当前位置:文档之家› 高三数学正态分布2

高三数学正态分布2

数学高考复习点拨:二项分布与超几何分布辨析

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到 黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ?? ???,. 3 03 1464(0)55125P X C ????==?= ? ?????∴;1 2 131448(1)55125 P X C ????==?= ? ? ????; 2123 1412(2)55125P X C ????==?= ? ?????;30 33141(3)55125 P X C ????==?= ? ? ????. 因此,X 的分布列为 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107 (0)15 C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===. 因此,Y 的分布列为 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样. 超几何分布和二项分布都是离散型分布,超几何分布和二项分布的区别: 超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布........

高中数学随机变量分布列知识点

第二章随机变量及其分布 内容提要: 一、随机变量的定义 设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数 与之对应,则称上的实值函数是一个随机变量(简记为)。 二、分布函数的概念和性质 1.分布函数的定义 设是随机变量,称定义在上的实值函数 为随机变量的分布函数。 2.分布函数的性质 (1) , (2)单调不减性:, (3) (4)右连续性:。 注:上述4个性质是函数是某一随机变量的分布函数的充要条件。在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。 (5) 注:该性质是分布函数对随机变量的统计规律的描述。 三、离散型随机变量 1.离散型随机变量的定义 若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。 2.离散型随机变量的分布律 (1)定义:离散型随机变量的全部可能的取值以及取每个值时的概率值,称为离散型随机变量的分布律,表示为 或用表格表示:

或记为 ~ (2)性质:, 注:该性质是是某一离散型随机变量的分布律的充要条件。 其中。 注:常用分布律描述离散型随机变量的统计规律。 3.离散型随机变量的分布函数 =,它是右连续的阶梯状函数。 4.常见的离散型分布 (1)两点分布(0—1分布):其分布律为 即 (2)二项分布 (ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果 及,,将独立重复地进行次,则称这一串重复的独立试验为重伯努利试验。 (ⅱ)二项分布的定义 设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为 ,, 称随机变量服从参数为的二项分布,记作。 注:即为两点分布。

标准正态分布表

标准正态分布表 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

标准正态分布表

4432198653 1.80.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0.970 6 1.90.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0.975 6 0.976 2 0.976 7 20.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.10.982 1 0.982 6 0.983 0.983 4 0.983 8 0.984 2 0.984 6 0.985 0.985 4 0.985 7 2.20.986 1 0.986 4 0.986 8 0.987 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.989 2.30.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.40.991 8 0.992 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.50.993 8 0.994 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.60.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0.996 1 0.996 2 0.996 3 0.996 4 2.70.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0.997 1 0.997 2 0.997 3 0.997 4 2.80.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0.998 1 2.90.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x00.10.20.30.40.50.60.70.80.9 30.998 7 0.999 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 正态分布概率表 Φ( u ) =

高中立体几何常用结论、定理

立体几何中的定理、公理和常用结论 一、定理 1.公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.若A∈l,B∈l,A∈α,B∈α,则l?α. 2.公理2如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线. P∈α,P∈α?α∩β=l,且P∈l. 3.公理3经过不在同一条直线上的三点,有且只有一个平面. 推论1经过一条直线和这条直线外的一点,有且只有一个平面. 推论2经过两条相交直线,有且只有一个平面. 推论3经过两条平行直线,有且只有一个平面. 4.异面直线的判定定理:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.(若a?α,A/∈α,B∈α,B/∈a,则直线AB和直线a是异面直线.) 5.公理4(空间平行线的传递性):平行于同一条直线的两条直线互相平行. 6.等角定理:如果一个角的两边和另一角的两边分别平行并且方向相同,那么这两个角相等.7.定理:如果一条直线垂直于两条平行线中的一条直线,那么它也垂直于另一条直线.若b∥c,a⊥b,则a⊥c. 8.直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行. 若a?/α,b?α,a∥b,则a∥α. 9.直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行. 若a∥α,a?β,α?β=b,则a∥b. 10.直线与平面垂直的判定定理:如果一条直线和平面内的两条相交直线垂直,这条直线和这个平面垂直. 若m?α,n?α,m?n=O,l⊥m,l⊥n,则l⊥α. 11.:若两条平行直线中的一条垂直于一个平面,那么另一条直线也和这个平面垂直.若a∥b,a⊥α,则b⊥α. 12.直线与平面垂直的性质定理:若两条直线同时垂直于一个平面,那么这两条直线平行.若a⊥α,b⊥α,则a∥b. 13.平面与平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. 若a?α,b?α,a?b=A,a∥β,b∥β,则α∥β. 14.平面与平面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行. 若α∥β,α∩γ=a,β∩γ=b,则a∥b. 15.定理:如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.若α∥β,a⊥α,则a⊥β. 16.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 若l⊥α,l?β,则α⊥β. 17.两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面. 若α⊥β,α∩β=l,a?α,a⊥l,则a⊥β. 18.两个平面垂直的性质定理:如果两个平面互相垂直,那么过一个平面内一点且垂直于第二个平面的直线在第一个平面内.

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

高一数学必修2空间几何部分公式定理大全

必修2空间几何部分公式定理总结 棱柱、棱锥、棱台的表面积 设圆柱的底面半径为,母线长为,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即 . 设圆锥的底面半径为,母线长为,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即 . 设圆台的上、下底面半径分别为,,母线长为,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即 . 柱、锥、台的体积公式 柱体体积公式为:,(为底面积,为高) 锥体体积公式为:,(为底面积,为高) 台体体积公式为: (,分别为上、下底面面积,为高) 球的体积和表面积 球的体积公式 球的表面积公式

其中,为球的半径.显然,球的体积和表面积的大小只与半径有关. 公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2 过不在一条直线上的三点,有且只有一个平面. 推论1 经过一条直线和直线外一点有且只有一个平面. 推论2 经过两条相交的直线有且只有一个平面. 推论3 经过两条平行的直线有且只有一个平面. 公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4 (平行公理)平行于同一条直线的两条直线互相平行. 定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 不同在任何一个平面内的两条直线叫做异面直线. 空间两条直线的位置关系有且只有三种: 共面直线:相交直线(在同一平面内,有且只有一个公共点);平行直线(在同一平面内,没有公共点);异面直线:不同在任何一个平面内且没有公共点. 空间中直线与平面位置关系有且只有三种: 直线在平面内——有无数个公共点 直线与平面相交——有且只有一个公共点 直线与平面平行——没有公共点 直线与平面相交或平行的情况统称为直线在平面外. 两个平面的位置关系只有两种: 两个平面平行——没有公共点 两个平面相交——有一条公共直线 异面直线所成的角 已知两条异面直线,经过空间任一点作直线∥,∥,把与所成的锐角(或直角)叫做异面直线所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作. 异面直线的判定定理 过平面外一点与平面内一点的直线,和平面内不经过该点的直线 是异面直线.

高三数学(理)二轮复习高考作业卷(十八)超几何分布(含解析)

衡水万卷作业(十) 双曲线的标准方程和几何性质 考试时间:45分钟 姓名:__________班级:__________考号:__________ 一、选择题(本大题共12小题,每小题6分,共72分。在每小题给出的四个选项中,只有一个选项 是符合题目要求的) 1.与双曲线221y x -=有共同的渐近线, 且经过点(-的双曲线方程为( ) A.2241y x -= B.2241y x -= C.2241y x -= D.2241y x -= 2.已知0a b >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 22 22=-b y a ,1C 与2C 的离心率 之积为 2 3 ,则2C 的渐近线方程为( ) (A )02x =±y (B )02=±y x (C )02y x =± (D )0y 2x =± 3.已知F 是双曲线22 221x y a b -=的右焦点,点,A B 分别在其两条渐近线上,且满足2BF FA =, 0OA AB ?=(O 为坐标原点) ,则该双曲线的离心率为( ) B. 2 1 4.已知F 1,F 2分别是双曲线C :22 221(0,0)x y a b a b -=>>的左右焦点,以F 1F 2为直径的圆与双曲线C 在第二象限的交点为P ,若双曲线的离心率为5,则21cos PF F ∠等于( ) A . 35 B .34 C .45 D .56 5.设21F F ,分别为双曲线)0,0(122 22>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得 ,4 9 ||||,3||||2121ab PF PF b PF PF = ?=+则该双曲线的离心率为( ) A.34 B.35 C.49 D.3 6.已知双曲线22122x y -=的准线过椭圆22 214x y b +=的焦点,则直线2y kx =+与椭圆至多有一个交点的充 要条件( ) A.11,k ??∈-???? B.() 11,,2k ?? ∈-∞-+∞?? ?? C. k ?∈??? D. 2,,2k ??? ∈-∞+∞ ?????? 7.已知双曲线22 122 :1(0,0)x y C a b a b -=>>的左.右焦点分别为F1.F2抛物线C2的顶点在原点,它的准线与双曲线C1的左准线重合,若双曲线C1与抛物线C2的交点P 满足 2120PF F F ?=,则双曲线C1的离心率为( ) 8.已知双曲线22 21(0) 2x y b b -=>的左右焦点分别为12,F F ,其一条渐近线方程为y x =,点0)P y 在该 双曲线上,则12PF PF ×uuu r uuu r =( ) A.-12 B.-2 C .0 D. 4 9.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123 F PF π ∠= ,则椭圆和双曲线 的离心率的倒数之和的最大值为( ) C.3 D.2 10.已知双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支 有且只有一个交点,则此双曲线离心率的取值范围是( ) A.(1,2) B.(-1,2) C.(2,+∞) D.[2,)+∞ 11.如图,21,F F 是椭圆14 :22 1=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二.四象限

(完整版)高中立体几何八大定理

l m β α α b a 线面位置关系的八大定理 一、直线与平面平行的判定定理: 文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行 图形语言: 符号语言: //a b a b αα?? ? ???? ?//a α 作用:线线平行?线面平行 二、直线与平面平行的性质定理: 文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直 线就和交线平行。 图形语言: 符号语言://l l m α βαβ?? ????=? ?//l m 作用:线面平行?线线平行 三、平面与平面平行的判定定理 文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. 图形语言: 符号语言: //a b a b A a b α ααβββ ?????? =?????? I ∥∥ 作用:线线平行? 面面平行 四、平面与平面平行的性质定理: 文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行 图形语言: 符号语言:////a a b b αβαγβγ? ? ?=????=? 作用: 面面平行?线线平行

n m A α a α b a B A l β αa β α五、直线与平面垂直的判定定理: 文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面 图形语言: 符号语言: ,a m a n a m n A m n ααα⊥? ?⊥? ?⊥??=????? 作用:线线垂直?线面垂直 六、直线与平面垂直的性质定理: 文字语言:若两条直线垂直于同一个平面,则这两条直线平行 图形语言: 符号语言: //a a b b αα⊥? ??⊥? 作用:线面垂直?线线平行 七、平面与平面垂直的判定定理: 文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。 图形语言: 符号表示:a a ααββ⊥? ?⊥??? 注:线面垂直?面面垂直 八、平面与平面垂直的性质定理: 文字语言:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一 个平面 图形语言: 符号语言:l AB AB AB l αβαββα⊥? ?=? ?⊥??? ?⊥? I 作用:面面垂直?线面垂直

《二项分布与超几何分布》复习课程

二项分布与超几何分布 ★ 知 识 梳理 ★ 1.条件概率:称)()()|(A P AB P A B P = 为在事件A 发生的条件下,事件B 发生的概率。 特别提醒: ①0≤P (B|A )≤1; ②P(B ∪C|A)=P(B|A)+P(C|A)。 2. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。 特别提醒: ①如果事件A 、B 是相互独立事件,那么,A 与_B 、_A 与B 、_A 与_ B 都是相互独立事件 ②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。我们把两个事件A 、B 同时发生记作A ·B ,则有P (A ·B )= P (A )·P (B ) 推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n ) 3.独立重复试验: 在同样的条件下,重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的. 4.如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率计算公式: P n (k )=C k n P k (1-P ) n -k ,其中,k =0,1,2,…,n 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ 0 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … 0q p C n n n 由于k n k k n q p C -恰好是二项展开式 011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--ΛΛ 中的各项的值,所以称这样的随机变量ξ服从二项分布, 记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ). 6. 两点分布: X 0 1 P 1-p p 特别提醒: 若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率. 7. 超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

高考数学百大经典例题 正态分布

借助于标准正态分布表求值 例 设ξ服从)1,0(N ,求下列各式的值: (1));35.2(≥ξP (2));24.1(-<ξP (3)).54.1(<ξP 分析:因为ξ用从标准正态分布,所以可以借助于标准正态分布表,查出其值.但由于表中只列出)()(,0000x x P x Φ=<≥ξ的情形,故需要转化成小于非负值0x 的概率,公式:);()()();(1)(a b b a P x x Φ-Φ=<<Φ-=-Φξ和)(1)(00x P x P <-=≥ξξ有其用武之地. 解:(1);0094.09906.01)35.2(1)35.2(1)35.2(=-=Φ-=<-=≥ξξP P (2);1075.08925.01)24.1(1)24.1()24.1(=-=Φ-=-Φ=-<ξP (3))54.1()54.1()54.154.1()54.1(-Φ-Φ=<-=<ξξP P .8764.01)54.1(2)]54.1(1[)54.1(=-Φ=Φ--Φ= 说明:要制表提供查阅是为了方便得出结果,但标准正态分布表如此简练的目的,并没有给查阅造成不便.相反其简捷的效果更突出了核心内容.左边的几个公式都应在理解的基础上记住它,并学会灵活应用. 求服从一般正态分布的概率 例 设η服从)2,5.1(2N 试求: (1));5.3(<ηP (2));4(-<ηP (3));2(≥ηP (4)).3(<ηP 分析:首先,应将一般正态分布)2,5.1(N 转化成标准正态分布,利用结论:若),(~2σμηN ,则由)1,0(~N σμηξ-=知:,)(?? ? ??-Φ=<σμηx x P 其后再转化为非负标准正态分布情况的表达式,通过查表获得结果. 解:(1);8413.0)1(25.15.3)5.3(=Φ=??? ??-Φ=<ηP

高中数学常用平面几何名定理

高中数学常用平面几何名定理 定理1 Ptolemy定理托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 定理2 Ceva定理 定理3 Menelaus定理 定理4 蝴蝶定理定理 内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 定理5 张角定理 在△ABC中,D是BC上的一点。连结AD。张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 定理6 Simon line西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 定理7 Eular line: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 定理8 到三角形三定点值和最小的点——费马点 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC 的费尔马点。 定理9 三角形内到三边距离之积最大的点是三角形的重心 定理10到三角形三顶点距离的平方和最小的点是三角形的重心 在几何里,平面是无限延展的,是无大小的,是不可度量的,是无厚度的,通常画平行四边形来表示平面 0、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。 1、欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 2、九点圆: 任意三角形三边的中点.三条高线的垂足.垂心与各顶点连线的中点,这9点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

标准正态分布表(附表1-2)

附表1-2 标准正态分布函数表φ(x ) x0.000.010.020.030.040.050.060.070.080.09 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.60.500 0 0.539 8 0.579 3 0.617 9 0.655 4 0.691 5 0.725 7 0.758 0 0.788 1 0.815 9 0.841 3 0.864 3 0.884 9 0.903 2 0.919 2 0.933 2 0.945 2 0.504 0 0.543 8 0.583 2 0.621 7 0.659 1 0.695 0 0.729 1 0.761 1 0.791 0 0.818 6 0.843 8 0.866 5 0.886 9 0.904 9 0.920 7 0.934 5 0.946 3 0.508 0 0.547 8 0.587 1 0.625 5 0.662 8 0.698 5 0.732 4 0.764 2 0.793 9 0.821 2 0.846 1 0.868 6 0.888 8 0.906 6 0.922 2 0.935 7 0.947 4 0.512 0 0.551 7 0.591 0 0.629 3 0.666 4 0.701 9 0.735 7 0.767 3 0.796 7 0.823 8 0.848 5 0.870 8 0.890 7 0.908 2 0.923 6 0.937 0 0.948 4 0.516 0 0.555 7 0.594 8 0.633 1 0.670 0 0.705 4 0.738 9 0.770 3 0.799 5 0.826 4 0.850 8 0.872 9 0.892 5 0.909 9 0.925 1 0.938 2 0.949 5 0.519 9 0.559 6 0.598 7 0.636 8 0.673 6 0.708 8 0.742 2 0.773 4 0.802 3 0.828 9 0.853 1 0.874 9 0.894 4 0.911 5 0.926 5 0.939 4 0.950 5 0.523 9 0.563 6 0.602 6 0.640 4 0.677 2 0.712 3 0.745 4 0.776 4 0.805 1 0.835 5 0.855 4 0.877 0 0.896 2 0.913 1 0.927 9 0.940 6 0.951 5 0.527 9 0.567 5 0.606 4 0.644 3 0.680 8 0.715 7 0.748 6 0.779 4 0.807 8 0.834 0 0.857 7 0.879 0 0.898 0 0.914 7 0.929 2 0.941 8 0.952 5 0.531 9 0.571 4 0.610 3 0.648 0 0.684 4 0.719 0 0.751 7 0.782 3 0.810 6 0.836 5 0.859 9 0.881 0 0.899 7 0.916 2 0.930 6 0.943 0 0.953 5 0.535 9 0.575 3 0.614 1 0.651 7 0.687 9 0.722 4 0.754 9 0.785 2 0.813 3 0.838 9 0.862 1 0.883 0 0.901 5 0.917 7 0.931 9 0.944 1 0.953 5

最新高中数学几何定理知识点总结

高中数学几何定理知识点总结 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段 最短 7 平行公理经过直线外一点,有且只有一条直线与这 条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互 相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内 角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻 的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(sas) 有两边和它们的夹角对应相等的 两个三角形全等 23 角边角公理( asa)有两角和它们的夹边对应相等的 两个三角形全等 24 推论(aas) 有两角和其中一角的对边对应相等的两

个三角形全等 25 边边边公理(sss) 有三边对应相等的两个三角形全 等 26 斜边、直角边公理(hl) 有斜边和一条直角边对应相 等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离 相等 28 定理2 到一个角的两边的距离相同的点,在这个角 的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相 等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直 于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上 的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都 等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三 角形 37 在直角三角形中,如果一个锐角等于30°那么它所 对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点 的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条 线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的 所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形

超几何分布

选修2-3 第2章概率 §2.2 超几何分布(理科)(第1课时) 总第30教案 一、【学习目标】 1、通过实例,理解超几何分布及其特点。 2、通过对实例的分析,掌握超几何分布列及其导出过程,并能简单应用。 二、【概念解读】 1.一般地,若一个随机变量X的分布列为__________________________________________ 则称X服从超几何分布。记为_________________________。并将______________________ 称为__________________。 2.超几何分布是一种常见的离散型随机变量的分布。H(r;n,M,N)中的各个字母都有其具体的含义:r表示样本中次品数,n表示样本容量,M表示次品总数,N表示总体中的个体总数。 3当一批产品共N件,其中有M件不合格品,随机取出n件产品中,则不合格品数X的概率 三、【实例分析】 例题1、生产方提供50箱的一批产品,其中有2箱不合格产品。采购方接收该批产品的准则是:从该批产品中任取5箱产品进行检测,若至多有一箱不合格产品,则接收该 批产品。问:该批产品被接收的概率是多少? 例题2、高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同。现一次从中摸出5个球,(1)若摸到4个红球1个白球的就中一等奖,求中一等奖的概率。(2)若至少摸到3个红球就中奖,求中奖的概率。

例题3、盒中装着标有1,2,3,4的蓝色卡片4张,标有1,2,3,4的红色卡片4张,现从盒中任 意抽取3张,每张卡片被抽出的可能性相等,设取到一张红色卡片记2分,取到一张蓝色卡片记1分,以X 表示抽出的3张卡片的总得分,Y 表示抽出的3张卡片上的最大数字,求X 和Y 的概率。 例题4、10只灯泡中含有)82(≤≤n n 只不合格品,若从中一次任取4只,问:恰含有2只 不合格品的概率)(n f 是多少?当n 为何值时,f(n)取得最大值?并求此时取到的不合格品只数X 的概率分布。 四、【巩固练习】 1、袋中有4个红球,编号为1,2,3,4;3个黑球,编号为5,6,7,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球,以X 表示取出的4个球的总得分,Y 表示取出的4个球的最大号码。则: ① P(X=5)=____________________________ 。 ② P(Y=5)=____________________________ 。 ③ X 与Y 是否服从超几何分布__________________ 。

中要的数学几何定理

余弦定理性质 对于任意三角形中任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积: 三边为a,b,c 三角为A,B,C 满足性质 (注:a*b 、a*c 就是a 乘b 、a 乘c 。a^2、b^2、c^2就是a 的平方,b 的平方,c 的平方。) a^2=b^2+c^2-2*b*c*Cos A b^2=a^2+c^2-2*a*c*Cos B c^2=a^2+b^2-2*a*b*Cos C Cos C=(a^2+b^2-c^2)/2ab Cos B=(a^2+c^2-b^2)/2ac Cos A=(c^2+b^2-a^2)/2bc 任意三角形射影定理又称“第一余弦定理”: 设⊿ABC 的三边是a 、b 、c ,它们所对的角分别是A 、B 、C ,则 有 a = b ·cosC + c ·cosB , b = c ·cosA +a ·cosC , c =a ·cosB +b ·cosA 。 注:以“a =b ·cosC +c ·cosB”为例,b 、c 在a 上的射影分别为b ·cosC 、 c ·cosB ,故名射影定理。 证明1:设点A 在直线BC 上的射影为点D ,则AB 、AC 在直线BC 上的射影分别为BD 、CD ,且 BD=c ·cosB ,CD=b ·cosC ,∴a=BD+CD=b ·cosC +c ·cosB .同理可证其余。 证明2:由正弦定理,可得:b=asinB/sinA ,c=asinC/sinA=asin(A+B)/sinA=a(sinAcosB+cosAsinB)/sinA =acosB+(asinB/sinA)cosA=a ·cosB +b ·cosA .同理可证其它的。 正切定理 2/)tan(2 /)tan(βαβα-+=-+b a b a 正弦定理 在一个三角形中,各边和它所对角的正弦的比相等。 即a/sinA=b/sinB=c/sinC=2R (2R 在同一个三 角形中是恒量,是此三角形外接圆的半径的两倍) 这一定理对于任意三角形ABC ,都有 a/sinA=b/sinB=c/sinC=2R R 为三角形外接圆半径 切割线定理 ∵PT 切⊙O 于点T ,PBA 是⊙O 的割线 ∴PT^2=PA·PB (切割线定理)

二项分布、超几何分布数学期望与方差公式的推导

二项分布、超几何分布数学期望与方差公式的推导 高中教材中对二项分布和超几何分布数学期望与方差公式没有给出推导公式,现笔者给出一推导过程仅供参考。 预备公式一 11--=k n k n nC kC (1≥n ) ,利用组合数计算公式即可证明。 预备公式二 []2 2)()()(ξξξE E D -=,证明过程可见教材。 预备公式三 2 2)1()1(---=-k n k n C n n C k k (2,2≥≥k n ) ,利用组合数计算公式即可证明。 预备公式四 ),,,,(022110n k m k N k n m C C C C C C C C C k n m m k n k m n k m n k m n ≤≤∈=++++++--Λ,利用恒等 式m n n m x x x )1()1() 1(++=++的二项展开式中k x 的系数相等可证。 一、二项分布 在n 次独立重复试验中,每次试验中事件A 发生的概率为p (10<

超几何分布教学案

2.1.3超几何分布 教学目标:1、理解理解超几何分布;2、了解超几何分布的应用. 教学重点:1、理解理解超几何分布;2、了解超几何分布的应用 教学过程 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量: 随机变量 只能取有限个数值 或可列无穷多个数 值 则称 为离散随机变量,在高中阶段我们只研究随机变量 取有限个 数值的情形. 3. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即 ?? ?+=+==≥+)()()(1k k k x P x P x P ξξξ 5.二点分布:如果随机变量X 的分布列为: 二、讲解新课: 在产品质量的不放回抽检中,若N 件产品中有M 件次品,抽检n 件时所得次品数X=m 则()m M m n N n M N C C P X m C --==.此时我们称随机变量X 服从超几何分布 1)超几何分布的模型是不放回抽样 2)超几何分布中的参数是M,N,n

如何记忆高中数学几何定理

高中数学几何定理大全 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等 24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(sss) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

相关主题
文本预览
相关文档 最新文档