6.管理:指导和控制组织的相互协调的活动。 7.最高管理者:在最高层指导和控制组织的一个人或一组人。 8.质量管理:指导和控制组织的与质量有关的相互协调的活动。 9.质量策划:质量管理的一部分,致力于设定质量目标并规定必要的作业过程和相关资源以实现其质量目标。 10 .质量控制:质量管理的一部分,致力于达到质量要求。 11 .质量保证:质量管理的一部分,致力于对达到质量要求提供信任。 12.质量改进:质量管理的一部分,致力于提高有效性和效率 13.有效性:完成策划的活动并达到策划的结果的程度的度量。 14.效率:得到的结果与所使用的资源之间的关系。 三)有关组织的术语 1.组织:职责、权限和相互相关关系得到有序安排的一组人员及设施。 2.组织结构:人员的职责、权限和相互关系的有序安排。 3.基础设施:组织永久性的设施和设备系统。 4.工作环境:人员作业时所处的一组条件。 5.顾客:接收产品的组织或个人。 6.供方:提供产品的组织或个人。 7.相关方:与组织的业绩或成就有利益关系的个人或团体。 四)有关过程的产品的术语 1.过程:使用资源将输入转化为输出的活动的系统。 2.产品:活动或过程的结果。 3.服务:无形产品在供方和顾客接口处完成的至少一项活动的结果。 4.软件:由承载媒体上的信息组成的知识产品。 5.外供产品:提供给组织外部顾客的产品。 6.项目:由一组有启止时间的、相互协调的受控活动所组成的特定过程,该过程要达到符合规定要求的目标,包括时间、成本和资源的约束条件。 7.设计与开发:将要求转换为规定的特性和产品实现过程规范的一组过程。 8.程序:为进行基本项活动或过程所规定的途径。

控制图控制图

控制图 1、概念 控制图又叫做管制图,是用于分析和判断工序是否处于稳定状态所使用的带有控制界限的一种工序管理图。 控制图是一种对过程质量加以测定、记录从而进行控制管理的一种用科学方法设计的图,图上有中心线(CL )、上控制线(UCL )、下控制线(LCL ),并有按时间顺序抽取的样本计量值的描点序列。 控制图主要用于:过程分析及过程控制。 图1表示了控制图的基本形状: 2 、原理 控制图的作图原理被称为“3σ原理”,或“千分之三法则”。 根据统计学可以知晓,如果过程受控,数据的分布将呈钟形正态分布,位于“μ±3σ”区域间的数据占据了总数据的99.73%,位于此区域之外的数据占据总数据的0.27%(约千分之三,上、下界限外各占0.135%),因此,在正常生产过程中,出现不良品的概率只有千分之三,所以我们一般将它忽略不计(认为不可能发生),如果一旦发生,就意味着出现了异常波动。 μ:中心线,记为CL ,用实线表示; μ+3σ:上界线,记为UCL ,用虚线表示; μ-3σ:下界线,记为LCL ,用虚线表示。 3、控制图的种类 ①、计量值控制图:控制图所依据的数据均属于由量具实际测量而得。 A R Chart ); B S Chart ); C Chart ); D 、单值控制图(X Chart ); ②、计数值控制图:控制图所依据的数据均属于以计数值(如:不良品率、不良数、缺点数、件数等)。 A 、不良率控制图(P Chart ); 质 量 特 性 数 据

B、不良数控制图(Pn Chart); C、缺点数控制图(C Chart); D、单位缺点数控制图(U Chart)。 4、控制图的用途 根据控制图在实际生产过程中的运用,可以将其分为分析用控制图、控制用控制图: ①、分析用控制图(先有数据,后有控制界限):用于制程品质分析用,如:决定方针、制程解析、制程能力研究、制程管制之准备。 分析用控制图的主要目的是:(1)分析生产过程是否处于稳态。若过程不处于稳态,则须调整过程,使之达到稳态(称为统计稳态);(2)分析生产过程的工序能力是否满足技术要求。若不满足,则须调整工序能力,使之满足(称为技术稳态)。根据过程的统计稳态和技术稳态是否达到可以分为如下所示的四种情况: 表1 统计稳态与技术稳态矩阵 当过程达到我们所确定的状态后,才能将分析用控制图的控制线延长用作控制用控制图。由于控制用控制图是生产过程中的一种方法,故在将分析用控制图转为控制用控制图时应有正式的交接手续。在此之前,会应用到判稳准则,出现异常时还会应用到判异准则。 ②、控制用控制图(先有控制界限,后有数据):用于控制制程的品质,如有点子跑出界时,应立即采取相应的纠正措施。 控制用控制图的目的是使生产过程保持在确定的稳定状态。在应用控制用控制图过程中,如发生异常,则应执行“20字方针”,使过程恢复原来的状态(参见第6条)。 5、控制图原理的2种解释 ①、控制图原理的第1种解释:点出界出判异(小概率事件原理) 小概率事件原理:在一次实验中,小概率事件几乎不可能发生,若发生即判断异常。 在生产过程处理统计控制状态(稳态)时,点子出界的可能性只有千分之三,根据小概率事件原理,要发生点子出界的事件几乎是不可能的,因此,只要发现点子出界,就判定生产过程中出现了异波,发生了异常。 例:螺丝加工过程中,为了解螺丝的质量状况,从中抽取100个螺丝进行检查,量取螺丝的直径值(见表2),并将其用控制图作出(见图2)。

控制图的原理

控制图的原理 一.控制图的原理-波动分布 控制图观点认为: (1)当过程仅受随机因素影响时,过程处于统计控制状态(简称受控状态);由于过程波动具有统计规律性,当过程受控时,过程特性一般服从稳定的随机分布; (2)当过程中存在系统因素的影响时,过程处于统计失控状态(简称失控状态)。而失控时,过程分布将发生改变。 SPC正是利用过程波动的统计规律性对过程进行分析控制的。因而,它强调过程在受控和有能力的状态下运行,从而使产品和服务稳定地满足顾客的要求。 二.控制图的原理-统计 受控状态是生产过程追求的目标,此时,对产品的质量是有把握的。控制图即是用来监测生产过程状态的一种有效工具。 控制图的统计学原理,令W为度量某个质量特性的统计样本。假定W的均值为μ,而W 的标准差为σ。于是,中心线、上控制限和下控制限分别为 UCL=μ+Kσ CL=μ LCL=μ-Kσ 式中,K为中心线与控制界限之间的标准差倍数,Kσ表示间隔宽度。 正常情况下点子分布是正态的,落在控制界限之内的概率远大于落在控制界限之外的概率。反之,若点子落在控制界限之外,可能是属于正常情况下的小概率事件发生,也可能是过程异常发生,相对来讲,后者发生的概率要大得多。因此,我们宁可以为后者情况发生,这正是控制图的统计学原理。 点子落在控制界限之内是否一定处于稳态?点子落在控制界线之外是否一定出现异常?这两个问题的回答都是否定的。 更为科学的判断应根据概率统计方法对过程进行定量分析,精确计处出状态的概率值之后再进行过程状态判断。 三.控制图的原理-分类1 各控制图用途:

均值-极差控制图:是最常用、最基本的控制图,它用于控制对象为长度、重量、强度、纯度、时间和生产量等计量值的场合。 均值-标准差控制图:次图与上图类似,极差计算简便,故R图得到广泛应用,但当样本大小或0>10或12时,应用极差估计总体标准差的效率减低,最好应用S图代替R图。 中位数-极差控制图:由于中位数的计算比均值简单,所以多用于现场需要把测定数据直接记入控制图进行管理的场合。 均值-移动极差控制图:多用于下列场合,(1)采用自动化检查和测量对每一个产品都进行检验的场合;(2)取样费时、昂贵的场合;(3)如化工等过程,样品均匀,多抽样也无太大意义的场合。由于它不像前三种控制图那样能取得较多的信息,所以它判断过程变化的灵敏度也要差一些。 P控制图:用于控制对象为不合格品率等计数值质量指标的场合。这里需要注意的是,在根据多种检查项目总起来确定不合格品率的场合,当控制图显示异常后难于找出异常的原因。因此,使用P图时应选择重要的检查项目作为判断不合格品的依据。 (1)连续25个点都在控制限内(显著性水平为:0.0654)。 (2)连续35个点至多一个点落在控制限外(显著性水平为:0.0041)。 (3)连续100个点至多两个点落在控制限外(显著性水平为:0.0026)。 Pn控制图:用于控制对象为不合格品数的场合。设n为样本大小,P为不合格品率,则Pn为不合格品个数。由于计算不合格品率需要进行除法,比较麻烦。所以在样本大小相同的情况下,用此图比较方便。 C控制图:用于控制一部机器、一个部件、一定的长度、一定的面积或任何一定的单位中所出现的缺陷数目。例如,铸件上的砂眼数,机器设备的故障数等等。 U控制图:当样品的大小变化时应换算成每单位的缺陷数并用U控制图。 通用控制图: 四.控制图的原理-判稳准则 (1)连续25个点都在控制限内(显著性水平为:0.0654)。 (2)连续35个点至多一个点落在控制限外(显著性水平为:0.0041)。 (3)连续100个点至多两个点落在控制限外(显著性水平为:0.0026)。 五.控制图的原理-计量型稳定 六.控制图的原理-计数型不稳定

SPC控制图数据收集方法

SPC控制图数据收集方法 摘要:SPC应用在于收集原始的数据,经过一系列复杂的计算,以最简单、直观、明了的方式表现,便于深入分析质量状况及预测问题。 在现代质量管理中,随着客户和最终客户对质量的意识越强,对制造业的质量要求也越来越严,对控制图的应用也有不断的深化。控制图上有中心线(CL),控制上限(UCL)和控制下限(LCL),如下图: SPC控制图的数据收集 SPC应用在于收集原始的数据,经过一系列复杂的计算,以最简单、直观、明了的方式表现,便于深入分析质量状况及预测问题。所以SPC在数据收集过程中必须强调二项原则:真实、及时。附:SPC软件免费下载 数据的真实性:只有真实的数据才能反映真正的质量状况,不真实的数据分析出的结果肯定也不正确,易导致决策者失误。数据的不真实性通常表现在以下几个方面: ?品检人员不认真,根本没有通过实际的检验,只根据经验直接填写数据; ?品检人员感觉检验数量太多,不愿检验到规定的数量,而只做一部分,剩下一部分就全都是主观估计值; ?测量设备有问题,精度不够,需要靠检验人估计; ?检验出来的数据不符合规格,人为地改写数据; ?检验人员字迹不清,在输入电脑过程中输错; ?抽样计划制定不合理,检验数据太少,造成分析无价值; 数据的及时性:因为SPC的主要功能之一就是预测质量,因此,只有及时收集数据,才能及时分析,才可能预测质量,不良品都已经产生,所有的预测都无意义。 数据收集分:计量值的数据收集和计数值数据收集。 1、计量值的数据收集:

按一定时间间隔抽取一定的样本,然后进行测量,再将测量到的数据记录下来。计量型数据具有连续性,故它的抽样计划与计数值有很大的差异。它通常根据产品要求,对产品的重要特性定时抽取固定样本个数。 应根据产品的特性和当前质量状况来确定抽样频率,产品特性越易检验或越重要,抽样频率通常越高,如果当前质量越差相对频率应加大一些。如果遇到生产时间较短,为了做直方图,也可适当加大抽样频率,常用的抽样频率为:每半小时、每小时、每2小时或4小时抽一次,每天抽一次为少见(一般出现在难检和质量较为稳定的特性)。 抽样频率在初始阶段相对高一点,在过程中如发现质量受控较稳定时,可视情况酌情减少抽样频率,甚至放弃该点的计量监控。例如在第一个月,每小时抽5个;经过1个月的监控,质量已稳定,已经有2周时间是CPK值达到了2.0以上,可采用4个小时抽5个(注:一般不宜采用减少每次抽样数);又经过一个月,发现CPK还是在2.0以上,且没有大幅的周期变化的特性,则可放弃该点做计量控制。 2、计数值数据收集: 根据计数值的理论,计数值具有不连续性,是以某一批产品为母体来抽取样本数的,但这会使生产人员无法确定下一批检验时间。因此,难以做到质量的预测。因此,建议计数值也尽量做到连续抽样,这样可以预知下批的检验时间,也可以根据图形预测下一步的质量状态。 计数值数据在抽取样本时,样本数可以一致,也可以不一致,如Pn图样本大小一定要相同,P图样本大小可相同,也可不相同,但初学者最好选取相同的样本,U图每个样本大小要相同,C图每个样本大小不相同。因此,特别强调计数值的样本组数最好在20组以上。

质量控制图

质量控制图 质量控制图的绘制及使用 对经常性的分析项目常用控制图来控制质量。质量控制图的基本原理由W.A.Shewart提出的,他指出:每一个方法都存在着变异,都受到时间和空间的影响,即使在理想的条件下获得的一组分析结果,也会存在一定的随机误差。但当某一个结果超出了随机误差的允许范围时,运用数理统计的方法,可以判断这个结果是异常的、不足信的。质量控制图可以起到这种监测的仲裁作用。因此实验室内质量控制图是监测常规分析过程中可能出现误差.控制分析数据在一定的精密度范围内,保证常规分析数据质量的有效方法。 在实验室工作中每一项分析工作都由许多操作步骤组成,测定结果的可信度受到许多因素的影响,如果对这些步骤、因素都建立质量控制图,这在实际工作中是无法做到的,因此分析工作的质量只能根据最终测量结果来进行判断。 对经常性的分析项目,用控制图来控制质量,编制控制图的基本假设是:测定结果在受控的条件下具有一定的精密度和准确度,并按正态分布。若以一个控制样品,用一种方法,由一个分析人员在一定时间内进行分析,累积一定数据。如这些数据达到规定的精密度、准确度(即处于控制状态),以其结果一一分析次序编制控制图。在以后的经常分析过程中,取每份(或多次)平行的控制样品随机地编入环境样品中一起分析,根据控制样品的分析结果,推断环境样品的分析质量。 质量控制图的基本组成见图9—9。 预期值——即图中的中心线; 目标值——图中上、下警告限之间区域; 实测值的可接受范围——图中上、下控制限之间的区域; 辅助线——上、下各一线,在中心线两侧与上、下警告限之间各一半处。 1.均数控制图( 图) 控制样品的浓度和组成,使其尽量与环境样品相似,用同一方法在一定时间内(例如每天分析一次平行样)重复测定,至少累积20个数据(不可将20个重复实验同时进行,或一天分析二次或二次以上),按下列公式计算总均值( )、标准偏差(s)(此值不得大于标准分析方 法中规定的相应浓度水平的标准偏差值)、平均极差( )等。 以测定顺序为横坐标,相应的测定值为纵坐标作图。同时作有关控制线。 中心线——以总均数估计 ; 上、下控制限——按值绘制; 上、下警告限——按值绘制; 上、下辅助线——按值绘制。 在绘制控制图时,落在范围内的点数应约占总点数的68%。若少于50%,则分布不合适,此图不可靠。若连续7点位于中心线同一例,表示数据失控,此图不适用。 控制图绘制后,应标明绘制控制图的有关内容和条件,如测定项目、分析方法、溶液浓度、温度、操作人员和绘制日期等。 均数控制图的使用方法:根据日常工作中该项目的分析频率和分析人员的技术水平,每间隔适当时间,取两份平行的控制样品,随环境样品同时测定,对操作技术较低的人员和测定频率低的项目,每次都应同时测定控制样品,将控制样品的测定结果( )依次点在控制图上,根据下列规定检验分析过程是否处于控制状态。

质量管理试题及参考答案

精心整理 第一篇基本概念和原理 第1章质量 一、填空题 1.质量是指一组固有特性满足要求的程度。 2.ISO9000标准把质量特性定义为:与要求有关的产品、过程或体系的固有特性。 3 4 5 6,完成规定功能的能力。 7 总和。 8 9 和。 10.质量环是指对产品质量的产生、形成和实现过程进行的抽象描述和理论概括。 11.魅力特性是指如果充分的话会使人产生满足,但不充分也不会使人产生不满的那些特性。 二、判断题 1.质量是指产品或服务满足顾客需求的程度。(×)

2.产品的可靠性是指产品满足使用目的的所具备的技术特性。(×) 3.美国质量管理专家朱兰博士从顾客的角度出发,提出了着名的“适用性”观点。他指出,“适用性”就是产品符合规范或需求的程度。(×) 4.从质量和企业关系方面看,提高质量是企业生存和发展的保证。(√) 5.由于质量特性是人为变换的结果,因此我们所得到的或确定的质量特性实质上只是相对于顾客需要的一种代用特性。这种变换的准确与否直接影响着顾客的需要能 6 7 8.(√) 9 10 性。(× 1.产品从设计、制造到整个产品使用寿命周期的成本和费用方面的特征是_D_。A.性能 2.服务质量特性中_A_是指顾客在接受服务过程中满足精神需要的程度。顾客期望得到一个自由、亲切、尊重、友好和谅解的气氛。 A.文明性B.舒适性C.功能性D.安全性 3.那些即使充分提供也不会使顾客感到特别的兴奋和满意,一旦不足就会引起强烈 A.魅力特性B.必须特性C.固有特性D.赋予特性

4.质量概念涵盖的对象是_D_。 A.产品B.服务C.过程D.一切可单独描述和研究的事物 5.“适用性”的观点是由_C_提出来的。 A.戴明B.菲根鲍姆C.朱兰D.休哈特 6._B_是指对产品质量的产生、形成和实现过程进行的抽象描述和理论概括。 A.质量特性B.质量环C.质量圈D.全面质量管理 7 A 8 A C 1 2 管理阶段。 3.将全面质量管理定义为“一个组织以质量为中心,以全员参与为基础,目的在于通过让顾客满意和本组织所有成员及社会受益而达到长期成功的管理途径"。 4.我国企业在实践中将全面质量管理概括为“三全一多样",即全过程、全员和全组织的质量管理,全面质量管理所使用的方法是多种多样的。 5.全过程质量管理强调必须体现两个思想,一是预防为主、不断改进的思想,

控制图

质量管理工具培训之五十二 Excel 2003制作控制图 一、控制图的定义: 又称“管制图”,是通过日常监测指标数据来判断质量是否处于稳定状态的一种图表。 二、控制图的组成: 由观察指标折线、中心线(CL)、上预警线(UCL)和下预警线(LCL)四条线组成。 三、控制图的目的: 通过观察监测指标数据分布状况,分析判断生产过程是否发生异常;一旦发现异常可及时采取必要措施加以消除,使生产过程恢复稳定状态。 四、控制图适用范围: 1.对某项监测指标变化范围进行下一步预测时; 2.判断某项监测指标是否稳定(处于统计受控状态)时; 3.控制当前过程,问题出现时能觉察并对其采取补救措施时。 五、Excel 2003制作控制图具体步骤: 1、将汇总后的数据导入Excel 2003表格中,如图1.1所示:

2、点击菜单栏【插入】菜单,出现下拉的子菜单,点击子菜单【函数】,计算压疮发生率的平均水平。如图1.2.1、1.2.2所示: 3、点击菜单栏【插入】菜单,出现下拉的子菜单,点击子菜单【函数】,计算出该样本的标准差(标准偏差)。如图1.3.1、1.3.2所示: 4、运用键盘中的适合函数直接以三倍标准差为例,计算此控制图的上/下预警线。如图1.4.1、1.4.2所示:

5、将表制作为下列样式,如图1.5所示: 6、点击菜单栏【插入】菜单,出现下拉的子菜单,点击子菜单【图表】,弹出【图表向导-4 步骤之1-图表类型】对话框,选择“图表类型(c)”中的折线图后,点击“下一步”,如图1.6所示: 7、弹出【图表向导-4 步骤之2-图表源数据】对话框,单击【数据区域】后的折叠按钮,将对话框折叠,选择A2:E14单元格区域;如图1.7所示:

质量管理的基本原理及理论

质量管理的基本原理与理论 一、质量管理的基本概念与原理 1、质量 质量指产品或服务,满足规定或潜有需要的特征和特性的总和。它既包括有形产品也包括无形产品;既包括产品内在的特性、也包括产品外在的特性。即包括了产品的适用性和符合性的全部内涵。 2、工业产品质量 工业产品质量指工业产品适合一定的用途,满足人们需要所具备的特性和特性的总和,也即是产品的适用性。它包括产品的内在特性,如产品的结构、物理性能、化学成分、可靠性、精度、纯度等;也包括产品的外在特性,如形状、外观、色泽、音响、气味、包装等;还有经济特性如成本、价格、使用维修费等,以及其他方面的特性如交货期、污染公害等。工业产品的不同特性,区别了各种产品的不同用途,满足了人们的不同需要。可把各种产品的不同特性概括为:适用性、可靠性、安全性、寿命、经济性等。 3、工作质量 工作质量指对产品质量有关的工作对于产品质量保证程度。工作质量涉及到企业所有部门和人员,也就是说企业中每个科室、车间、班组,每个工作岗位都直接或间接地影响着产品质量,其中领导者的素质最为重要,起着决定性的作用,当然广大职工素质的普遍提高,是提高工作质量的基础。工作质量是提高产品质量的基础和保证。为保证产品质量,必须首先抓好与产品质量有关的各项工作。 4、服务质量 它指服务满足规定或潜在需要的特征和特性的总和。国际标准列举的服务质量特性实例包括:设施、容量、人员的数量和储存量;等待时间、的供时间和过程的各项时间;卫生、安全、可靠性和保密性;反应、方便、礼貌、舒适、环境美、能力、耐用性、准确性、完整性、技艺水平、可信性和沟通联络等。 5、质量控制(QC) 为保证和提高产品质量和工作质量所进行的质量调查、研究、组织、协调、

质量控制技术

第一节质量控制概述 一质量控制的基本原理 质量管理的一项主要工作是通过收集数据、整理数据,找出波动的规律,把正常波动控制在最低限度,消除系统性原因造成的异常波动。把实际测得的质量特性与相关标准进行比较,并对出现的差异或异常现象采取相应措施进行纠正,从而使工序处于控制状态,这一过程就叫做质量控制。质量控制大致可以分为7个步骤: (1)选择控制对象; (2)选择需要监测的质量特性值; (3)确定规格标准,详细说明质量特性; (4)选定能准确测量该特性值得监测仪表,或自制测试手段; (5)进行实际测试并做好数据记录; (6)分析实际与规格之间存在差异的原因; (7)采取相应的纠正措施。 当采取相应的纠正措施后,仍然要对过程进行监测,将过程保持在新的控制水准上。一旦出现新的影响因子,还需要测量数据分析原因进行纠正,因此这7个步骤形成了一个封闭式流程,称为“反馈环”。这点和6Sigma质量突破模式的MAIC有共通之处。 在上述7个步骤中,最关键有两点: (1)质量控制系统的设计; (2)质量控制技术的选用。 二质量控制系统设计 在进行质量控制时,需要对需要控制的过程、质量检测点、检测人员、测量类型和数量等几个方面进行决策,这些决策完成后就构成了一个完整的质量控制系统。 1.过程分析 一切质量管理工作都必须从过程本身开始。在进行质量控制前,必须分析生产某种产品或服务的相关过程。一个大的过程可能包括许多小的过程,通过采用流程图分析方法对这些过程进行描述和分解,以确定影响产品或服务质量的关键环节。 2.质量检测点确定 在确定需要控制的每一个过程后,就要找到每一个过程中需要测量或测试的关键点。一个过程的检测点可能很多,但每一项检测都会增加产品或服务的成本,所以要在最容易出现质量问题的地方进行检验。典型的检测点包括: (1)生产前的外购原材料或服务检验。为了保证生产过程的顺利进行,首先要通过检验保证原材料或服务的质量。当然,如果供应商具有质量认证证书,此检验可以免除。另外,在JIT(准时化生产)中,不提倡对外购件进行检验,认为这个过程不增加价值,是“浪费”。 (2)生产过程中产品检验:典型的生产中检验是在不可逆的操作过程之前或高附加值操作之前。因为这些操作一旦进行,将严重影响质量并造成较大的损失。例如在陶瓷烧结前,需要检验。因为一旦被烧结,不合格品只能废弃或作为残次品处理。再如产品在电镀或油漆前也需要检验,以避免缺陷被掩盖。这些操作的检验可由操作者本人对产品进行检验。生产中的检验还能判断过程是否处于受控状态,若检验结果表明质量波动较大,就需要及时采取措施纠正。 (3)生产后的产成品检验。为了在交付顾客前修正产品的缺陷,需要在产品入库或发送前进行检验。 3.检验方法 接下来,要确定在每一个质量控制点应采用什么类型的检验方法。检验方法分为:计数

控制图的基本特性与原理

第七章控制图95 第七章控制图 一.前言: 为使现场的质量状况达成目标,均须加以管理。我们所说的“管理”作业,一般均用侦测产品的质量特性来判断“管理”作业是否正常。而质量特性会随着时间产生显著高低的变化;那么到底高到何种程度或低至何种状态才算我们所说的异常?故设定一合理的高低界限,作为我们分析现场制程状况是否在“管理”状态,即为控制图的基本根源。 控制图是于1924年由美国品管大师修哈特(W.A.Shewhart)博士所发明。而主要定义即是[一种以实际产品质量特性与依过去经验所研判的过程能力的控制界限比较,而以时间顺序表示出来的图形]。 二.控制图的基本特性: 一般控制图纵轴均设定为产品的质量特性,而以过程变化的数据为刻度;横轴则为检测产品的群体代码或编号或年月日等,以时间别或制造先后别,依顺序点绘在图上。 在管制图上有三条笔直的横线,中间的一条为中心线(Central Line,CL),一般用蓝色的实线绘制;在上方的一条称为控制上限(Upper Control Limit,UCL);在下方的称为控制下限(Lower Control Limit,LCL)。对上、下控制界限的绘制,则一般均用红色的虚线表现,以表示可接受的变异范围;至于实际产品质量特性的点连线条则大都用黑色实线绘制。 控制状态: 96 品管七大手法 上控制界限(UCL) 中心线(CL) 下控制界限(LCL)

三.控制图的原理: 1.质量变异的形成原因: 一般在制造的过程中,无论是多么精密的设备、环境,它的质量特性一定都会有变动,绝对无法做出完全一样的产品;而引起变动的原因可分为两种:一种为偶然(机遇)原因;一种为异常(非机遇) 原因。 (1)偶然(机遇)原因(Chance causes): 不可避免的原因、非人为的原因、共同性原因、一般性原因,是属于控制状态的变异。 (2)异常(非机遇) 原因(Assignable causes): 可避免的原因、人为的原因、特殊性原因、局部性原因等,不可让其存在,必须追查原因,采取必要的行动,使过程恢复正常控制状态,否则会造成很大的损失。 第七章 控制图 97 2.控制界限的构成: (偶然原因的变动) (异常原因的变动)

相关主题
文本预览
相关文档 最新文档