当前位置:文档之家› 多重连接依赖式探针扩增技术

多重连接依赖式探针扩增技术

协和医学遗传学基础考试总结(个人整理)

1.医学遗传学(Medical Genetics):是遗传学与医学相结合而产生的一门研究人类病理性状的遗传规 律和物质基础的一门学科。其研究对象为人类遗传病,研究遗传病发生机理、传递方式、诊断、治疗、预后、再发风险和预防方法,从而控制遗传病在一个家庭中的再发,降低它在人群中的危害,提高人口素质。 2.遗传病(inherited disease):由于遗传物质改变导致的人类疾病 3.基因(Gene):是位于染色体上具有遗传效应的DNA片段 4.基因型(Genotype):个体一定基因位点上等位基因的组成 5.表现型(phenotype):一定基因型的生物体所表现的形态、机能、行为和生化等表现 6.遗传病的分类: 根据在疾病形成过程中遗传因素和环境因素所起作用的大小,将人类疾病分为四大类: 1.遗传因素决定发病,看不到特定环境因素的作用,如短指(趾) 2.基本由遗传因素决定发病,但需要一定的环境因素诱发,如苯丙酮尿症等 3.遗传因素和环境因素都起作用 4.基本上是环境因素决定发病,与遗传因素无关。 7.遗传病的特征: (1)家族聚集性:遗传病往往表现为家族聚集性,但家族聚集的疾病并非都为遗传病,如坏血病等。 (2)先天性:遗传病多数为先天性疾病,但先天疾病并非都为遗传病,如由于母亲感染风疹病毒引起的胎儿白内障。 (3)遗传物质突变。 (4)垂直传递。 (5)终生性。 细胞分裂周期:连续分裂的细胞,从一次细胞分裂结束开始,到下次细胞分裂结束为止所经历的全过程,叫做一个细胞分裂周期,一个细胞分裂周期所需要的时间叫做细胞周期时间。细胞周期可分为间期和有丝分裂期。 突变Mutation致病突变Disease-causing mutation Exon外显子Intron内含子 核型:一个体细胞中全部染色体系统排列所构成的图像 核型分析:将一个细胞的全部染色体按照染色体的大小、着丝粒位置及其他特征配对、排列,以确认其是否具有正常的核型组成的过程。 染色体组(chromosome set):人类等二倍体生物的每一个正常的精子或卵子的全部染色体。 亚二倍体(hypodiploid): 染色体数目少于二倍体数。缺失一条染色体的那对染色体将构成单体型(monosomy)。典型病例为45,X的女性性腺发育不全(Turner综合征)。 相互易位(平衡易位)(reciprocal translocation):两条染色体发生断裂后形成的两个断片,相互交换连接而形成两条衍生的染色体。 罗伯逊易位(robertsonian translocation):近端着丝粒染色体着丝粒处发生断裂,在着丝粒处重接,也称着丝粒融合(centric fusion)。 1. 三倍体形成的原因? 1)双雄受精(dindry):受精时同时有两个精子入卵受精,可形成69,XXX;69,XXY;69XYY。 2)双雌受精(digyny):卵子发生第二次减数分裂时,次级卵母细胞由于某种原因,其第二极体的那一染色体组没有排出卵外,而仍留在卵内这样的与一个正常的精子受精后,即可形成核型为69,XXX或69,XXY 的受精卵。 2. 四倍体形成的原因? 1)核内复制(endoreduplication): 在一次细胞分裂时,染色体不是复制一次,而是复制两次。每个染色体形成4条,染色体两两平行排列在一起,经过正常的分裂中期、后期和末期后,形成的两个子细胞均为四倍体细胞。 核内复制与四倍体形成是癌细胞较常见的染色体异常特征之一。 2)核内有丝分裂(endomitosis): 是在进行细胞分裂时,染色体正常地复制一次,但至分裂中期时,核膜仍未破裂、消失,也无纺锤丝

08年9月三级网络技术:数据捕获sniffer解析

计算机三级网络技术:08年9月sniffer过程解析 请根据显示的信息回答下列的问题 (1)该主机的正在访问的www服务器的IP地址是【16】 (2)根据图中“No.”栏中标号,表示TCP连接三次握手过程开始的数据包标号是【17】 (3)标号为“7”的数据包的源端口应为【18】,该数据包TCP Flag的ACK位应为【19】 (4)标号为“7”的数据包“Summary”栏中被隐去的信息中包括ACK的值,这个值应为【20】 上半部分图是:域名解析和TCP(三次握手)连接过程 先来1到4行的域名解析 先申明,summary内的分析有的是我个人认为 首先来个猜测吧:c代表client表示客户机,r表示reply(响应) 第1行:源地址:202.113.64.166访问目的地址:211.81.20.200(dns服务器) 申明一点summary的第一个单词只是告诉我们这一步在做什么,4个dns并不表示4个服务器 继续,源地址访问目的地址请求查询https://www.doczj.com/doc/4712852357.html, 第2行,dns服务器在缓存中找到了https://www.doczj.com/doc/4712852357.html,与IP地址的对应关系,所以STA T=OK 如果缓存没有的话,还会有下一步,下一步没有,还有再下一步 但是这题一步搞定,3,4步不看了,和1,2步差不多 域名解析完毕 5,6行建立tcp连接:源地址:202.113.64.166,目的地址:https://www.doczj.com/doc/4712852357.html, 5,6,7即为三次握手过程

现在开始回答问题 正在访问的www服务器域名我们知道是https://www.doczj.com/doc/4712852357.html, 第5行是三次握手的开始 握手第一步,发送syn同步包,产生一个随机值 即SYN SEQ=143086951 第6行,被访问的网站作回应说明收到了包,并产生确定值SYN ACK=143086952 ACK表示确认字符 ACK值则是上一步的SEQ加1 第五行是202.113.64.166请求访问WWW,https://www.doczj.com/doc/4712852357.html, 第六行是WWW,https://www.doczj.com/doc/4712852357.html,发给202.113.64.166确认消息~~ 第六行SEQ值变了,ACK是前面的SEQ加1 第6行在产生确定值时,同时也产生一个随机值,故SEQ=3056467584 因为三次握手味为的是彼此确认 第七行,TCP要产生一个一个随机值让你确定,空就让你填 ACK位,这个你要看相关内容,置1,表示确认 5,6之所以D=和S=颠倒是因为三次握手是一个交互过程 端口号对主机是固定的 目的主机和源主机这个概念是相对的 源端口 1101 目的端口 8080 S=8080,D=1101 但这是针对第六行 第七行必然源地址和目的地址必然要调换 我访问你,你访问我,我再访问你 这就是三次握手 对于一台机器,端口号是定的 目的端口WWW,https://www.doczj.com/doc/4712852357.html,是8080 到了第6行,sourece address和dest address变了 但是还是202.113.64.166的端口号为1101,https://www.doczj.com/doc/4712852357.html,端口号为8080 只是前面的是dest address,后面的是source address 这台机器有什么用,有dns那就域名解析 有smtp,那就是邮件服务器 有TCP,那就考三次握手

两种定量分析方法的比较及Taqman探针引物设计原则

两种定量分析方法的比较及Taqman 探针、引物设计原则 遗传物质DNA 首先要把所携带的遗传信息转录成为信使RNA (mRNA ),携带遗传信息的mRNA 从细胞核进入到细胞质中与核糖体结合,在核糖体中mRNA 携带的遗传信息被翻译成为多肽,多肽经过进一步加工后变成蛋白质,至此遗传物质DNA 完成了表达过程。期间的转录过程是基因表达中非常重要的调节步骤,所转录的mRNA 的多少直接影响着相关最终蛋白质的多少,所以通过对细胞内某条基因mRNA 含量多少的分析,就能大致判断出该条基因的表达是否活跃。 定量PCR 仪是在普通PCR 仪的基础上加装了荧光激发装臵和荧光检测装臵,PCR 扩增和检测同时进行;在PCR 反应体系中加入荧光基团,利用荧光信号的积累实时监测整个PCR 进程,最后通过标准曲线对未知模板进行定量分析。该技术于1996年由美国Applied Biosystems 公司推出,由于该技术不仅实现了PCR 从定性到定量的飞跃,而且与常规PCR 相比,它具有特异性更强、有效解决PCR 污染问题、自动化程度高等特点,目前已得到广泛应用。 定量PCR 常用的三个常用概念 扩增曲线、荧光阈值、Ct 值 扩增曲线:反映PCR 循环次数和荧光强度的曲线,定量PCR 仪每次轮PCR 扩增都会自动记录 荧光强度的变化 荧光阈值:样本的荧光背景值和阴性对照的荧光值,手动 设臵的原则要大于样本的荧光背 景值和阴性对照的荧光最高值,同时要尽量选择进入指数期的最初阶段,并且保 证回归系数大于0.99。 CT 值: PCR 扩增过程中,扩增产物的荧光信号达到设定的阈值时所经过的扩增循环次数。 扩增曲线 阈值及CT 值 荧光定量PCR 的数学原理 理想的PCR 反应: X=X0*2n 非理想的PCR 反应: X=X0* (1+Ex)n (n :扩增反应的循环次数;X :第n 次循环后的产物量;X0:初始模板量;Ex :扩增效率) 在扩增产物达到阈值线时 : C(t) value

Linux高速网络环境下数据捕获技术性能分析

Linux高速网络环境下数据捕获技术性能分析 邓小明;梁正友 【期刊名称】《数字技术与应用》 【年(卷),期】2011(000)009 【摘要】Capture packets have a wide range of use in the network data analysis,intrusion detection systems,firewalls and other network monitoring or defense systems.Face the Gigabits network environment of class high-speed,the impact of high-speed data stream packet loss caused by an impact on data capture performance.This paper compares a variety of features to enhance data capture technology,through NAPI and PF_RING to achieve conflict-free access to shared resources.Experiments show that compared with the Libpcap packet capture capabilities significantly enhanced.%数据报文捕获技术在网络数据分析,入侵检测系统、防火墙等网络监控及防御系统上都有着广泛的使用。面对Gigabits级高速链路的网络环境,高速数据流冲击造成报文丢失成为影响数据捕获性能的关键。本文通过对比各种提升数据捕获技术的特点,通过NAPI和PF_RING结合,实现网卡和应用程序无冲突访问共享资源,实验表明,与libpcap 捕包能力相比有明显的提高。 【总页数】2页(234-235) 【关键词】高速网络;数据捕获;环形缓冲区;NAPI 【作者】邓小明;梁正友 【作者单位】广西大学计算机与电子信息学院,广西南宁530004;广西大学计算

超高速数据采集技术发展现状

2003年第17卷第4期测试技术学报V o l.17 N o.4 2003 (总第46期)JOURNAL OF TEST AND M EASURE M ENT TECHNOLOG Y(Sum N o.46) 文章编号:167127449(2003)0420287206 超高速数据采集技术发展现状 Ξ马海潮 (辽宁省葫芦岛市92941部队,辽宁葫芦岛市125001) 摘 要: 介绍超高速数据采集技术发展现状和动态.概述当前领先的几种超高速数据采集板卡;给出了目 前主要超高速ADC芯片,对超高速ADC芯片静动态性能指标进行了描述. 关键词: 超高速数据采集系统;闪式ADC;标准总线 中图分类号: T P274 文献标识码:A Extra H igh Speed Data Acquisition Technology D evelop m en ts M A H ai2chao (N o.92941PLA,L iaoning P rovince,H uludao125001,Ch ina) Abstract: T he cu rren t ex tra h igh speed data acqu isiti on techno logy developm en ts are summ arized. Several leading ex tra h igh sp eed data acqu isiti on boards in m arket are given.M ain p roducts of ex tra h igh speed flash ADC ch i p s are p resen ted.T he static and dynam ic characteristics of an ex tra h igh speed ADC ch i p are described. Key words:h igh2sp eed data acqu isiti on system;flash ADC;standard bu s 将模拟信号转换为数字信号、并进行存储和计算机处理显示的过程称为数据采集,而相应的系统则为数据采集系统(D ata A cqu isiti on System)[1~3].数据采集技术是信息科学的一个重要分支,它研究信息数据的采集、存储、处理及控制等工作,它与传感器技术、信号处理技术、计算机技术一起构成了现代检测技术的基础. 由于数据采集技术可以使许多抽象的模拟量数字化,进而给出其量值,或通过信号处理对该模拟量进行分析.与模拟系统相比,数字系统具有精度高、可靠性高等优点,因此,数据采集技术的应用越来越广泛.如温度、压力、位置、流量等模拟量,可以通过不同类型的传感器将其转换为电信号模拟量(如电压、电流或电脉冲等),再通过适当的信号调理将信号送给模拟数字转换器(ADC),使其转换为可以进一步处理的数字信号送给数字信号处理器或微处理机.反之,数字信号处理器或微处理机可通过数字模拟转换器(DA C)将其产生的数字信号转换为模拟信号,再通过信号调理进行输出. 随着科学技术的发展和数据采集技术的广泛应用,对数据采集系统的许多技术指标,如采样率、分辨率、存储深度、数字信号处理速度、抗干扰能力等方面提出了越来越高的要求,其中前两项为评价超高速数据采集系统的最重要技术指标. 提高数据采集系统的采样率可更深入、更细微、更精确地了解物理量变化特性.在许多应用场合,需要超高速数据采集系统来完成许多低速数据采集系统无法完成的工作.在雷达制导方面,需超高速、高精度地大量获取目标数据,并进行实时处理以完成对运动目标的检测和识别.在观测供电传输线上的浪涌电流时,由于浪涌的持续时间仅有几百纳秒,而电压的变化范围则可达几千伏,要精确地了解其变化 Ξ收稿日期:2003205219  作者简介:马海潮(1962-),男,博士,副总工程师,主要从事测控总体和调整数字信号处理系统硬件和软件设计等研究.

大数据采集技术和预处理技术

现如今,很多人都听说过大数据,这是一个新兴的技术,渐渐地改变了我们的生活,正是由 于这个原因,越来越多的人都开始关注大数据。在这篇文章中我们将会为大家介绍两种大数 据技术,分别是大数据采集技术和大数据预处理技术,有兴趣的小伙伴快快学起来吧。 首先我们给大家介绍一下大数据的采集技术,一般来说,数据是指通过RFID射频数据、传 感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化 及非结构化的海量数据,是大数据知识服务模型的根本。重点突破高速数据解析、转换与装 载等大数据整合技术设计质量评估模型,开发数据质量技术。当然,还需要突破分布式高速 高可靠数据爬取或采集、高速数据全映像等大数据收集技术。这就是大数据采集的来源。 通常来说,大数据的采集一般分为两种,第一就是大数据智能感知层,在这一层中,主要包 括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实 现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信 号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、 传输、接入等技术。第二就是基础支撑层。在这一层中提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克 分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数 据的网络传输与压缩技术,大数据隐私保护技术等。 下面我们给大家介绍一下大数据预处理技术。大数据预处理技术就是完成对已接收数据的辨析、抽取、清洗等操作。其中抽取就是因获取的数据可能具有多种结构和类型,数据抽取过 程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理 的目的。而清洗则是由于对于大数并不全是有价值的,有些数据并不是我们所关心的内容, 而另一些数据则是完全错误的干扰项,因此要对数据通过过滤去除噪声从而提取出有效数据。在这篇文章中我们给大家介绍了关于大数据的采集技术和预处理技术,相信大家看了这篇文 章以后已经知道了大数据的相关知识,希望这篇文章能够更好地帮助大家。

两种定量分析方法的比较及Taqman探针引物设计原则

两种定量分析方法的比较及Taqman探针、引物设计原则 遗传物质DNA首先要把所携带的遗传信息转录成为信使RNA(mRNA),携带遗传信息的mRNA从细胞核进入到细胞质中与核糖体结合,在核糖体中mRNA携带的遗传信息被翻译成为多肽,多肽经过进一步加工后变成蛋白质,至此遗传物质DNA完成了表达过程。期间的转录过程是基因表达中非常重要的调节步骤,所转录的mRNA的多少直接影响着相关最终蛋白质的多少,所以通过对细胞内某条基因mRNA含量多少的分析,就能大致判断出该条基因的表达是否活跃。 定量PCR仪是在普通PCR仪的基础上加装了荧光激发装置和荧光检测装置,PCR扩增和检测同时进行;在PCR反应体系中加入荧光基团,利用荧光信号的积累实时监测整个PCR 进程,最后通过标准曲线对未知模板进行定量分析。该技术于1996年由美国Applied Biosystems公司推出,由于该技术不仅实现了PCR从定性到定量的飞跃,而且与常规PCR 相比,它具有特异性更强、有效解决PCR污染问题、自动化程度高等特点,目前已得到广泛应用。 定量PCR常用的三个常用概念 扩增曲线、荧光阈值、Ct值 扩增曲线:反映PCR循环次数和荧光强度的曲线,定量PCR仪每次轮PCR扩增都会自动记录荧光强度的变化 荧光阈值:样本的荧光背景值和阴性对照的荧光值,手动设置的原则要大于样本的荧光背景值和阴性对照的荧光最高值,同时要尽量选择进入指数期的最初阶段,并且保 证回归系数大于0.99。 CT值: PCR扩增过程中,扩增产物的荧光信号达到设定的阈值时所经过的扩增循环次数。 C(t) value 扩增曲线阈值及CT值 荧光定量PCR 的数学原理

数据获取系统.doc

4.12 数据获取系统 4.12.1 BESIII 数据量估计 BEPCII 的设计亮度为1233sec cm 10--,预期在J/ψ能区通过一级触发判选后的事例率高达4000Hz 。BEPCII 亮度两个数量级的提高和BESIII 探测器的升级需要采用流水线的电子学系统,因此BESIII 数据获取系统(DAQ )的设计目标是完成高事例率(不超过4000Hz )下的数据读出和处理。 DAQ 系统的性能需求是由触发率和事例大小决定的,也就是说,可以通过对探测器数据量的估计来决定DAQ 系统的设计方案。下面根据探测器的指标对数据量进行初步的估计,BESIII 总电子学信道数将超过3万路,其中ADC 和TDC 类型的有2万多路。如果MDC 时间信号通道按平均15%“着火”率计算,EMC 按平均17%“着火”率计算,MUC 按平均1%“着火”率计算,剩下的按平均10%“着火”率计算,可以得到表4.12-1数据量估算参数。 表4.12-1 BESIII 探测器数据量估计 因此,BESIII 数据获取系统需要完成超过每秒80Mbytes 的数据读出任务,经PowerPC 和读出PC 机对事例进行初步组装,去除冗余的字头、字尾和出错等信息后,在线计算机机群需要处理的数据量超过每秒50Mbytes ,最后通过软件触发判选的记带数据量超过每秒40MBytes 。由此可见,分级事例组装技术不仅可以逐级减少数据量,而且可以有效地利用网络资源。与国外目前运行的同类系统相比,不论在规模还是在性能方面,BESIII 数据获取系统的设计指标都是相当高的,实现的技术难度比较大,研制周期长。因此,在系统设计策略方面必须采用成熟的和先进的技术,特别需要注重总线技术、网络技术和计算机技术的未来发展。 4.12.2 系统的主要任务 BESIII 数据获取系统的主要任务是获取通过一级触发判选后的前端电子学事例数据,经过两级计算机预处理和高速网络传输,将分布在各电子学(VME )读出机箱中的事例数据段迅速地汇集到在线计算机系统上进行事例包装和过滤,整理成为完整的有效事例,最终将标记的事例数据通过网络传送到计算中

实时荧光定量 原理 taqman 探针简介

实时荧光定量 PCR技术原理与应用 聚合酶链式反应 ( PCR) 可对特定核苷酸片断进行指数级的扩增。在扩增反应结束之后,我们可以通过凝胶电泳的方法对扩增产物进行定性的分析,也可以通过放射性核素掺入标记后的光密度扫描来进行定量的分析。无论定性还是定量分析,分析的都是 PCR 终产物。但是在许多情况下,我们所感兴趣的是未经 PCR 信号放大之前的起始模板量。例如我们想知道某一转基因动植物转基因的拷贝数或者某一特定基因在特定组织中的表达量。在这种需求下荧光定量 PCR 技术应运而生。所谓的实时荧光定量 PCR 就是通过对 PCR 扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。在实时荧光定量 PCR 反应中,引入了一种荧光化学物质,随着 PCR 反应的进行, PCR 反应产物不断累计,荧光信号强度也等比例增加。每经过一个循环,收集一个荧光强度信号,这样我们就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线图 ( 如图 1) 。 图 1 实时荧光扩增曲线图 一般而言,荧光扩增曲线扩增曲线可以分成三个阶段:荧光背景信号阶段 , 荧 光信号指数扩增阶段和平台期。在荧光背景信号阶段,扩增的荧光信号被荧光 背景信号所掩盖,我们无法判断产物量的变化。而在平台期,扩增产物已不再

呈指数级的增加。 PCR 的终产物量与起始模板量之间没有线性关系,所以根据最终的 PCR 产物量不能计算出起始 DNA 拷贝数。只有在荧光信号指数扩增阶段, PCR 产物量的对数值与起始模板量之间存在线性关系,我们可以选择在这个阶段进行定量分析。为了定量和比较的方便,在实时荧光定量 PCR 技术中引入了两个非常重要的概念:荧光阈值和 CT 值。荧光阈值是在荧光扩增曲线上人为设定的一个值,它可以设定在荧光信号指数扩增阶段任意位置上,但一般我们将荧光域值的缺省设置是 3-15 个循环的荧光信号的标准偏差的10 倍。每个反应管内的荧光信号到达设定的域值时所经历的循环数被称为 CT 值( threshold value )(如图 2 所示)。

基于OPC的实时数据获取技术

基于OPC的实时数据获取技术 1 引言 组态软件通过I/O驱动程序从现场I/O设备获得实时数据,对数据进行必要的处理后,一方面以图形方式直观地显示在计算机屏幕上,另一方面按照组态要求和操作人员的指令将控制数据送给I/O设备,对执行机构实施控制或调整控制参数[1,2]。 目前,企业办公自动化已经基本普及,Windows操作平台以及微软的COM/DCOM/OLE 技术已成为应用软件之间通信的事实上的标准。在生产控制领域,DCS、SCADA、PLC等技术已经成熟,各种现场总线标准正在迅速推广。但是,管控一体化存在一个严重的制约因素,即现场设备与应用软件之间难以实现开放的、无缝隙的连接。 在生产现场,存在着大量控制器和现场数字设备,这些设备来自不同的制造商,遵从不同的通讯标准,只能组成各自的控制系统,与特定的应用软件通讯。虽然某些网络之间可通过协议转换实现互联,但并不具有普遍性。 传统的过程控制系统中,为使每一个应用程序与设备交换信息,必须为每个设备提供相应的驱动程序,在数据源与客户程序之间分别建立一对一的驱动连接,如图1所示。 图1 传统的应用软件与数据源接口方式 由于设备多样性和驱动程序不兼容性,这种方式存在以下缺陷: (1) 应用程序开发者必须花费大量精力开发各种设备的驱动接口,计算机硬件厂家要为不同的应用软件编写不同的驱动程序,这种程序可复用程度低,不符合软件工程的发展趋势,典型的高级语言软件开发过程约有25~30%的时间用于编写这类接口,使开发时间和费用大大增加; (2) 设备不具有互操作性,使用中硬件的升级、变更和增加都可能造成驱动程序的变化,从而在维护过程

中引起二次投资; (3) 由于每一驱动软件有各自的驱动程序,当多个应用软件读取同一数据源时,经常生冲突; (4) 设备厂商虽然可能提供驱动程序,但与用户开发应用软件往往不一致,限制了用户对软件和设备的自由选择。 可见,在现场设备与应用软件之间提供标准的接口,实现开放的、无缝隙的连接,是顺利推进企业管控一体化的关键。为此,在微软的倡导下,世界范围内处于主导地位的硬件和软件开发商组成了OPC基金会组织(OPC Fondation),制定硬件和应用软件之间的接口标准-OPC规范。文章对有关问题作如下简要讨论。 2 OPC产生的背景 OPC(OLE for process control)即用于过程控制领域的对象链接和嵌入技术,这一概念是由Fisher Rosemount公司1995年首次提出的,它借用了微软的OLE(Object Linking and Embedding)和COM(Component Object Model)/DCOM( Distributed Component Object Model ) 技术,并应用于过程控制中。它为过程控制和工业自动化领域提供了一套标准的接口、属性和方法,是实现控制系统现场设备与过程监控级进行信息互连,实现控制系统开放性的关键技术[4,5]。 提出OPC技术最初是为了解决应用软件与各种设备驱动程序的通信问题,简化系统的I/O驱动开发方式。没有采用OPC技术以前,对一个有M种应用程序、N种设备的系统,共需开发M×N个驱动程序,而OPC采用客户/服务器体系,为服务器与客户程序的链接提供统一、标准的接口规范。采用了OPC技术以后,只需要开发M+N个与OPC的接口,如图2所示。 图2 采用OPC方式的应用软件与数据源接口方式 正是OPC的这种数据访问特点使得使用OPC技术有很大的技术优势和经济优势。它的优点概括起来大致有以下3个方面:开放性(Openness)、高生产率(Productivity)、和“即插即用”的可连接性(Connectivity),因此可以说 OPC=Openness+Productivity+Connectivity。

分子生物学前沿技术

激光捕获显微切割Laser capture microdissection (LCM) technology是在不破坏组织结构,保存要捕获的细胞和其周围组织形态完整的前提下,直接从冰冻或石蜡包埋组织切片中获取目标细胞,通常用于从组织中精确地分离一个单一的细胞。 背景:机体组织包含有上百种不同的细胞,这些细胞各自与周围的细胞、基质、血管、腺体、炎症细胞或免疫细胞相互粘附。在正常或发育中的组织器官内,细胞内信号、相邻细胞的信号以及体液刺激作用于特定的细胞,使这些细胞表达不同的基因并且发生复杂的分子变化。在病理状态下,如果同一类型的细胞发生了相同的分子改变,则这种分子改变对于疾病的发生可能起着关键性的作用。然而,发生相同分子改变的细胞可能只占组织总体积的很小一部分;同时,研究的目标细胞往往被其它组织成分所环绕。为了对疾病发生过程中的组织损害进行分子水平分析,分离出纯净的目标细胞就显得非常必要。1996年,美国国立卫生院(NIH)国家肿瘤研究所的[2]开发出激光捕获显微切割技术(Laser capture microdissection ,LCM ),次年,美国Arcturus Engineering公司成功研制激光捕获显微切割系统,并实现商品化销售。应用该技术可以在显微镜直视下快速、准确获取所需的单一细胞亚群,甚至单个细胞,从而成功解决了组织中细胞异质性问题。这项技术现已成为美国“肿瘤基因组解剖计划”的一项支撑技术[1]。 原理:LCM的基本原理是通过一低能红外激光脉冲激活热塑膜———乙烯乙酸乙烯酯(ethylene vinylacetate,EVA)膜(其最大吸收峰

接近红外激光波长),在直视下选择性地将目标细胞或组织碎片粘到该膜上[2]。LCM 系统包括倒置显微镜、固态红外激光二极管、激光控制装置、控制显微镜载物台(固定载玻片)的操纵杆、电耦合相机及彩色显示器。用于捕获目标细胞的热塑膜直径通常为6mm,覆在透明的塑料帽上,后者恰与后继实验所用的标准 0.5ml离心管相匹配。 机械臂悬挂控制覆有热塑膜的塑料帽,放到脱水组织切片上的目标部位。显微镜直视下选择目标细胞,发射激光脉冲,瞬间升温使EVA膜局部熔化。熔化的EVA膜渗透到切片上极微小的组织间隙中,并在几毫秒内迅速凝固。组织与膜的粘合力超过了其与载玻片间的粘合力,从而可以选择性地转移目标细胞。激光脉冲通常持续0.5~5.0毫秒,并且可在整个塑料帽表面进行多次重复,从而可以迅速分离大量的目标细胞。将塑料帽盖在装有缓冲液的离心管上,将所选择的细胞转移至离心管中,从而可以分离出感兴趣的分子进行实验[3]。 EVA膜约100~200μm厚,能够吸收激光产生的绝大部分能量,在瞬间将激光束照射区域的温度提高到90°C,保持数毫秒后又迅速冷却,保证了生物大分子不受损害。采用低能量红外激光的同时也可避免损伤性光化学反应的发生。 优缺点:LCM最显著的优点在于其迅速、准确和多用途的特性。结合组织结构特点以及所需的切割精确度,通过选择激光束的直径大小,可以迅速获取大量的目标细胞。LCM与以显微操作仪为基础的显微切割技术相比[4],具有以下优点:(1)分离细胞速度快,无需精巧的操作技能;(2)捕获细胞和剩余组织的形态学特征均保持完好,可以较

分子生物学前沿技术培训资料

分子生物学前沿技术

激光捕获显微切割Laser capture microdissection (LCM) technology是在不破坏组织结构,保存要捕获的细胞和其周围组织形态完整的前提下,直接从冰冻或石蜡包埋组织切片中获取目标细胞,通常用于从组织中精确地分离一个单一的细胞。 背景:机体组织包含有上百种不同的细胞,这些细胞各自与周围的细胞、基质、血管、腺体、炎症细胞或免疫细胞相互粘附。在正常或发育中的组织器官内,细胞内信号、相邻细胞的信号以及体液刺激作用于特定的细胞,使这些细胞表达不同的基因并且发生复杂的分子变化。在病理状态下,如果同一类型的细胞发生了相同的分子改变,则这种分子改变对于疾病的发生可能起着关键性的作用。然而,发生相同分子改变的细胞可能只占组织总体积的很小一部分;同时,研究的目标细胞往往被其它组织成分所环绕。为了对疾病发生过程中的组织损害进行分子水平分析,分离出纯净的目标细胞就显得非常必要。1996年,美国国立卫生院(NIH)国家肿瘤研究所的[2]开发出激光捕获显微切割技术(Laser capture microdissection ,LCM ),次年,美国Arcturus Engineering公司成功研制激光捕获显微切割系统,并实现商品化销售。应用该技术可以在显微镜直视下快速、准确获取所需的单一细胞亚群,甚至单个细胞,从而成功解决了组织中细胞异质性问题。这项技术现已成为美国“肿瘤基因组解剖计划”的一项支撑技术[1]。 原理:LCM的基本原理是通过一低能红外激光脉冲激活热塑膜———乙烯乙酸乙烯酯(ethylene vinylacetate,EVA)膜(其最大吸

1-数据包捕获原理

青岛农业大学 计算机网络综合实习 论文题目: UDP包解析软件的设计与实现 专业班级:计本0803 姓名(学号):周方盼(20082845) 2011年 11 月 16 日

UDP包解析软件的设计与实现 1数据包捕获原理 由于目前用的最多的网络形式是以太网,在以太网上,数据是以被称为帧的数据结构为单位进行交换的,而帧是用被称为带碰撞检测的载波侦听多址访问即CSMA/CD 的方式发送的,在这种方法中,发送到指定地址的帧实际上是发送到所有计算机的,只是如果网卡检测到经过的数据不是发往自身的,简单忽略过去而已[3]。正是这种基于CSMA/CD 的广播机制,这就给连接在网络上的计算机捕获来自于其他主机的数据带来了可能,即通过对网络接口的设置可以使网卡能够接收到所有经过该机器的数据,然后将这些数据做相应处理并实时分析这些数据的内容,进而分析网络当前状态和整体布局。从广义的角度上看,一个数据包捕获机制包含三个主要部分。首先是最底层针对特定操作系统的包捕获机制,然后是最高层针对用户程序的接口,第三部分是数据包过滤机制。不同的操作系统实现的底层包捕获机制可能是不一样的,但从形式上看大同小异。数据包常规的传输路径依次为网卡、设备驱动层、数据链路层、IP 层、传输层、最后到达应用程序。而数据包捕获机制是在数据链路层增加一个旁路处理,对发送和接收到的数据包做过滤缓冲等相关处理,最后直接传递到应用程序[4]。值得注意的是,数据包捕获机制并不影响操作系统对数据包的网络栈处理。对用户程序而言,数据包捕获机制提供了一个统一的接口,使用户程序只需要简单的调用若干函数就能获得所期望的数据包。这样一来,针对特定操作系统的捕获机制对用户透明,使用户程序有比较好的可移植性。数据包过滤机制是对所捕获到的数据包根据用户的要求进行筛选,最终只把满足过滤条件的数据包传递给用户程序。 2 数据包捕获方法 纵观国内外使用的包捕获机制的方法,大致可归纳为两类:一类是由操作系统内核提供的捕获机制;另一类是由应用软件或系统开发包通过安装包捕获驱动程序提供的捕获机制,该机制主要用于Win32 平台下的开发。操作系统提供的捕获机制主要有四种[5]:BPF、DLPI、NIT 和Sock Packet 类型套接口。BPF 由基于BSD 的Unix 系统内核所实现。DLPI 是Silaris 系统的内嵌子系统。NIT 是SunOS4系统的一部分,但在Solaris 系统中被DLPI 及NIT 所取代。Linux 核心则实现了Sock Packet的包捕获机制。从性能上看,BPF 比DLPI 及NIT 好得多,而Sock Packet 最弱。Windows操作系统没有提供内置的包捕获机制。它只提供了数量很少并且功能有限的API 调用。PCAUSA 公司提供了一个商业的产品,该产品提供了包捕获接口并且包括了一个BPF 兼容的过滤器。然而,用户接口过于低级并且该产品不提供象过滤器生成函数那样的抽象函数。WinPcap 是Win32 上的第一个用来捕获数据包的开放系统软件包,它是一种新提出的强有力并且可扩展的框架结构。WinPcap 包含了一系列以前系统所没有的创新特性。本文中将主要使用目前比较流行的WinPcap 软件包来提供捕获机制,因为它始终把性能放在首位,能支持十分苛求的应用要求[6]。由于网络适配器一般工作在数据链路层,因此所得到的报文是链路层的报文,它除了应用层的数据外,还包括数据链路层帧头、IP 报文头、以及IP 层之上的TCP 或UDP 报文头,并且应用层还有可能也定义了自己的帧结构。本文设计的捕获程序是由运行在Windows 核心层的包捕获驱动程序实现的。不使用专用的数据采集系统,而是通过网卡来捕获数据,所以必须要有一个高效的丢包率低的包捕获驱动程序。该驱动程序采用WinPcap 包捕获结构。该包捕获结构具有与网络适配卡无关的特性,并且独立于网络的具体形式,如令牌环、以太网、点到点协议PPP 等,因此适应面广。利用WinPcap 的捕获数据技术对底层数据进行捕获。首先用户应用程序向网卡设备驱动程序发出请求,由网卡设备驱动程序激活从网络拷贝每个分组的数据包,并且将它们分发到对应的应用程序[7]。捕获流程如图1 所示。图1 捕获数据流程图具体步骤如下:1、打开网卡,并设为混杂模式。2、回调函数Network Tap[10]在得到监听命令后,从网络设备驱动程序处收集数据包,把监听到的数据包负责传送给过滤程序。3、当Packet filter 监听到有数据包到达时,NDIS 中间驱动程序首先调用分组驱动程序,该程序将数据传递给每一个参与进程的分组过滤程序。4、然

高速网络环境下数据包捕获技术的分析

高速网络环境下数据包捕获技术的分析 摘要:互联网的迅猛发展,网络带宽飞速增长,在高速网络环境下,传统的网络数据包捕获已经成为制约整个系统的性能提升的瓶颈,为了满足高速网络的数据包捕获的需求,对传统的网络数据包捕获存在的问题进行分析,在此基础上提出了改进措施,为后期研究高速网络下高性能的数据包捕获技术奠定基础。 关键词:高速网数据包捕获 libpcap 中图分类号:tp393 文献标识码:a 文章编号: 1007-9416(2011)12-0194-02 the analysis of packet capture technology in high speed network wangya (fuyang teachers college of computer and information engineering fuyang 236041) abstract:the rapid development of the internet and the rapid growth of network bandwidth,in high-speed network environment,the traditional network data packet capture has become the constraints of the system performance bottleneck. in order to satisfy the high speed network packet capture demand,to analysis the existing problems of the traditional network packet capture,and put forward on this foundation improvement measures.,it lays the foundation for later

全能的数据捕获系统—DWS系统-VITRONIC

全能的数据捕获系统— DWS 系统 当今不但邮政、快递和包裹服务中(CEP )私人业务的物品数量与日俱增,物流配送中心的业务也同样如此。这在一定程度上归因于电子商务中大量的新发件人,同时,竞争和价格压力也在不断增加。 为达到经济高效的运转运输业务,必须首先将运输物件的重量和外形尺寸准确无误地记录下来。之后通过这两个数据您可以精确地推断出实际的运输量和运输服务成本。 然而在现实情况中,若通过人工记录数据,那将是费时费力的工作,并容易导致失误和计算出错。另外,在发货人和收货人之间,包裹通常会经过数个检测点,这其中的人工操作也会存在一个潜在的出错风险。 解决方案:DWS 集成系统(尺寸测量 — 称重— 扫描)通过一站式的全自动检测,不仅可以获取物件的外形尺寸和重量数据,同时可以获得物件上的一维码和二维码信息,而且以高速的运转方式工作。

三位一体:外形尺寸测量、称重和 读码 VITRONIC 经检定的DWS 系统在高精度测量物件外形尺寸和称重的同时,可高效地识别读取条形码和二维码,并且支持同时获取物件六个侧面的数据。 形状测量系统得益于其极高的测量精度,通过测定所有物件的长宽高,利用测量结果自动计算运输容量。对于小型物件和扁平物件,该系统同样能可靠的测定体积。称重系统安装于系统中,以实现快速精确地在线测量。 完整的数据以提供正确计算运输成本 所有捕获的数据包括图像信息都会直 接发送到传送系统控制中心或一个主机系统,记录和保存数据。这种完全透明的和可持续跟踪的数据库使您可以控制工作流程,已经自动签发正确的发货费用单据。 要达到以最低的成本发挥最佳化的运输能力,关键是合理的分配组合不同重量体积的物件。经检定的DWS 系统能够为您优化运输能力提供决定性的意见,并且自动生成发货单。 优势一览 ? 凭借一站式的全自动外形尺寸测量、称重和扫描读码工作模式, 最大化系统可靠性和最小化出错风险 ? 流通量高提升工作效率 ? 避免由于错误的发货单而导致的损失 ? 优化货舱利用率、高效利用运输车辆 ? 快速的优化仓储定位简化了储存过程 ? 利用高产量、优化的运输能力和准确的发货单,快速实现ROI (投资回报率) 和高收益率 ? 利用透明、可靠的数据,可更高效地管理物流货流配合传送带工作模式的DWS 系统 配合非传送带工作模式的DWS 系统针对小型物件和文件的DWS 系统 Phone +49 611 7152 0Fax +49 611 7152 https://www.doczj.com/doc/4712852357.html, sales@https://www.doczj.com/doc/4712852357.html, VITRONIC Dr.-Ing. Stein Bildverarbeitungssysteme GmbH Hasengartenstr. 14 65189 Wiesbaden, Germany VITRONIC Machine Vision (Shanghai) Co. Ltd 锐多视觉系统工程(上海)有限公司 上海松江区民益路201号漕河泾园区30#楼202室, 邮编 201612电话 +86 21 6885 8218传真 +86 21 3704 https://www.doczj.com/doc/4712852357.html, https://www.doczj.com/doc/4712852357.html,@https://www.doczj.com/doc/4712852357.html, 2015/091 C . 所有技术说明和数据在印刷时均为最新。保留技术更改的权利,对于错误不承担任何责任。本手册中的所有文本和插图都受到版权保护。

Taqman设计总结

一、单重Taqman引物探针设计:(为了确保引物和探针的特异性,最好将设计好的序列在www.ncbi.nlm.nih/blast中核实一次) 1、探针:探针的设计应该在引物的设计之前 ①长度:18~35(18~30之间最好、最常见),最长37;太长淬灭效果不好。 ② TM值:Primer Express软件计算出来的Tm值在66~72℃之间(最常见68~70℃), 最好为70℃,确保探针的Tm值要比引物的Tm值高出5~10℃,GC含量在30~80%(最好40%~70%),因此探针最好是富含GC的保守片段;(Primer Express:Do not expand the Tm range by more than 2 °C from the default range)。 ③探针位置:尽可能地靠近上游引物,上游引物的3' 端离探针的5' 端为1-20bp(一 般10个以内),最好是探针的5'端离上游引物的3' 有1个碱基。 ④5'端应避免使用碱基G,5' G会有淬灭作用,即使被切割下来这种淬灭作用也还 会存在;如果选择FAM-dye在5'端第二个序列也不能为G(G in the second position on the 5' end in FAM dye-labeled probes can reduce fluorescent normalized reporter signal)。 ⑤可选:整条探针中,碱基C的含量要明显高于G的含量,G的含量多于C会降 低反应效率,这时就应选择配对的另一条链作为探针。要同时考虑在正反两条链上设计引物与探针。若找不到完全保守的片段,也只能选取有一个碱基不同的片段,且这个不同的碱基最好在探针的中间,且最好为A或T。 ⑥Repeating oligonucleotides:a. 避免探针中同一碱基重复过多,尤其是要避免4 个或超过4个的G碱基出现,即≦3(Avoid runs of identical nucleotides. If repeats are present, there must be fewer than four consecutive G residues.);b. 避免连续的6个A出现(Consecutive A residues:Avoid six consecutive A residues anywhere in the probe. Consecutive A residues can cause a high No Template Control (NTC) signal);c. 避免探针的中间区域含有2个或以上的CC dinucleotides(Avoid two or more CC dinucleotides in the

相关主题
文本预览
相关文档 最新文档