当前位置:文档之家› 圆形沉井基础设计示例

圆形沉井基础设计示例

圆形沉井基础设计示例
圆形沉井基础设计示例

圆形沉井基础设计示例

一、设计资料

某公路桥为预应力钢筋混凝土剪支梁桥,其2号墩为圆形实体墩,墩底设计高程为13.29m,基础拟采用钢筋混凝土沉井基础。

墩址处河床高程为15.30m,河流最低水位16.10m,施工时的水位17.00m。河床一般冲刷线高程为13.80m,局部冲刷线高程10.60m。墩址处各土层资料见表1.

表3.1 各土层主要参数表

沉井材料为钢筋混凝土,除底节与顶盖混凝土等级为C20外,其余均为C15.沉井沉至设计高程后,以水下混凝土封底,井孔填以砂石,顶盖为厚1.5m的钢筋混凝土板。按《公路桥涵地基与基础设计规范》(JTG D63—2007)、《公路圬工桥涵设计规范》(JTG D61—2004)及《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)等设计计算。

二、初步设计

(1)沉井高度

根据墩底高程要求,沉井顶部高程为13.29m。

①按水文条件:局部冲刷深度15.3010.60 4.70

'=-=,而根据规定大、中

h m

桥基础埋深应≥2.0m,故沉井所需高度为:

=+=

H m

4.72 6.70()

然而,若按此深度,沉井底部将位于砂土层内,而该层从其力学性能指标来看,并非理想地基持力层。

②按地质条件:因风化页岩及其底下的页岩力学性能好,故井底最好嵌入岩层中,这里将井底嵌入风化页岩0.5m,则

13.29 3.290.510.5()H m =-+=

③按地基承载力,沉井底面位于风化页岩层为宜。

根据以上分析,拟采用沉井高度H=10.5m ,沉井顶面标高13.29m ,沉井底面高程为2.79m 。按施工与构造要求,将沉井分为二节施工,第一节沉井高度为5.5m ,第二节沉井高度为5.0m 。

(2)沉井平面尺寸

考虑到桥墩形式,采用圆形沉井。底节直径5.0m ,壁厚1.15m ,第二节沉井直径4.9m ,壁厚为1.10m 。具体尺寸如图所示。

刃脚踏面宽度0.15m ,刃脚高1.40m ,则内侧倾角为:

1.40arctan

54.545

1.00

θ==>

三.荷载计算

(1)上部结构传递的荷载

上部桥梁结构传递给墩底的荷载有多种组合,本算例中以低水位时两孔荷载作为验算对象。其中,双孔上部结构恒载、活载及墩身自重等产生的墩底竖向力

10099.4N kN

=,水平力371.6H k N =,两者在墩底产生的总弯矩为

7438.6M kN m =?。其余荷载组合从略。

(2)沉井自重

沉井自重力为各组成部分自重力之和,按上述初步拟定的沉井几何尺寸对其各部分的体积和自重力计算如下。

①顶盖重

重度3125.0kN m γ=

2

1( 3.7/4 1.5)25.016.1325.0403.3()G kN π=???=?=

②封底混凝土重

设计封底混凝土厚度为:1.4+1.0+1.0+0.3=3.7m 重度3223.0kN m γ=

2

22

22

2 2.7 3.1 2.7

1.35 1.35

2.35 2.35

(

2.3 1.0 1.4)2

3.0

4

2

3

30.4123.0699.4()

G kN π-+?+=?+

?+

??=?=

③填料重

填料高度为:10.5-3.7-1.5=5.3m C15混凝土重度3323.0kN m γ=

2

3(

2.7 5.3)2

3.0

4

30.3523.0698.1()

G kN π

=???=?=

④刃脚和井壁重(刃脚与底节井壁重度取3

25.0k N m ,其余两节为

3

23.0k N m )

2

42

[ 5.0 5.515.42 5.726(5.5 1.4) 1.82]25.04

[

4.9

5.01

6.13 5.726(5.0 1.5)]23.0

4

67.2825.058.1223.03018.8()

G kN ππ=??--?--?+

??--?-?=?+?=

使用阶段沉井总重为:

1234

403.3699.4698.13018.84819.6()

G G G G G kN =+++=+++= 使用阶段沉井的浮力

22

(5.0 5.5 4.9 5.0)10.02022.8()4

G kN π

'=

??+??=

故考虑浮力时沉井的自重力G ''为

4819.62022.82796.8()G G G kN '''=-=-=

四、沉井基础整体验算

使用阶段沉井已封底,加顶盖板。 沉井自局部冲刷线至井底的埋深

10.60 2.797.815h m m =-=>

需考虑土的水平抗力作用,又因基底土层为风化页岩层,所以按非岩石类地基土的刚性深基础验算地基强度。

(1)基底应力验算

平行于水平力作用方向沉井宽度: 5.0()D m =

垂直于水平力作用方向沉井的宽度:d=5m 底面积:220 2.519.64()A m π=?= 井底截面抵抗矩:

3

3

012.27()32

D W m π=

=

基础底面处竖向力标准值(包括基础自重)

10099.42796.812896.2()N kN =+=

局部冲刷线以上水平力总和:371.6()H kN = 局部冲刷线以上所有力对基底形心轴总弯矩

7438.6371.610.511340.4()M kN m =+?=?

所以水平力H 作用高度λ

30.52()M m H

λ=

=

沉井基础侧面的地基比例系数按规范规定的地基当量m 值计算如下: 刚性深基础取,7.31()m h h m ==

在h m 范围内有二层土,因10.57.310.0680.2m h h ==< 故有:2

2

15(

)50.0680.0234m

h h γ==?=

4

12(1)39532()

m m m kN m γγ=+-=

所以

3

395327.81308744.9()h C m h kN m ==?=

因7.8110h m m =<,故取

3

00108000010800000()

C m kN m ==?=

故0

308744.90.39800000

h C C β=

=

=

基础计算宽度b 1

因 5.0 1.0d m m =>,所以1(1)f b kk d =+ 沉井相当于单根桩情况,故 1.0k = 圆形截面:0.9f k =

所以1(1) 1.00.9(5.01) 5.4()f b kk d m =+=??+= 所以3

2

10

1832.262(3)

b h D W A m h ββλ+=

=-

考虑轴向N 和水平力H 的作用,基底边缘处压应力计算如下:

max min

1099.6()

312896.2

3371.6 5.0

212.6()19.6432.260.39kPa N DH p kPa A A β

???=

±

=±=?

?? 井底地基土为风化页岩层,根据规范可按下式计算地基承载力容许值:

011224[][](2)(3)a a f f k b k h γγ=+-+-

由土层资料知:0[]350a f kPa =

参照密实的碎石类土查表,得:124,6k k == 又基础的最小宽度 5.010b D m m ==<

一般冲刷线至基底的距离413.80 2.7911.0144 5.020.0h m d m =-=<=?= 土重度:持力层为透水性土,12γγ、取浮重度 基底持力层土的浮重度:3121.010.011.0()kN m γ=-=

基底以上土层的加权平均浮重度(由基底至一般冲刷线范围内):

3

2(17.010.0) 3.70(20.010.0) 6.81(21.010.0)0.50

9.04()

3.70 6.810.50

kN m γ-?+-?+-?=

=++

考虑地基承受作用短期效应组合,承载力可提高25%,即 1.25R γ=

{}

{}011224max [] 1.25[](2)(3) 1.25350411.0(5.02)69.04(11.013) 145.61099.6R a a f f k b k h kPa P kPa

γγγ=?+-+-=?+??-+??-=>= 满足要求。

(2)土体横向抗力验算

沉井转动中心位置为:

2

10

01(4)6 5.462(3)

b h h DW Z m b h h βλβλ-+=

=-()

两控制位置z=h/3和z=h 处井侧水平压应力

03

066371.67.817.81()

(5.46)66.6()

32.267.813

3

66371.6

()

7.81(5.467.81)164.4()

32.267.81

h

z h h z h

H P Z Z Z kPa Ah

H P Z Z Z kPa Ah

==?=

-=

?

?-

=??=

-=

??-=-?

土体极限横向土抗力为:

修正系数1 1.0()η=上部结构静定,2 1.0(0)g M η==因

z=h/3时,

30

?=

,0C =

331233

4[](

tan )

cos 3

410.07.81

1.0 1.0tan 30

cos 30

3

69.466.6h h h h

h P C kPa kPa

γηη??'=+?=??

?

?=>

z=h 时,3

7.00.510.0 6.8111.00.5

9.9()7.81

h

kN m γ?+?+?'==,45?=

,0C =

12

4[](tan )cos 4

1.0 1.09.97.81tan 45cos 45

437.4164.4h h

h h

P h C kPa kPa

ηηγ??'=+=??

???=>

均满足要求,因此计算时可以考虑沉井侧面的弹性抗力。

沉井设计

沉井设计基本方法 一、预估井壁厚度 井壁厚度除考虑其结构强度、抗渗、刚度和抗浮需要外,尚应根据沉井有足够的自重能顺利下沉的条件确定。 一般根据沉井深度预估井壁厚度,以下值仅供参考: 4~6m,井壁厚度可用300~400mm;6~8m,可用350~450mm;8~10m,可用400~550mm;10m以上宜用500mm以上。 当遇到较好的地质情况(土侧摩阻力较大)时,可适当加大井壁厚度,或采用以下办法: 1、采用外壁设台阶的刃脚,以减小下沉阻力;台阶宽度为100~200mm; 2、若采用第一项未能达到要求,可根据实际情况在外壁设多级台阶; 3、对于薄壁沉井,应采用触变泥浆套及壁外喷射高压空气等措施,以降低沉井下沉时的摩阻力。 当遇到较差的地质情况(土侧摩阻力较小)时,在满足结构强度、抗渗、刚度和抗浮需要时,选择较小厚度的井壁。但大型沉井受力大,井壁厚度一般较厚,此时也可采用内设台阶的方式,使壁厚由下到上逐渐变薄。 二、抗浮验算 沉井抗浮稳定应按沉井封底和使用两阶段,分别根据实际可能出现的最高水位验算(根据规程7.2.3条规定:应将水位控制在沉井起沉标高以下不小于500mm,因此,若非排水下沉,则施工阶段的最高水位可估算为相对标高-0.500)。 进行抗浮验算时,应注意以下几点: 1、使用阶段的抗浮验算应考虑沉井上部建筑的重量,因此对于无上部建筑的沉井,只需对使用阶段进行验算。 2、当封底混凝土与底板有可靠连接时,封底混凝土可作为沉井抗浮重量的一部分,通常的连接方式是使用插筋。 当沉井依靠自重不能获得抗浮稳定时,可采取如下措施: 1、施工阶段不能满足时,可采取井点降水或加载下沉。 2、使用阶段不能满足时,可采用设抗浮板或拉锚等措施。 三、计算下沉 下沉验算时,需注意以下几点: 1、注意沉井井壁摩阻力沿井壁深度方向的分布图形,0~5m为三角形,5m以下为矩形; 2、摩阻力为各层土的单位摩阻力标准值的加权平均值;(采用触变泥浆套时,应用处理后的侧摩阻力计算下沉)

柱下独立基础课程设计汇本例题

1 柱下独立基础课程设计 1.1设计资料 1.1.1地形 拟建建筑地形平整 1.1.2工程地质条件 自上而下土层依次如下: ①号土层:杂填土,层厚0.5m 含部分建筑垃圾。 ②号土层:粉质粘土,层厚1.2m ,软塑,潮湿,承载力特征值ak f 130KPa =。 ③号土层:黏土,层厚1.5m ,可塑,稍湿,承载力特征值180ak f KPa =。 ④号土层:细砂,层厚2.7m ,中密,承载力特征值k 240Kpa a f =。 ⑤号土层:强风化砂质泥岩,厚度未揭露,承载力特征值300ak f KPa =。 1.1.3岩土设计参数 表1.1 地基岩土物理学参数

④细砂21 0.62 -- -- 30 11.6 16 240 ⑤强风化砂 22 -- -- -- -- 18 22 300 质泥岩 1.1.4水文地质条件 1)拟建厂区地下水对混凝土结构无腐蚀性。 2)地下水位深度:位于地表下1.5m。 1.1.5上部结构材料 拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为500mm?500mm。室外地坪标高同自然地面,室外高差450mm。柱网布置图如图1.1所示:Array 1.1.6材料 HPB、HPB335级。 混凝土强度等级为2530 -,钢筋采用235 C C 1.1.7本人设计资料 本人分组情况为第二组第七个,根据分组要求及参考书柱底荷载效应标准组合值

及柱底荷载效应基本组合值选用⑦题号B 轴柱底荷载. ①柱底荷载效应标准组合值:k K K F 1970KN M 242KN.m,V 95KN ===, 。 ②柱底荷载效应基本组合值:k K K F 2562KN M 315KN.m,V 124KN ===,. 持力层选用④号土层,承载力特征值k F 240KPa =,框架柱截面尺寸为500mm ?500mm ,室外地坪标高同自然地面,室外高差450mm 。 1.2独立基础设计 1.2.1选择基础材料 基础采用C25混凝土,HPB235级钢筋,预估基础高度0.8m 。 1.2.2选择基础埋置深度 根据柱下独立基础课程设计任务书要求和工程地质资料选取。你、 拟建厂区地下水对混凝土结构无腐蚀性,地下水位于地表下1.5m 。 取基础底面高时最好取至持力层下0.5m ,本设计取④号土层为持力层,所以考虑取室外地坪到基础底面为0.5+1.2+1.5+0.5=3.7m 。由此得基础剖面示意图,如图1.2所示。 基础剖面示意图

基础设计(独立基础)

基础设计 工程概况 边柱采用柱下独立扩展基础,中柱采用双柱联合基础。 基础埋深不宜大于原有建筑物基础埋深且大于0.5m ;阶梯形基础每阶高度宜为300~500mm ;混凝土等级不低于C20,选用C30;基础保护层厚度40mm ,垫层厚度100mm ,混凝土等级采用C20;钢筋选用HRB400级钢筋;室外地坪-0.45m 。 独立基础设计(5号轴线B 柱) 13.1 独立基础示意图 1 选型 初步确定基础埋深-2.5m ,满足大于合肥地区最大冻土深度-1.6m ,同时基础底面处于粘土层。土的平均重度γm =20kN/m 3,ηb =0.3,ηd =1.6。 修正后的地基承载力特征值: ()()5.03-+-+=d b f f m d b ak a γηγη b <3m 时,取b =3m ;取d =3.0m ,则 ()()()kPa 3045.05.2206.12405.03=-??+=-+-+=d b f f m d b ak a γηγη kPa 2642401.11.1=?=>ak f ,取kPa 304=a f 取内力组合值:m kN 98.20?-=M ,kN 03.1531=N ,kN 49.17-=V ,则 2G 0m 03.65 .22030403.1531=?-=-≥d f N A a γ 考虑偏心:()()20m 05.963.65.11.1-=-=A A ,取2m 00.9=A ,m 0.3==b l

2 地基承载力计算 取H =500mm ,计算基底净反力。 偏心矩:m 015.05 .20.92003.15315.049.1798.200,=??+?+==F M e n 基础边缘处最大、最小净反力: 0213.51kPa kPa 28026.72kPa 20.3015.06100.903.1981610,max ,min ,>=<=??? ???±?=??? ? ??±=a n n n f l e bl F P kPa 280kPa 11.2200 .95.20.92003.1531G <=??+=+=+= A Ad F A G F p k k k k γ 故地基承载力满足要求。 3 基础抗冲切验算 柱边基础截面抗冲切验算 m 0.3==b l ,m 5.0==c t a a ,m 5.0=c b ,mm 450505000=-=h m 0.3m 4.145.025.020=<=?+=+b h a t ,取m 4.1=b a 故冲切破坏椎体落在基础底面以内。 m 95.02 4.1 5.02=+=+=b t m a a a ,因偏心受压,取kPa 72.226max ,==n n P p 冲切力:??? ???????? ??---??? ??--=200max ,2222h b b b h a l P F c c n l kN 03.39945.025.020.30.345.025.020.372.2262=??? ???????? ??---???? ??--?= 抗冲切力: kN 03.993kN 93.42745.095.01043.10.17.07.030>=?????=h a f m t hp β(满足) 4 配筋计算 选用HRB400级钢筋(2mm N 360='=y y f f ),基础长边=基础短边,取配筋相同。 以柱边为例计算: 柱边净反力: ()()kPa 22.22151.21372.2260 .325.00.351.2132min ,max ,min ,=-??++=-++=n n c n n P P l a l P P 悬臂部分净反力平均值: ()()kPa 97.22322.22172.2262121max ,=+=+n n P P 弯矩: ()()()()5.00.325.00.32497.2232224122max ,+??-?=+-??? ? ??+=c c n n b b a l P P M m kN 12.379?=

沉井结构计算书

粗格栅及污水提升泵房结构计算书

结构计算书 一.设计总信息: 1.本工程地下结构采用钢筋混凝土沉井。 2.结构设计使用年限50年;建筑结构安全等级II级,结构重要性系数1.0。 3.基本风压0.8KN/m2。 4.抗震设防烈度7度;设计基本地震加速度值为0.10g;设计地震分组为第Ⅰ组;场地类别Ⅲ类;建筑抗震设防分类为丙类。 5.地基基础设计等级丙级。 二.主要材料及要求: 1.混凝土: (1)井底混凝土封底采用C20; (2)垫层和填充混凝土为C15; (3)沉井壁板和底板为C30; (4)地下结构混凝土抗渗标号均为P6。 2.钢筋:HPB300级钢,fy=270N/mm2;HRB400级钢,fy=360N/mm2板材:Q235 焊条:HPB300级钢及Q235用E43型;HRB400级钢用E50型。 3.砌体材料:Mu10非承重粘土多孔砖砌体墙,块体自重≤11KN/m3,混合砂浆强度等级为M7.5(地下部分为水泥砂浆)。 三.设计采用主要规范:

1.《泵站设计规范》(GB50265-2010); 2.《建筑结构荷载规范》(GB50009-2012); 3.《建筑抗震设计规范》(GB50011-2010); 4.《建筑地基基础设计规范》(GB50007-2011); 5.《混凝土结构设计规范》(GB50010-2010); 6.《钢结构设计规范》(GB50017-2003); 7.《给水排水工程构筑物结构设计规范》(GB50069-2002); 8.《给水排水工程钢筋混凝土沉井结构设计规程》(CECS 137:2002); 9.《地下工程防水技术规范》(GB50108-2008) 四.结构计算方法及应用软件: 1.沉井特种结构主要采用手算及理正结构工具箱6.5。 五.主要结构计算: (一)沉井: 具体设计及说明见设计图. 1.沉井下沉计算:沉井起沉标高暂按-1.75,沉井地上制作部分按-9.10~0.20,标高均采用相对标高,详参设计图;地质断面参地勘报告 ZK21孔。 沉井自重:G1k= 148.066*25=3701.65 kN (注:CAD建3D模型查体积) 地下水浮托力: F fw,k=0 kN (注:采用排水下沉法施工) 井壁摩擦力:

柱下独立基础课程设计例题范本

柱下独立基础课程 设计例题

1 柱下独立基础课程设计 1.1设计资料 1.1.1地形 拟建建筑地形平整 1.1.2工程地质条件 自上而下土层依次如下: ①号土层:杂填土,层厚0.5m 含部分建筑垃圾。 ②号土层:粉质粘土,层厚 1.2m ,软塑,潮湿,承载力特征值 ak f 130KPa =。 ③号土层:黏土,层厚 1.5m ,可塑,稍湿,承载力特征值 180ak f KPa =。 ④号土层:细砂,层厚2.7m ,中密,承载力特征值k 240Kpa a f =。 ⑤号土层:强风化砂质泥岩,厚度未揭露,承载力特征值 300ak f KPa =。 1.1.3岩土设计参数 表1.1 地基岩土物理学参数

② 粉质粘土 20 0.65 0.84 34 13 7.5 6 130 ③ 黏土 19.4 0.58 0.78 25 23 8.2 11 180 ④ 细砂 21 0.62 -- -- 30 11.6 16 240 ⑤ 强风化砂质泥岩 22 -- -- -- -- 18 22 300 1.1.4水文地质条件 1) 拟建厂区地下水对混凝土结构无腐蚀性。 2) 地下水位深度:位于地表下1.5m 。 1.1.5上部结构材料 拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为500mm ?500mm 。室外地坪标高同自然地面,室内外高差450mm 。柱网布置图如图1.1所示: 1.1.6材料 混凝土强度等级为2530C C -,钢筋采用235HPB 、HPB335级。

1.1.7本人设计资料 本人分组情况为第二组第七个,根据分组要求及参考书柱底荷载效应标准组合值及柱底荷载效应基本组合值选用⑦题号B 轴柱底荷载. ①柱底荷载效应标准组合值:k K K F 1970KN M 242KN.m,V 95KN ===, 。 ②柱底荷载效应基本组合值:k K K F 2562KN M 315KN.m,V 124KN ===,. 持力层选用④号土层,承载力特征值k F 240KPa =,框架柱截面尺寸为500mm ?500mm ,室外地坪标高同自然地面,室内外高差450mm 。 1.2独立基础设计 1. 2.1选择基础材料 基础采用C25混凝土,HPB235级钢筋,预估基础高度0.8m 。 1.2.2选择基础埋置深度 根据柱下独立基础课程设计任务书要求和工程地质资料选取。你、 拟建厂区地下水对混凝土结构无腐蚀性,地下水位于地表下1.5m 。 取基础底面高时最好取至持力层下0.5m ,本设计取④号土层为持力层,因此考虑取室外地坪到基础底面为0.5+1.2+1.5+0.5=3.7m 。由此得基础剖面示意图,如图1.2所示。

某独立基础设计-(详细计算过程)

现浇独立柱基础设计(Jc-1) 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2002), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2002), 本文简称《地基规范》 《建筑抗震设计规范》(GB 50011-2001), 本文简称《抗震规范》 ----------------------------------------------------------------------- 1 设计资料: 1.1 已知条件: 类型:阶梯形 柱数:单柱 阶数:1 基础尺寸(单位mm): b1=1100, b11=500, a1=2000, a11=1000, h1=400 柱:方柱, A=400mm, B=400mm 设计值:N=201.00kN, Mx=5.80kN.m, Vx=-5.60kN, My=3.30kN.m, Vy=7.60kN 标准值:Nk=160.80kN, Mxk=4.64kN.m, Vxk=-4.48kN, Myk=2.64kN.m, Vyk=6.08kN 混凝土强度等级:C30, fc=14.30N/mm2 钢筋级别:HRB400, fy=360N/mm2 基础混凝土保护层厚度:40mm 基础与覆土的平均容重:20.00kN/m3

修正后的地基承载力特征值:100kPa 基础埋深:1.00m 作用力位置标高:0.000m 剪力作用附加弯矩M'=V*h(力臂h=1.000m):My'=-5.60kN.m Mx'=-7.60kN.m Myk'=-4.48kN.m Mxk'=-6.08kN.m

某沉井结构设计计算

圆形单孔沉井基础(北方工业大学北岸沉井) 执行规范: 《混凝土结构设计规范》(GB 50010-2010(2015年版)), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土沉井结构设计规程》(CECS 137-2015), 本文简称《沉井结构规程》 钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; Q - HRBF400; R - HRBF500 ----------------------------------------------------------------------- 1 基本资料 (1) 几何信息

(2) 土层信息 ak (3) 荷载信息 荷载信息 沉井几何简图

组合系数 (4) 钢筋砼信息 纵筋保护层厚度(mm):井壁(内35,外35)、底板(上35,下35)、刃脚(内35,外35) 纵筋a s(mm):井壁顶部45、刃脚底部45 2 计算内容 (1) 下沉验算 (2) 抗浮验算 (3) 地基承载力验算

(4) 刃脚、井壁、底板内力配筋计算 (5) 井壁、底板裂缝抗裂度计算 (6) 水下封底混凝土厚度计算 3 荷载标准值计算 (1) 沉井自重 井壁自重: 底板自重: (2) 内水压力 施工期间(不排水施工): 水位低于刃脚踏面,内水压力为0。 使用期间: 井内水深为0,内水压力为0。 (3) 外土压力 施工期间外土压力: 井壁顶端25.400m ,p ep =0.00kPa =G 11?()--t H 1t 1t 2ab /2()-D t c =???()--?1.000 6.000?1.7000.200?0.8000.500/2()-17.200 1.00025.00=6947.004kN =G 12?t H 2()-D t c =????1.000 6.000()-17.200 1.00025.00=7634.070kN =G 13?t H 3()-D t c =????1.000 6.000()-17.200 1.00025.00=7634.070kN =G 14?t H 4()-D t c =????1.000 6.000()-17.200 1.00025.00=7634.070kN =G 15?t H 5()-D t c =????1.000 4.000()-17.200 1.00025.00=5089.380kN =++++=G 1G 11G 12G 13G 14G 1534938.594kN = G 2( ) +-D/2t t 2 2 t 1c = ???()+-17.200/2 1.0000.2002 1.70025.00=8123.216kN

沉井施工计算书

沉井施工计算书 计算依据: 1、《给水排水工程钢筋混凝土沉井结构设计规程》CECS 137∶2015 2、《建筑地基基础设计规范》GB50007-2011 3、《公路桥涵地基与基础设计规范》JTG D63-2007 4、《公路桥涵施工技术规范》JTG/T F50-2011 5、《建筑施工计算手册》江正荣编著 6、《实用土木工程手册》第三版杨文渊编著 7、《地基与基础》第三版 一、参数信息 1、基本参数

沉井总体示意图 二、砂垫层铺设厚度验算 沉井承垫材料:垫木垫木宽度L(m): 2 砂的天然容重γs(kN/m3):20 砂垫层的压力扩散角θ(°):25 砂垫层厚度h0(m):0.5 砂垫层底部地基承载力设计值[P](kPa): 150 砂垫层计算简图 沉井第一节沿井壁单位长度重量:G0=tH s(G2k+G1k)=0.5×3×(24+1)=37.5kN/m

砂垫层底部荷载计算值:P=G0/(2h0tanθ+L)+γs h0=37.5/(2×0.5×tan25°+2)+20×0.5=25.205kpa≤[P]=150kpa 满足要求! 三、垫架拆除井壁强度验算 两支承点之间最大距离L1(m):7 支承点距端部的距离L2(m): 1.5 沉井垫架拆除示意图 沉井在开始下沉特别是在抽垫木时,井壁会产生较大的弯曲应力。 沉井井壁抗弯按深受梁考虑,参考GB50010-2010附录G,深受梁计算第G.0.8 2 条,0.2Hs范围内纵向受力实际钢筋面积经计算:A's 底部=A's顶部=1608.495mm 支座弯矩M支:M支=-G0L22/2-G0(B s/2-t)(L2-t/2)=-37.5×1.52/2-37.5×(8/2-0.5)×(1.5-0.5/2)=-206.25kN·m 跨中弯矩M中:M中=G0L12/8-M支=37.5×72/8-206.25=23.438kN·m 将沉井结构按深梁结构进行验算,根据《混凝土结构设计规范》,计算如下:

基础工程独立基础课程设计

基础工程课程设计 课程名称:《基础工程》 设计题目:柱下独立基础课程设计 院系:土木工程学院 专业:道路、桥梁、隧道工程年级:2009级 姓名:李涛 学号:20090710149 指导教师:李文广 徐州工程学院土木工程学院

2011 年12 月15 日 目录 1、柱下独立基础设计资料 2、柱下独立基础设计 2.1 基础设计材料 2.2 基础埋置深度选择 2.3地基承载力特征值 2.4 基础底面尺寸的确定 2.5 验算持力层地基承载力 2.6 基底净反力的计算 2.7 基础高度的确定 2.7.1 抗剪验算 2.7.2 抗冲切验算 2.8 地基沉降计算 2.9 配筋计算 3 软弱下卧层承载力验算 4《规范》法计算沉降量 5地基稳定性验算

5 参考文献 6设计说明 附录 基础施工图 一、基础设计资料 2号题 B 轴柱底荷载: ① 柱底荷载效应标准组合值:KN F k 1615=,m KN M k ?=125,KN V k 60=; ② 柱底荷载效应基本组合值:KN F 2099.5=,m KN M ?=162.5,KN V 78=。 持力层选用4号粘土层,承载力特征值240=ak f kPa ,框架柱截面尺寸为500×500 mm ,室外地坪标高同自然地面,室内外高差450mm 。 二、独立基础设计 1.选择基础材料:C25混凝土,HPB235钢筋,预估基础高度0.8m 。 2.基础埋深选择:根据任务书要求和工程地质资料, 第一层土:杂填土,厚0.5m ,含部分建筑垃圾; 第二层土:粉质粘土,厚1.2m , 软塑,潮湿,承载力特征值 ak f = 130kPa 第三层土:粘土,厚1.5m , 可塑,稍湿,承载力特征值 ak f = 180kPa 第四层土:全风化砂质泥岩,厚2.7m ,承载力特征值ak f = 240kPa 地下水对混凝土无侵蚀性,地下水位于地表下1.5m 。 取基础底面高时最好取至持力层下0.5m ,本设计取第三层土为持力层,所以考虑取室外地坪到基础底面为m 3.75.15.02.15.0=+++。由此得基础剖面示意图如下:

柱下独立基础课程设计

目录 1 柱下独立基础课程设计 .................... 错误!未定义书签。 1.1设计资料............................ 错误!未定义书签。 1.1.1地形........................... 错误!未定义书签。 1.1.2工程地质条件................... 错误!未定义书签。 1.1.3岩土设计参数................... 错误!未定义书签。 1.1.4水文地质条件................... 错误!未定义书签。 1.1.5上部结构材料................... 错误!未定义书签。 1.1.6材料........................... 错误!未定义书签。 1.1.7本人设计资料................... 错误!未定义书签。 1.2独立基础设计........................ 错误!未定义书签。 1.2.1选择基础材料................... 错误!未定义书签。 1.2.2选择基础埋置深度............... 错误!未定义书签。 1.2.3求地基承载力特征值a f ........... 错误!未定义书签。 1.2.4初步选择基底尺寸............... 错误!未定义书签。 土层编号土的 名称 重度γ 3 m KN 孔隙 比e 液性 指数 I l 粘聚 力c KPa 内摩 擦角 ? () 压缩模量 (pa) s E M 标准 贯入 锤击 数N 承载力 特征值 () ak f kPa ①杂填 土 18 -- -- -- -- -- -- -- ②粉质 粘土 20 0.65 0.84 34 13 7.5 6 130 ③黏土19.4 0.58 0.78 25 23 8.2 11 180 ④细砂21 0.62 -- -- 30 11.6 16 240

独立基础计算

锥形基础计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、设计依据 《建筑地基基础设计规范》 (GB50007-2002)① 《混凝土结构设计规范》 (GB50010-2010)② 《简明高层钢筋混凝土结构设计手册》李国胜 二、示意图 三、计算信息 构件编号: JC-1 计算类型: 验算截面尺寸 1. 几何参数 矩形柱宽bc=600mm 矩形柱高hc=1170mm 基础端部高度h1=200mm 基础根部高度h2=150mm 基础长度B1=1200mm B2=1200mm 基础宽度A1=1800mm A2=1800mm 2. 材料信息 基础混凝土等级: C30 ft_b=1.43N/mm2fc_b=14.3N/mm2 柱混凝土等级: C30 ft_c=1.43N/mm2fc_c=14.3N/mm2 钢筋级别: HRB400 fy=360N/mm2 3. 计算信息 结构重要性系数: γo=1.0 基础埋深: dh=1.800m 纵筋合力点至近边距离: as=40mm 基础及其上覆土的平均容重: γ=18.000kN/m3 最小配筋率: ρmin=0.150% 4. 作用在基础顶部荷载标准值

Fgk=201.000kN Fqk=0.000kN Mgxk=234.000kN*m Mqxk=0.000kN*m Mgyk=0.000kN*m Mqyk=0.000kN*m Vgxk=59.000kN Vqxk=0.000kN Vgyk=0.000kN Vqyk=0.000kN 永久荷载分项系数rg=1.20 可变荷载分项系数rq=1.40 Fk=Fgk+Fqk=201.000+(0.000)=201.000kN Mxk=Mgxk+Fgk*(B2-B1)/2+Mqxk+Fqk*(B2-B1)/2 =234.000+201.000*(1.200-1.200)/2+(0.000)+0.000*(1.200-1.200)/2 =234.000kN*m Myk=Mgyk+Fgk*(A2-A1)/2+Mqyk+Fqk*(A2-A1)/2 =0.000+201.000*(1.800-1.800)/2+(0.000)+0.000*(1.800-1.800)/2 =0.000kN*m Vxk=Vgxk+Vqxk=59.000+(0.000)=59.000kN Vyk=Vgyk+Vqyk=0.000+(0.000)=0.000kN F1=rg*Fgk+rq*Fqk=1.20*(201.000)+1.40*(0.000)=241.200kN Mx1=rg*(Mgxk+Fgk*(B2-B1)/2)+rq*(Mqxk+Fqk*(B2-B1)/2) =1.20*(234.000+201.000*(1.200-1.200)/2)+1.40*(0.000+0.000*(1.200-1.200)/2) =280.800kN*m My1=rg*(Mgyk+Fgk*(A2-A1)/2)+rq*(Mqyk+Fqk*(A2-A1)/2) =1.20*(0.000+201.000*(1.800-1.800)/2)+1.40*(0.000+0.000*(1.800-1.800)/2) =0.000kN*m Vx1=rg*Vgxk+rq*Vqxk=1.20*(59.000)+1.40*(0.000)=70.800kN Vy1=rg*Vgyk+rq*Vqyk=1.20*(0.000)+1.40*(0.000)=0.000kN F2=1.35*Fk=1.35*201.000=271.350kN Mx2=1.35*Mxk=1.35*234.000=315.900kN*m My2=1.35*Myk=1.35*(0.000)=0.000kN*m Vx2=1.35*Vxk=1.35*59.000=79.650kN Vy2=1.35*Vyk=1.35*(0.000)=0.000kN F=max(|F1|,|F2|)=max(|241.200|,|271.350|)=271.350kN Mx=max(|Mx1|,|Mx2|)=max(|280.800|,|315.900|)=315.900kN*m My=max(|My1|,|My2|)=max(|0.000|,|0.000|)=0.000kN*m Vx=max(|Vx1|,|Vx2|)=max(|70.800|,|79.650|)=79.650kN Vy=max(|Vy1|,|Vy2|)=max(|0.000|,|0.000|)=0.000kN 5. 修正后的地基承载力特征值 fa=106.900kPa 四、计算参数 1. 基础总长 Bx=B1+B2=1.200+1.200= 2.400m 2. 基础总宽 By=A1+A2=1.800+1.800= 3.600m 3. 基础总高 H=h1+h2=0.200+0.150=0.350m 4. 底板配筋计算高度 ho=h1+h2-as=0.200+0.150-0.040=0.310m 5. 基础底面积 A=Bx*By=2.400*3.600=8.640m2 6. Gk=γ*Bx*By*dh=18.000*2.400*3.600*1.800=279.936kN

沉井结构设计计算复习课程

沉井结构设计计算 第一章概述 第一节沉井的涵义及应用范围 沉井是一种在地面上制作、通过取除井内土体的方法使之沉到地下某一深度的井体结构。利用沉井作为挡土的支护结构,可以建造各种类型或各种用途的地下工程构筑物。沉并施工方法是修筑地下构筑物或深基础工程特殊而重要的施工方法,而沉井结构则是与这种施工方法相适应的工程结构。与沉井相类似,沉箱也是通过取除箱内土体使之沉到地下的一种工程结构,所不同的是沉箱在取除箱内土体的过程中,箱内必须保持一定的气压,使箱外的土和水不致渗入箱内,人员可在箱内进行取土作业。沉井则因可在水下取土而无需在井内加压,这是两者主要的区别之处。 沉井的应用范围一般有以下几方面: 一、当构筑物埋置较深,采用沉井方式较经济时; 二、当构筑物埋置很深(如矿山的竖井)时,采用其他施工方式有困难,采用沉井最合适; 三、新建构筑物附近存在已有建筑物,开挖施工可能对已有建筑物产生不利影响,就应考虑使用沉井; 四、江心和岸边的井式构筑物,排水施工有困难时,采用沉井是最佳选择; 五、建筑物的地下室、拱管桥的支墩及大型桥梁的桥墩采用沉井结构都有成功实例。 第二节沉井的特点 沉井作为建造地下工程构筑物或深基础的一种方法,与其他方法相比,具有十分明显的特点。 一、沉井与广泛应用的大开挖方法相比,特点如下: (一)如果大开挖不设支护,则不但土方工程量大,而且往往由于需留出开挖边坡,使场地面积大大增加;沉井的土方工程量则可以限制在沉井的体积范围内,而且因为无需留出边坡,场地面积也可大大减少。 (二)沉井不但可以作为地下结构的外壳部分,而月在挖土下沉的过程中可作开挖支护。与设支护的大开挖方法相比,省去了开挖支护的费用。 (三)在地下水丰富的地区,大开挖方法的降水措施是必不可少的。这一措施需花费大量的人力与物力,而沉井施工方法则因町以采用水下挖十及水下封底等技术而节省了降水或排水的费用。 (四)对于一些深度较大的地下构筑物或深基础,大开挖法往往是不可能的或是费用巨大,此时,沉井的优点则是无法比拟的。深度越大,则沉井的优点就越为突出。 二、沉井与沉箱相比,特点如下: (一)一般情况下,沉箱法所需的专用设备多,而沉井法则因所需的专用设备比较简单而易于满足,所需费用也比沉箱法为小。 (二)沉箱法在作业过程中,箱内人员需在高于大气压力的条件下操作,其操作条件不如沉井法;而如下沉的深度较深,则需进——步增加箱内的气压而使箱内的操作条件大大劣化。所以,沉箱的下沉深度是受到一定程度的限制的,一般不超过35-40in,而沉井的下沉深度则无此限制。 三、沉井法虽然具有一定优点,但在一些情况下,其应用也是受到一定程度的限制的,这表现在: (一)沉井在下沉的过程中,对周围一定范围内的土体将产生扰动,在一些土层中,这种扰动还相当严重,如果周边环境对这种扰动的反应敏感,则还必需采取环境保护措施。 (二)在下沉深度范围内,沉井刃脚下必须无大块孤石、坚硬的土层或其他障碍物,否则沉井的下沉将受到严重的妨碍。一旦遇到上述障碍,无论是排水下沉与不排水下沉,在下沉过程中要处理这些障碍物是非常田难的。对于深度较深的沉井,要完全摸清刃脚下的情况也十分费力。 第三节沉井技术的发展状况 沉井,这一由古老的掘井作业发展而来的技术,由于其在建造地下构筑物或深基础工程中显示的优越性,随着施工技术及施工机具的不断发展而获得越来越广泛的应用。从20世纪50年代借鉴国外的设计理论和经验开始至今,我国建造的沉井不下1000座。其体积从直径2m的集水井到巨大的江阴长江大桥的主索平衡墩(体积达60mx 58mx50m);沉井形状包括方形、矩形、多边形、圆形和

柱下独立基础设计

课程设计说明书 课程名称:基础工程课程设计 设计题目:柱下独立基础设计 专业:建工班级:建工0903学生姓名 :邓炜坤学号:0912080319指导教师:周友香 湖南工业大学科技学院教务部制 2011年 12月1日

引言 “ 土力学与地基基础”课程是土木工程专业及相关专业的主干课程,也是重要的专业课程。“土力学与地基基础课程设计”是“土力学与地基基础”课程的实践教学环节,着手提高学生的综合应用能力,主要 为了巩固与运用基础概念与基础知识、掌握方法以及培养各种能力等诸 多方面。 作为建筑类院校专业课的一种实践教学环节,课程设计师教学计划中德一个有机组成部分;是培养学生综合运用所学各门课程的基本理论、基本知识和基本技能,以分析解决实际工程问题能力的重要步骤;是学生巩固并灵活运用所学专业知识的一种比较好的手段;也是锻炼学生理论联系实际能力和提高学生工程设计能力的必经之路。 课程设计的目的是: 1.巩固与运用理论教学的基本概念和基础知识 2.培养学生使用各种规范及查阅手册和资料能力 3.培养学生概念设计的能力 4.熟悉设计步骤与相关的设计内容 5.学会设计计算方法 6培养学生图子表达能力 7.培养学生语言表达能力 8.培养学生分析和解决工程实际问题的能力

目录 一、设计资料 二、独立基础设计 1、选择基础材料 2、选择基础埋置深度 3、计算地基承载力特征值 4、初步选择基底尺寸 5、验算持力层的地基承载力 6、软弱下卧层的验算 7、计算基底净反力 8、验算基础高度 9、基础高度(采用阶梯形基础) 10、地基变形验算 11、变阶处抗冲切验算 12、配筋计算 13、基础配筋大详图 14、确定 A、B 两轴柱子基础底面尺寸 15、 A、B两轴持力层地基承载力验算 16、设计图纸

污水处理厂沉井结构设计

污水处理厂沉井结构设计 在对污水处理厂进行建设期间,如果应用到深基坑支护技术,那么会花费较多的费用,但结合相关数据调查可以看到,当污水处理厂使用沉井结构时,不会花费很多的资金,继而获得可观的经济效益。所以,文章针对污水处理厂沉井结构设计进行探讨具有一定的现实意义。 一、污水处理厂构筑物应用沉井结构设计的条件 结合相关资料可以发现,以往都是采取以下地基处理方法来建设污水处理厂的:一是陈井施工法;二是敞口开挖法等。但是倘若当该厂的建筑物碰到如下现象时,以往的地基处理方法根本无法适用,那么这个时候就要以沉井施工法为主。第一种情况是当土壤的含水量相对较高的时候,这个时候埋设深度就会受到很大的影响,要想更好地解决这个问题就需要以沉井施工法为主来进行施工处理。第二种情况是当污水处理厂建设的位置是土质强度相对较弱而且地下水位也非常高的情况下,这个时候也是要以沉井施工法为主。第三种情况就是当土壤渗透系数较高且排水量较大时,那么此时就可以将沉井施工法当作主要地基处理方式。第四种情况就是在水流比较密集的地方,也要尽可能以沉井施工法为主。第五种情况就是在建设场地附近存在大量的建筑物,这时也要选择沉井施工法。 针对沉井施工法而言,其实际上是一种在地面就能够制作,再通过将土体提取出来的手段,令其井体结构通过沉井作为相应的支护结构,就能够建设出各种各样的构筑物。不仅如此,该施工法无论是应用在构筑物中还是应用在深基础工程当中均发挥出了不容小觑的作用,而沉井结构就是与该施工技术最匹配的工程结构。从客观的立场出发,使用次数比较频繁的沉井方式有很多,如吸水井、双层沉淀池等。在使用该施工方式开展施工的前期阶段,应当对沉井的施工特征以及地质条件做好相应的勘察工作,只有经过深度剖析才能确保沉井施工的正常开展,确保建设完毕之后的污水处理厂的构筑物安全可靠。总而言之,只有熟练掌握污水处理厂构筑物应用沉井结构设计的条件,才能从根本上促进设计水平的全面提升。 二、给排水构筑物沉井结构设计的一般步骤和内容 首先,应当在全面了解当地水文条地质情况、施工条件等相关内容的基础上,对沉井的平面形状、埋置深度等参数加以明确,同时还要将目光放在沉井结构体系的设计上面,并在此基础上设计各种适合此种情况的施工方案,以便可以从中选择出最佳的施工方案。其次,对截面尺寸加以明确。相关人员应当对外荷载做好相应的计算工作,并及时绘制出与之相匹配的图形。结合结构布置状况,对封底混凝土厚度进行详细计算。与此同时,还要对以下两点加以明确:一是沉井井壁厚度;二是其他一些部位构件的截面尺寸。再次,对施工阶段做好强度计算工作。通常情况下,相关人员应当从以下方面入手:一是井壁平面框架内力计算及配筋;二是井壁的竖向计算配筋;三是刃脚计算及配筋;四是框架底梁防突沉的强度验算;五是钢筋混凝土底板的计算及配筋等。最后,对实际应用阶段做好相应的计算工作。一般而言,可以从以下方面入手:一是沉井结构各部分的强度计算和抗裂验算;二是沉井抗浮、抗滑移、抗倾覆稳定验算;三是地基承载力和变形计算等。 三、污水处理厂沉井结构设计要点 基于复杂环境之下,沉井结构设计在市政工程当中得到了普遍的认可与推崇,如果想要提高污水处理厂沉井结构设计水平,那么就要熟练掌握其设计要点,具体内容如图1所示。

矩形沉井工程设计实例

矩形沉井工程设计实例 某小型雨水沉井,地面标高为-0.5m。对于沉井结构计算及施工计算介绍如下。 一、设计条件 1、工程概况 根据使用要求,本沉井结构尺寸如附图2-1所示。沉井平面为矩形,剖面也为矩形,井顶标高为+0.00m,刃脚踏面标高为-11.0m。制作高度为11.0m,施工时采用两次制作,一次下沉,第一节制作高度为6.0m,井壁厚度为600mm,沉井封底水下混凝土厚度为1.3m。 2、沉井材料 混凝土:采用C25; fc=11.9N/mm2, ft=1. 27N/mm2, 钢筋:d≥10mm,采用热扎钢筋HRB335;fy=300N/mm2, 3、地质资料 根据地质钻探资料分析,本沉井工程范围内的的地层,大致可

分五层,其物理力学性能指标如附表。 土层物理力学指标 二、水、土压力的计算 本沉井采用排水法下沉,对于作用在井壁上的水、土压力,采用重液地压公式计算: p w+E=13h 当h=0m,p w+E=0 h=4.5m, p w+E=13*4.5=58.5kn/m2 h=8.6m, p w+E=13*8.6=111.8kn/m2

h=9.0m, p w+E=13*9.0=117.7kn/m2 h=9.9m, p w+E=13*9.9=128.7kn/m2 h=10.5m, p w+E=13*10.5=136.5kn/m2 根据上述计算,绘制水压力、主动土压力图形,如下图: 三、下沉计算 1、沉井自重 井壁钢筋混凝土容重按25KN/m3计,沉井重量为 G K=(9.0*7.0*11-7.8*5.8*11.0)*25=4884KN 2、摩阻力 井壁侧面的摩阻力分布如图,单位摩阻力,按《上海市地基基础设计规范》规定:f=25-20 KN/m2。 h k= 5*1/2+5.5=8.0m 井壁总摩阻力:

柱下独立基础课程设计模板

目录 一、设计资料 二、独立基础设计 1、选择基础材料 2、选择基础埋置深度 3、计算地基承载力特征值 4、初步选择基底尺寸 5、验算持力层的地基承载力 6、计算基底净反力 7、验算基础高度 8、基础高度(采用阶梯形基础) 9、变阶处抗冲切验算 10、配筋计算 11、基础配筋大详图 12、确定A、B两轴柱子基础底面尺寸 13、设计图纸(附图纸) 三、设计技术说明及主要参考文献

柱下独立基础课程设计 一、设计资料 3号题○B轴柱底荷载: ○1柱底荷载效应标准组合值:F K=1720KN,M K=150KN·m,V K=66KN。 ○2柱底荷载效应基本组合值:F=2250KN,M=195KN·m,V=86KN。 持力层选用○4号土层,承载力特征值f ak=240kPa,框架柱截面尺寸为500mm×500mm,室外地坪标高同自然地面,室内外高差450mm。 二、独立基础设计 1.选择基础材料 基础采用C25混凝土,HPB235级钢筋,预估基础高度0.8m。 2.选择基础埋置深度 根据柱下独立基础课程设计任务书要求和工程地质资料选取。 ①号土层:杂填土,层厚约0.5m,含部分建筑垃圾。 ②号土层:粉质粘土,层厚1.2m,软塑,潮湿,承载力特征值f ak=130kPa。 ③号土层:粘土,层厚1.5m,稍湿,承载力特征值f ak=180kPa。 ④号土层:细砂,层厚3.0m,中密,承载力特征值f ak=240kPa。 ⑤号土层:强风化砂质泥岩,很厚,中密,承载力特征值f ak=300kPa。 拟建场区地下水对混凝土结构无腐蚀性,地下水位深度:位于地表下1.5m。取基础地面高时最好至持力层下0.5m,本设计取○4号土层为持力层,所以考虑取室外地坪到基础地面为0.5+1.2+1.5+0.5=3.7m。由此得到基础剖面示意图如下图所示。

独立基础设计计算过程

柱下独立基础设计 设计资料 本工程地质条件: 第一层土:城市杂填土 厚 第二层土:红粘土 厚,垂直水平分布较均匀,可塑状态,中等压缩性,地基承载力特征值fak=200Kpa 第三层土:强风化灰岩 ,fak=1200 Kpa 第四层土:中风化灰岩 fak=3000 Kpa 由于结构有两层地下室,地下室层高,采用柱下独立基础,故选中风化灰岩作为持力层。对于中风化岩石,不需要要对其进行宽度和深度修正,故a f =ak f =3000 Kpa 。 材料信息: 本柱下独立基础采用C 40混凝土,HRB400级钢筋。差混凝土规范知: C45混凝土:t f =mm2 , c f = N/mm2 HRB400级钢筋:y f =360 N/mm2 计算简图 独立基础计算简图如下: 基础埋深的确定 基础埋深:d= 基顶荷载的确定 由盈建科输出信息得到柱的内力设计值: M=? N= KN V= 对应的弯矩、轴力、剪力标准值: M k =M/==? N k =N/== KN V k =V/== KN 初步估算基底面积 A 05 .120300011775.33?-=?-≥d r f F G a k =

0061.033 .1177536.72===k k N M e m= mm 比较小 由于偏心不大,基底底面积按20%增大,即: A=0 2> m2 且b=<,故不再需要对a f 进行修正 验算持力层地基承载力 基础和回填土重为: G k =A d r G ?? 偏心距为: 011.02 .14533.117754.110.4136.72=+?+=+=k k k k G F M e m (l/6=6= m) 即P min ?k > 0 ,满足 基底最大压力: 81.2536= KPa

相关主题
文本预览
相关文档 最新文档