当前位置:文档之家› 2020寒假高三数学二轮复习微专题25椭圆中与面积有关的定点

2020寒假高三数学二轮复习微专题25椭圆中与面积有关的定点

2020寒假高三数学二轮复习微专题25椭圆中与面积有关的定点
2020寒假高三数学二轮复习微专题25椭圆中与面积有关的定点

例题:如图,在平面直角坐标系xOy中,已知椭圆+y2=1,点A,B分别是椭圆的右微专题25椭圆中与面积有关的定点、定值问题

狭义的面积问题多指三角形的面积,广义的面积还包括二次量.由于二次量的计算量大,过程繁琐,常常会使学生陷入会而不对的绝境.解决问题的关键是聚焦运算目标,利用整体代换、设而不求等思想方法,有效减少运算量,优化解题流程.

x2

4

顶点和上顶点,P为椭圆位于第三象限内一点,AP与y轴交于点M,BP与x轴交于点N,求证:四边形AMNB的面积为定值.

4

x 2 变式 1 在平面直角坐标系 xOy 中,已知椭圆 C : +y 2=1,点 A ,B 分别是椭圆的右

顶点和上顶点,设 P 是椭圆 C 上一点,直线 PA 与 y 轴交于点 M ,直线 PB 与 x 轴交于点 N.求证:AN·BM 为定值.

变式2如图,已知椭圆+y2=1,过椭圆的上顶点A作一条与两轴均不平行的直线l

x2

2

交椭圆于另一点P,设点P关于x轴的对称点为Q,若直线AP,AQ与x轴交点的横坐标分别为m,n,求证:mn为常数,并求出此常数.

x2

串讲1如图,在平面直角坐标系xOy中,已知椭圆4+y2=1,过原点O的两条射线l1和l2分别与椭圆交于A和B△,记得到的AOB的面积为S.

1

(1)设A(x

1

,y1),B(x2,y2),求证:S=2|x1y2-x2y1|;

1

(2)设l

1

与l2的斜率之积为-4,求面积S的值.

串讲2在平面直角坐标系xOy中,已知椭圆+=1,点A,B分别是椭圆的左、右

x2y2

43

顶点,点P为椭圆上位于第一象限内的一点,直线PA与y轴交于点M,直线PB与y轴交于点N△,若MOA与△NOB的面积之和为6,求点P的坐标.

x2y22 (2018·无锡1月期末改编)已知椭圆E:a

2

+b

2

=1(a>b>0)的离心率为

2,F1

,F2分别为左、右焦点,A,B分别为左、右顶点,D为上顶点,原点O到直线BD的距离为

6

3.设点P在第一象限,且PB⊥x轴,连接PA交椭圆于点C.

(1)求椭圆E的方程;

(2)若△ABC的面积等于四边形OBPC的面积,求直线PA的方程.

(2018· 江苏卷)如图,在平面直角坐标系 xOy 中,椭圆 C 过点? 3,2?,焦点 F 1(- 3, 7 ,求直线 l 的方程. 答案:(1) +y 2=1,x 2+y 2=3;(2)①( 2,1),②y =- 5x +3 2. ? 3 + 1 =1, ?a 2=4, ? 3, 在椭圆 C 上,所以?a 2 4b 2 1? 又点? ,解得? 2? ??a 2-b 2=3, 因此,椭圆 C 的方程为 +y 2=1.2 分 则 x 02+y 02=3,所以直线 l 的方程为 y =- 0(x -x 0)+y 0, y 0 y 0

? 1?

0),F 2( 3,0),圆 O 的直径为 F 1F 2.

(1)求椭圆 C 及圆 O 的方程;

(2)设直线 l 与圆 O 相切于第一象限内的点 P .

①若直线 l 与椭圆 C 有且只有一个公共点,求点 P 的坐标; 2 6 ②直线 l 与椭圆 C 交于 A ,B 两点.若△OAB 的面积为

x 2 4

x 2 y 2 解析:(1)因为椭圆 C 的焦点为 F 1(- 3,0),F 2( 3,0),可设椭圆 C 的方程为a 2+b 2=

1(a >b >0).

?b 2=1,

x 2 4

因为圆 O 的直径为 F 1F 2,所以其方程为 x 2+y 2=3.

(2)①设直线 l 与圆 O 相切于 P(x 0,y 0)(x 0>0,y 0>0),

x y 0

x 3 即 y =- 0x + .5 分

?x +y =1, ? 4 消去 y ,得(4x x 3 ?y =-y x +y ,

2+y 2)x 2-24x x + B(x 2,y 2),由(*)得 x 1,2= ,11 分 所以 AB 2=(x 1-x 2)2+(y 1-y 2)2=?1+y 02?·48y 02(x 02-2).因为 x 02+y 02=3, 7 7 16(x 02-2) 32 (x 02+1)2 49,即 2x 0

4-45x 2+100=0,13 分

由 2 2

0 0 0 0 0 0 36-4y 02=0.(*),因为直线 l 与椭圆 C 有

且只有一个公共点,所以 Δ=(-24x 0)2-4(4x 02+y 02)(36-4y 02)=48y 02(x 02-2)=0.7 分 因为 x 0,y 0>0,所以 x 0= 2,y 0=1.因此,点 P 的坐标为( 2,1).9 分

2 6 1 2 6 4 2 ②因为三角形 OAB 的面积为 .所以2AB·OP = ,从而 AB = 7 .设 A(x 1,y 1), 24x 0± 48y 02(x 02-2) 2(4x 02+y 02) ? x 2?

0 (4x 02+y 02)2 所以 AB 2= = 0 5 1 ? 10 2? 解得 x 02=2(x 02=20 舍去),则 y 02=2,因此 P 的坐标为? 2 , 2 ?.15 分 综上,直线 l 的方程为 y =- 5x +3 2.16 分

高中数学《椭圆》教案设计

教案设计高中数学 《椭圆》 一、椭圆的定义 1、平面内与两定点F1,F2的距离的和等于常数2a(2a>|F1F2|)的点的轨迹叫做椭圆。 定点F1, F2叫做椭圆的焦点,|F1F2|叫做椭圆的焦距。 2、点集P=﹛M | |MF1| + |MF2|=2a,2a2a>|F1F2|﹜,其中两定点F1,F2叫做椭圆的焦点,两 焦点的距离叫做椭圆的焦距。 二、椭圆的标准方程 1、焦点在x轴上,焦点坐标(±c,0),焦距为2c。 2、焦点在y轴上,焦点坐标(0,±c),焦距为2c。 三、一般方程式 1、Ax2+By2=C 2、Ax2+By2=1 四、椭圆标准方程的求解方法 1、定义法 2、待定系数法 五、几种题型的讲解 1、共焦点 2、焦点三角形 3、与椭圆有关的的轨迹方程的求解 4、直线与椭圆关系 5、中点弦问题及点差法 例题1:过已知圆内的一个定点作圆C与已知圆相切,则圆心C的轨迹是()。 A.圆 B.椭圆 C.圆或椭圆 D.线段 例题2:如图,Rt△ABC中,|AB|=|AC|=1,以点C为一个焦点的椭圆,使这个椭圆的另一个焦点在AB边上,且这个椭圆过A,B两点,则这个椭圆的焦距长为。

例题3:求适合下列条件的椭圆的标准方程。 (1)、两个焦点的坐标分别是(-4,0),(0,-4),椭圆上任意一点p 到两焦点距离之和等于10; (2)、两个焦点的坐标分别为(0,-2),(0,2),并且椭圆经过 (23 -,25) (3)、焦点在y 轴上,且经过两个点(0,2),(1,0); (4)、经过点P(-23,1),Q(3,-2). 共焦点问题: 例题4:过点(-3,2)且与92x +142 =y 有相同焦点的椭圆的方程为 。 焦点三角形问题: 例题5:已知P 为椭圆174252 2=+y x 上的一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°,求△F 1PF 2的面积。 与椭圆有关的的轨迹方程的求解问题: 例题6:已知圆922=+y x ,从这个圆上任意一点P 向x 轴作垂线段PP ′,点M 在PP ′上,并且 求点M 的轨迹。 直线与椭圆关系问题 例题7:已知椭圆的中心在原点,焦点在x 轴上,直线y=x+1与该椭圆交于点P 、Q ,且 0·=→ → OQ OP ,|PQ|=210 ,求椭圆的方程。 ' =→→MP PM 2

2019-2020年高三数学一轮复习第九章平面解析几何第五节椭圆夯基提能作业本理

2019-2020年高三数学一轮复习第九章平面解析几何第五节椭圆夯基提能作业本理 1.已知方程+=1表示焦点在y轴上的椭圆,则实数k的取值范围是( ) A. B.(1,+∞) C.(1,2) D. 2.(xx黑龙江齐齐哈尔一中期末)已知椭圆的焦点在x轴上,离心率为,直线x+y-4=0与y轴的交点为椭圆的一个顶点,则椭圆的方程为( ) A.+=1 B.+=1 C.+=1 D.+=1 3.矩形ABCD中,|AB|=4,|BC|=3,则以A,B为焦点,且过C,D两点的椭圆的短轴的长为( ) A.2 B.2 C.4 D.4 4.设椭圆+=1的焦点为F1,F2,点P在椭圆上,若△PF1F2是直角三角形,则△PF1F2的面积为( ) A.3 B.3或 C. D.6或3 5.已知椭圆+=1(0b>0),F1,F2分别为椭圆的左,右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B. (1)若∠F1AB=90°,求椭圆的离心率; (2)若=2,·=,求椭圆的方程.

高三数学专题复习----椭圆

高三数学专题复习----椭圆 一 基础知识 (1)椭圆的第一定义第二定义,(2)椭圆的标准方程,(3)椭圆的性质,(4)椭圆和直线的位置关系 二 例题 1、方程m y x ++16m -252 2=1表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) (A)-162 9 2、已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( ) (A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9 x 2+25y 2 =1 3、椭圆5x 2 +4 y 2=1的两条准线间的距离是( ) (A )52 (B )10 (C )15 (D ) 3 50

4、以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( ) (A ) 2 1 (B )22(C )23(D )33 5、若椭圆 19822=++y k x 的离心率是2 1,则k 的值等于 ( ) (A)- 45 (B)45 (C)-45或4 (D)4 5 或4 6、椭圆mx 2+y 2=1的离心率是 2 3 ,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D ) 2 1 或1 7、已知椭圆的对称轴是坐标轴,离心率e= 3 2 ,长轴长为6,那么椭圆的方程是( )。 (A ) 36x 2+20y 2=1 (B )36x 2+20y 2=1或20x 2+36 y 2 =1 (C ) 9x 2+5y 2=1 (D )9x 2+5y 2=1或5 x 2+9y 2 =1

完整word版,人教版高中数学选修2-1《椭圆及其标准方程》教案

人教版高中数学选修2-1《椭圆及其标准方程》教案 一、课型 新授课 二、教学内容 1、椭圆的定义; 2、椭圆的两类标准方程; 3、根据椭圆的定义及标准方程的知识解决一些简单的问题。 三、教学目标 1、知识与技能:理解并掌握椭圆的定义;明确焦点、焦距的概念;掌握椭圆标 准方程的两种形式及其推导过程;掌握a、b、c三个量的几何意义及它们之间的关系。能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程; 2、过程与方法:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力; 通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力。让学生感知数学知识与实际生活的普遍联系; 3、情感态度与价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学 习数学的积极性,培养学生的学习兴趣和创新意识。培养学生的探索能力和进取精神,提高学生的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度。通过椭圆的形成过程培养学生的数学美感,同时培养团队协作的能力。 四、教学重点、难点 重点:椭圆的定义及椭圆的标准方程; 难点:椭圆标准方程的推导过程。 五、教学方法 教师引导为主、学生自主探究为辅。 六、教学媒体

幻灯片、黑板。 七、教学过程 (一)创设情境,导入新课 用多媒体演示神舟飞船绕地球旋转的模型,它运行的轨迹又是什么图形呢?可以看出,它的运行轨迹是椭圆。此时老师指出:在实际生活中,椭圆随处可见,很多学科也涉及到椭圆的应用,所以学习椭圆的相关知识是十分必要的。这就是我们这节课所要学习的内容——椭圆及其标准方程。 (二)问题探究 老师提问:我们从直观上认识了椭圆,那么椭圆它是如何形成的呢?椭圆满足什么样的条件呢?它的定义又是如何? 1、椭圆的形成 下面请各小组拿出老师之前让大家准备的工具:一段固定长的细绳、两颗钉子、一块长3分米,宽3分米的硬纸板。然后将钉子系在细绳的两头,将钉子固定在图板上,使得两个钉子之间的距离小于细绳的长度(请同学们考虑一下,为什么两顶子之间的距离要小于细绳的长度?),我们用笔尖将细绳拉紧,让笔尖在图板上慢慢移动,请同学们观察笔尖运动的轨迹是什么图形呢? 如果我们将两个钉子之间的距离变大,使得两个钉子之间的距离恰好等于细绳的长度,同样用笔尖将细绳拉紧,让笔尖在图板上慢慢移动。我们发现笔尖只能在两个钉子之间来回运动,这时笔尖运动的轨迹是两个钉子之间的线段。 将两个钉子之间的距离再增大,此时就可以发现,细绳的长度比两个钉子之间的距离小,笔尖没有轨迹。 再用课件给学生进行演示: 通过演示可以发现,绳长大于图钉间的距离是画出椭圆的关键。 请同学们根据作图的过程和老师刚才的演示,思考:在作图过程中,有哪些物体的位置没变化?有哪些量没有变化?如何来归纳椭圆的定义呢? 2、椭圆的定义 平面内到两定点F 1、F 2 的距离之和等于常数(大于|F 1 F 2 |)的点的轨迹叫做 椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。通常常数

高中数学精讲教案-椭圆及其性质

高中数学-圆锥曲线与方程 第1讲椭圆及其性质 考点一椭圆的标准方程 知识点 1椭圆的定义 (1)定义:在平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. (2)集合语言:P={M||MF1|+|MF2|=2a,且2a>|F1F2|},|F1F2|=2c,其中a>c>0,且a,c为常数. 2椭圆的焦点三角形 椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形. 如图所示,设∠F1PF2=θ. (1)当P为短轴端点时,θ最大. (2)S△PF 1F 2 = 1 2|PF1||PF2|·sinθ=b 2· sinθ 1+cosθ =b2tan θ 2=c|y0|,当|y0|=b,即P为短轴端点时,S△PF1F2取最大值,为 bc. (3)焦点三角形的周长为2(a+c). 3椭圆的标准方程 椭圆的标准方程是根据椭圆的定义,通过建立适当的坐标系得出的.其形式有两种: (1)当椭圆的焦点在x轴上时,椭圆的标准方程为x2 a2+ y2 b2=1(a>b>0). (2)当椭圆的焦点在y轴上时,椭圆的标准方程为y2 a2+ x2 b2=1(a>b>0). 4特殊的椭圆系方程 (1)与椭圆x2 m2+y2 n2=1共焦点的椭圆可设为 x2 m2+k + y2 n2+k =1(k>-m2,k>-n2). (2)与椭圆x2 a2+y2 b2=1(a>b>0)有相同离心率的椭圆可设为 x2 a2+ y2 b2=k1(k1>0,焦点在x轴上)或 y2 a2+ x2 b2=k2(k2>0,焦 点在y轴上).

高中数学椭圆的几何性质

一. 教学内容: 椭圆的几何性质 二. 教学目标: 通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用. 通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力. 使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等. 三. 重点、难点: 重点:椭圆的几何性质及初步运用. 难点:椭圆离心率的概念的理解. 四. 知识梳理 1、几何性质 (1)范围,即|x|≤a,|y|≤b,这说明椭圆在直线x=±a和直线y=±b所围成的矩形里.注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.(2)对称性 把x换成-x,或把y换成-y,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称 (3)顶点 在中,须令x=0,得y=±b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=±a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点.椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b). ①线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b; ②a、b的几何意义:a是长半轴的长,b是短半轴的长; (4)离心率 教师直接给出椭圆的离心率的定义: 椭圆的焦距与长轴的比 椭圆的离心率e的取值范围:∵a>c>0,∴0<e<1. 当e接近1时,c越接近a,从而b越接近0,因此椭圆越扁; 当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时12222=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离: 0?

高中数学椭圆的教学设计

选修1-1《2.1.1 椭圆及其标准方程》教学设计 一、指导思想与理论依据 1. 新课程标准理念——高中数学新课程标准指出:“强调本质,注意适度形式化。高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,让学生体会蕴涵在其中的思想方法。”在“椭圆及其标准方程”的引入与推导中,遵循学生的认识规律,通过动手实践、观察思考、合作交流、应用反思等过程,让学生逐步将认识由感性上升到理性,把学生学习知识当作认识事物的过程来进行教学,努力揭示知识的发生、发展过程。 2. 建构主义理论——建构主义认为:知识不是通过教师讲授得到的,而是学习者在一定的情境即社会文化背景下,借助其他人(包括教师和学习伙伴)的帮助,充分利用各种学习资源(包括文字教材、音像资料、多媒体课件、软件工具以及从Internet上获取的各种教学信息等等),通过意义建构而获得。由于学习是在一定的情境下借助其他人的帮助即通过人际间的协作活动而实现的意义建构过程,因此建构主义学习理论认为“情境创设”、“协作学习”、“会话交流”是学习环境的基本要素。 二、教学背景分析 1. 教材分析 解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系。平面解析几何问题,就是借助建立适当的坐标系,科学合理地把几何问题代数化,运用代数的方法来研究几何问题。 在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形。在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。本章所研究的三种圆锥曲线都是重要的曲线,因为对这几种曲线研究的问题基本一致,方法相同,所以教材对这三种圆锥曲线的学习的重点放在了椭圆上,通过求椭圆的标准方程,是学生掌握推导出这一类轨迹方程的一般规律和化简的常用方法。因此,“椭圆及其标准方程”起到了承上启下的重要作用。 2. 学情分析 知识方面 (1)在必修2第二章里学生已经学习了直线和圆的方程,并初步熟悉了求曲线方程的一般方法和步骤,具备主动探究椭圆知识的基础; (2)根据日常生活中的经验,学生对椭圆有了一定的认识,但仍没有上升到成为“概念”的水平,将感性认识理性化将会是对他们的一个挑战; (3)在初中阶段没有涉及过含两个字母、两个根式的方程化简问题; 自身特征方面 (1)我所教授的班级是文科班,他们普遍对数学有一定的畏难情绪,但是他们思维比较活跃,对新鲜事物有一定的好奇心和探索欲望,对老师的讲授敢于质疑,有自己的想法和主见,愿意自己去探索是什么和为什么。并且具备了初步的探索能力;

第52讲 椭圆的几何性质(解析版)2021届新课改地区高三数学一轮专题复习

第52讲椭圆的几何性质 一、课程标准 1、掌握椭圆的性质,能够正确求出椭圆的性质 2、掌握求椭圆的离心率的值以及离心率的范围 3、掌握直线与椭圆的位置关系 二、基础知识回顾 1、椭圆的标准方程和几何性质 2、焦半径:椭圆上的点P(x0,y0)与左(下)焦点F1与右(上)焦点F2之间的线段的长度叫做椭圆的焦半径,分别记作r1=|PF1|,r2=|PF2|. (1)x2 a2+y2 b2=1(a>b>0),r1=a+ex0,r2=a-ex0; (2)y2 a2+x2 b2=1(a>b>0),r1=a+ey0,r2=a-ey0; (3)焦半径中以长轴为端点的焦半径最大和最小(近日点与远日点). 3、焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形,∠F1PF2=θ,△PF1F2的面积

为S ,则在椭圆x 2a 2+y 2 b 2=1(a >b >0)中 (1)当P 为短轴端点时,θ最大. (2)S =12|PF 1||PF 2|·sin θ=b 2tan θ 2=c |y 0|,当|y 0|=b 时,即点P 为短轴端点时,S 取最大值,最大值为bc . (3)焦点三角形的周长为2(a +c ). 4、.AB 为椭圆x 2a 2+y 2 b 2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则 (1)弦长l =1+k 2|x 1-x 2|= 1+1 k 2|y 1-y 2|; (2)直线AB 的斜率k AB =-b 2x 0 a 2y 0. 5、直线与椭圆的关系 将直线方程与椭圆方程联立,消去一个变量得到关于x(或y)的一元二次方程ax 2+bx +c =0(或ay 2+by +c =0). 再求一元二次方程的判别式Δ,当: ①Δ>0?直线与椭圆相交; ②Δ=0?直线与椭圆相切; ③Δ<0?直线与椭圆相离. 6、设直线l 与椭圆的交点坐标为A(x 1,y 1),B(x 2,y 2),k 为直线l 斜率,则AB =(1+k 2)|x 1-x 2|. 三、自主热身、归纳总结 1、直线y =kx -k +1(k 为实数)与椭圆x 29+y 2 4 =1的位置关系为( ) A . 相交 B . 相切 C . 相离 D . 相交、相切、相离都有可能 【答案】A 【解析】 直线y =kx -k +1=k(x -1)+1恒过定点(1,1).∵点(1,1)在椭圆内部,∴直线与椭圆相交.故选A . 第2题图

高三年级数学椭圆的教学设计与反思

《椭圆及其标准方程》教学设计及反思 教学目标: (一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程. (二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力. (三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神. 教学重点:椭圆的定义和椭圆的标准方程. 教学难点:椭圆标准方程的推导. 教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力. 教具准备:多媒体课件和自制教具:绘图板、图钉、细绳. 教学过程 (一)设置情景,引出课题: 1.对椭圆的感性认识.通过演示课前老师和学生共同准备的有关椭圆的 实 物和图片,让学生从感性上认识椭圆. 2.通过动画设计,展示椭圆的形成过程,使学生认识到椭圆是点按一定“规 律”运动的轨迹。 提问:点M 运动时,F 1、F 2移动了吗?点M 按照什么条件运动形成的轨迹是椭圆? 下面请同学们在绘图板上作图,思考绘图板上提出的问题: 1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何? 2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 3.当绳长小于两图钉之间的距离时,还能画出图形吗? . (二)研讨探究,推导方程 1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么? 2、研讨探究 问题:如图已知焦点为21,F F 的椭圆,且21F F =2c,对椭圆上任一点M ,有 a MF MF 221=+,尝试推导椭圆的方程。 M

椭圆的标准方程教案

河北阜城中学--高二数学组 组题人:高泽宁 审核人:沈志华 日期:2019年 月 日 …………○…………内…………○…………装…………○…………订…………○ 学校: 姓名:___________ 班级:___________ 考号:___________ …………○…………内…………○…………装…………○…………订…………○ 第 1 页 共 3 页 学习目标: 1:熟练掌握椭圆的定义。 2:熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆并确定椭圆的标准方程。 学习重点:椭圆的定义及标准方程。 学习难点:椭圆的定义及标准方程的推导。 教学过程: 一:椭圆概念的引入: 1:动画演示:(1)天体行星和卫星运行的轨道。 (2)立体几何中作圆的一种直观图。 2:手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的F 1,F 2两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆。 分析:在这个运动过程中,什么是不变的? 答:两个定点,绳长。 即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变) 3:由此总结椭圆定义: 平面内与两个定点F 1,F 2的距离之和等于常熟(大于)的点的轨迹叫作椭圆, 这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。 说明 注意椭圆定义中容易遗漏的两处地方: (1)两个定点------两点间距离确定。 (2) 绳长------轨迹上任意点到两定点距离和确定。 思考: 改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 绳长能小于两图钉之间的距离吗? 二:根据定义推导椭圆标准方程: 1:复习求轨迹方程的基本步骤: 2:推导:取过焦点21F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴。 设P (x,y )为椭圆上的任意一点,椭圆的焦距是2c ( c>0). 则:)0,()0,(21c F c F -,又设M 与F 1,F 2距离之和等于2a (常数) {}a PF PF P P 221=+=∴ 221)(y c x PF ++= 又, a y c x y c x 2)()(2222=+-+++∴,化简,得: )()(22222222c a a y a x c a -=+-,由定义c a 22> 022>-∴c a 令222b c a =-∴代入,得: 222222b a y a x b =+,两边同除22b a 得: 选修2-1 第一章 2.2.2 椭圆的标准方程 教案 试卷类型 学案 ※ 数学是一切知识的最高形式----柏拉图 条件 结论 2a>|F1F2| 动点的轨迹是椭圆 2a =|F1F2| 动点的轨迹是线段F1F2 2a<|F1F2| 动点不存在,因此轨迹不存在

高中数学椭圆的知识总结(含答案)

高中数学椭圆知识总结 一、选择题 1.(09·浙江)已知椭圆x 2a 2+y 2 b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上, 且BF ⊥x 轴,直线AB 交y 轴于点P ,若AP →=2PB → ,则椭圆的离心率是 ( ) A.32 B.22 C.13 D.12 [答案] D [解析] 由题意知:F (-c,0),A (a,0). ∵BF ⊥x 轴,∴AP PB =a c .又∵AP →=2PB → , ∴a c =2,∴e =c a =1 2 .故选D. 2.已知P 是以F 1、F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,若PF 1→·PF 2→=0,tan∠PF 1F 2 =1 2 ,则椭圆的离心率为 ( ) A.12 B.23 C.13 D.53 [答案] D [解析] 由PF 1→·PF 2→ =0知∠F 1PF 2为直角, 设|PF 1|=x ,由tan∠PF 1F 2=1 2 知,|PF 2|=2x , ∴a =32x , 由|PF 1|2 +|PF 2|2 =|F 1F 2|2 得c =52 x , ∴e =c a = 53 . 3.(文)(北京西城区)已知圆(x +2)2+y 2 =36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线 D .抛物线 [答案] B [解析] 点P 在线段AN 的垂直平分线上,故|PA |=|PN |,又AM 是圆的半径, ∴|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |,由椭圆定义知,P 的轨迹是椭圆. (理)(浙江台州)已知点M (3,0),椭圆x 2 4 +y 2 =1与直线y =k (x +3)交于点A 、B , 则△ABM 的周长为 ( ) A .4 B .8 C .12 D .16 [答案] B [解析] 直线y =k (x +3)过定点N (-3,0),而M 、N 恰为椭圆x 2 4 +y 2 =1的两个焦 点,由椭圆定义知△ABM 的周长为4a =4×2=8. 4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2 n 2=1(m >0,n >0)有相同的焦点(-c ,0)和 (c,0)(c >0).若c 是a 、m 的等比中项,n 2是2m 2与c 2 的等差中项,则椭圆的离心率是( )

高三数学高考复习教案:椭圆的简单几何性质

课题:椭圆的简单几何性质 设计意图:本节内容是椭圆的简单几何性质,是在学习了椭圆的定义和标准方程之后展开的,它是继续学习双曲线、抛物线的几何性质的基础。因此本节内容起到一个巩固旧知,熟练方法,拓展新知的承上启下的作用,是发展学生自主学习能力,培养创新能力的好素材。本教案的设计遵循启发式的教学原则,以培养学生的数形结合的思想方法,培养学生观察、实验、探究、验证与交流等数学活动能力。 教学目标:了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义.培养学生的数形结合的思想方法。 教学重点:椭圆的简单几何性质的应用。 教学难点:椭圆的简单几何性质的应用。 二过程与方法目标 (1)复习与引入过程 引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过P48的思考问题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗椭圆的简单几何性质. (2)新课讲授过程 (i)通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究? 通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质. (ii)椭圆的简单几何性质 ①范围:由椭圆的标准方程可得, 22 22 10 y x b a =-≥ ,进一步得:a x a -≤≤,同理可得:

2021届高三数学训练题(65):椭圆的几何性质

2018届高三数学训练题(65):椭圆的几何性质 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于 32 ,在双曲线C 的方程是 ( ) A .22 1 4x = B .22145x y -= C .22125x y -= D .2212x -= 2.已知0<θ<π4,则双曲线C 1:22sin x θ2 2cos y θ-=1与C 2:22cos y θ-22sin x θ =1的( ) A .实轴长相等 B .虚轴长相等 C .离心率相等 D .焦距相等 3.已知l 是双曲线C :22 124 x y -=的一条渐近线,P 是l 上的一点,F 1,F 2分别是C 的左,右焦点,若120 PF PF ?=,则点P 到x 轴的距离为( ) A .3 B C .2 D 4.已知点()1F ,) 2F ,动点P 满足|PF 2|-|PF 1|=2,当点P 的纵坐标为12 时,点P 到坐标原点的距离是( ) A .2 B .32 C D .2 5.已知双曲线22 221y x a b -=(a >0,b >0)的两个焦点分别为F 1,F 2,以线段F 1F 2为直径的圆与双曲线渐近线的一个交点为(4,3),则此双曲线的方程为( ) A .22 1916y x -= B .22143 y x -=

C .22 1169y x -= D .22134 y x -= 6.设双曲线22 143 x y -=的左,右焦点分别为F 1,F 2,过F 1的直线l 交双曲线左支于A ,B 两点,则|BF 2|+|AF 2|的最小值为( ) A .192 B .11 C .12 D .16 7.设1F ,2F 是离心率为5的双曲线22 2124 x y a -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于 A . B .C .24 D .48 8.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C ,若,,A B C 三点的横坐标成等比数列,则双曲线的离心率为( ) A B C D 二、填空题 9.已知双曲线x 2a ?y 2b =1(a >0,b >0)的离心率e 是2,则此时b 2+13a 的最小值是_____. 10.以椭圆22 195 x y +=的顶点为焦点,焦点为顶点的双曲线C ,其左右焦点分别是1F ,2F ,已知点M 的坐标为()21,,双曲线C 上的点()()000000P x y x y >>,,满足11211121PF MF F F MF PF F F ??=,则12PMF PMF S S -=______. 11.圆x 2+y 2=4与y 轴交于点A ,B ,以A ,B 为焦点,坐标轴为对称轴的双曲线与圆在y 轴左边的交点分别为C ,D ,当梯形ABCD 的周长最大时,此双曲线的方程为________________. 12.称离心率为e = √5+12的双曲线x 2a 2?y 2 b 2=1(a >0,b >0)为黄金双曲线.如图是双曲线

高中数学 椭圆 知识点与例题

椭圆 知识点一:椭圆的定义 第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和为定值 )2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹不存在. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=. 注意:①只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; ②在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; ③椭圆的焦点总在长轴上. 当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 题型一、椭圆的定义 1、方程()()10222222=++++-y x y x 化简的结果是 2、若ABC ?的两个顶点()()4,0,4,0A B -,ABC ?的周长为18,则顶点C 的轨迹方程是 3、椭圆19 252 2=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为( ) A .4 B .2 C .8 D .2 3

4、椭圆22 12516 x y +=两焦点为12F F 、,()3,1A ,点P 在椭圆上,则1PF PA +的最大值为_____,最小值为 ___ 题型二、椭圆的标准方程 5、方程Ax 2+By 2=C 表示椭圆的条件是 (A )A , B 同号且A ≠B (B )A , B 同号且C 与异号 (C )A , B , C 同号且A ≠B (D )不可能表示椭圆 6、若方程22 153 x y k k +=--, (1)表示圆,则实数k 的取值是 . (2)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (4)表示椭圆,则实数k 的取值范围是 . 7、椭圆22 14x y m +=的焦距为2,则m = 8、已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值. 9、已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 10、求与椭圆224936x y +=共焦点,且过点(3,2)-的椭圆方程。 11、已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为 354和3 52,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

2020届高三数学二轮复习椭圆专题教案

椭圆专题 ★知识梳理★ 1. 椭圆定义: (1)第一定义:平面内与两个定点的距离之和为常数的动点的轨迹叫椭圆,其中两个定点叫椭圆的焦点. (2)椭圆的第二定义:平面内到定点与定直线(定点不在定直线上)的距离之比是常数()的点的轨迹为椭圆 (利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化). 2.椭圆的方程与几何性质: 21F F 、|)|2(222F F a a >P 21F F 、F l F l e 10<

考点1 椭圆定义及标准方程 题型1:椭圆定义的运用 [例1 ] 椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4a B .2(a -c) C .2(a+c) D .以上答案均有可能 [解析]按小球的运行路径分三种情况: (1),此时小球经过的路程为2(a -c); (2), 此时小球经过的路程为2(a+c); A C A --A B D B A ----O x y D P A B C Q

(3)此时小球经过的路程为4a,故选D 1.短轴长为,离心率的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为( ) A.3 B.6 C.12 D.24 2.已知为椭圆上的一点,分别为圆和圆 上的点,则的最小值为( ) A . 5 B . 7 C .13 D . 15 3.设k >1,则关于x ,y 的方程(1﹣k )x 2 +y 2 =k 2 ﹣1所表示的曲线是( ) A.长轴在x 轴上的椭圆 B.实轴在y 轴上的双曲线 C.实轴在x 轴上的双曲线 D.长轴在y 轴上的椭圆 4.椭圆2 2 99x y +=的长轴长为( ) A .2 B.3 C.6 D. 9 5.已知椭圆22 221x y a b +=(0a b >>)的两个焦点为12,F F ,以12F F 为边作正三角形,若椭 圆恰好平分正三角形的另外两条边,且124F F =,则a 等于___________. A Q B P A ----53 2 = e P 22 12516 x y +=,M N 22(3)1x y ++=22(3)4x y -+=PM PN +

高考文科数学练习题椭圆

第三节 椭圆 [考纲要求] 1.掌握椭圆的定义、几何图形、标准方程. 2.掌握椭圆的简单几何性质(范围、对称性、顶点、离心率). 3.了解椭圆的简单应用. 4.理解数形结合的思想. 突破点一 椭圆的定义和标准方程 [基本知识] 1.椭圆的定义 平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数. (1)若a >c ,则集合P 为椭圆. (2)若a =c ,则集合P 为线段. (3)若a <c ,则集合P 为空集. 2.椭圆的标准方程 (1)焦点在x 轴上的椭圆的标准方程是x 2a 2+y 2 b 2=1(a >b >0),焦点为F 1(-c,0),F 2(c,0), 其中c 2=a 2-b 2. (2)焦点在y 轴上的椭圆的标准方程是y 2a 2+x 2 b 2=1(a >b >0),焦点为F 1(0,- c ),F 2(0, c ),其中c 2=a 2-b 2. [基本能力] 一、判断题(对的打“√”,错的打“×”) (1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) (3)y 2a 2+x 2 b 2=1(a ≠b )表示焦点在y 轴上的椭圆.( ) 答案:(1)× (2)√ (3)× 二、填空题 1.已知△ABC 的顶点B ,C 在椭圆x 23+y 2 =1上,顶点A 是椭圆的一个焦点,且椭圆 的另外一个焦点在BC 边上,则△ABC 的周长是________. 答案:4 3

高中数学椭圆经典例题

椭圆的经典例题 1.已知点A(2,5)、B(3,一1),则线段AB 的方程是( ). (A)6x+y-17=0 (B)6x+y-17=0(x ≥3) (C)6x+y-17=0(x ≤3) (D)6x+y-17=0(2≤x ≤3) 2.(直接法)已知一条直线l 和它上方的一个点F ,点F 到l 的距离是2,一条曲线也在直线l 的上方,它上面的每一个点到F 的距离减去到l 的距离的差都是2,建立适当的坐标系,求曲线的方程. 3.(相关点法) 动点M 在曲线x 2+y 2=1上移动,M 和定点B(3,O)连线的中点为P ,求P 点的轨迹方程,并指出点P 的轨迹. 4.已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 5. 已知椭圆0632 2=-+m y mx 的一个焦点为(0,2)求m 的值. 6.已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 7.已知M 是椭圆14 92 2=+y x 上的一点,21,F F 是椭圆的焦点,则||||21MF MF ?的最大值是( ) A 、4 B 、6 C 、9 D 、12 8.点P 为椭圆22 154 x y +=上一点,以点P 以及焦点F 1, F 2为顶点的三角形的面积为1,则点P 的坐标是 (A )(±2, 1) (B )(2, ±1) (C )(2, 1) (D )(±2 , ±1) 9.已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为 354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

10.求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值. 11.已知椭圆方程()0122 22>>=+b a b y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点, α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 12.已知动圆P 过定点()03,-A ,且在定圆()64322 =+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 13.已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为 5 102,求直线的方程. 14.如果椭圆22 1369x y +=弦被点A (4,2)平分,那么这条弦所在的直线方程是

高考数学一轮复习第九章平面解析几何课时跟踪训练49椭圆(一)文

跟踪训练(四十九) 椭圆(一) [基础巩固] 一、选择题 1.中心在坐标原点的椭圆,焦点在x 轴上,焦距为4,离心率为2 2 ,则该椭圆的方程为( ) A.x 216+y 2 12=1 B. x 212+y 2 8 =1 C. x 2 12+y 2 4 =1 D.x 28+y 2 4 =1 [解析] 因为焦距为4,所以c =2,离心率e =c a =2a =22 ,∴a =22,b 2=a 2-c 2 =4, 故选D. [答案] D 2.曲线x 225+y 29=1与曲线x 225-k +y 2 9-k =1(k <9)的( ) A .长轴长相等 B .短轴长相等 C .离心率相等 D .焦距相等 [解析] c 2 =25-k -(9-k )=16,所以c =4,所以两条曲线的焦距相等. [答案] D 3.(2018·河南开封开学考试)若方程x 2 +ky 2 =2表示焦点在y 轴上的椭圆,则实数k 的取值范围是( ) A .(0,+∞) B.(0,2) C .(1,+∞) D.(0,1) [解析] ∵方程x 2 +ky 2 =2,即x 22+y 2 2k =1表示焦点在y 轴上的椭圆,∴2 k >2,故0

[解析] 由椭圆方程得F 1(-1,0),F 2(1,0),设P (x ,y ),∴PF 1→ =(-1-x ,-y ),PF 2→ =(1-x ,-y ),则PF 1→ ·PF 2→ =x 2 +y 2 -1=x 2 2 ∈[0,1],故选C. [答案] C 5.(2017·湖北孝感七校联盟期末)已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左焦点为F ,C 与 过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =4 5,则C 的离心率为( ) A.35 B.57 C.45 D.67 [解析] 如图,设|AF |=x ,则cos ∠ABF =82 +102 -x 2 2×8×10=45.解得x =6,∴∠AFB =90°, 由椭圆及直线关于原点对称可知|AF 1|=8,∠FAF 1=∠FAB +∠FBA =90°,△FAF 1是直角三角形,所以|F 1F |=10,故2a =8+6=14,2c =10, ∴c a =57 . [答案] B 6.(2017·上海崇明一模)如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=4,则椭圆C 的方程为( ) A.x 225+y 2 5=1 B.x 230+y 210=1 C. x 2 36+y 2 16 =1 D. x 2 45+y 2 25 =1

相关主题
文本预览
相关文档 最新文档