)#)*>)?电火花技术在成型磨削加工中的应用蒋存波,牛秦洲,朱名日,叶汉民,沈卓君,刘电霆" />
当前位置:文档之家› 电火花技术在成型磨削加工中的应用

电火花技术在成型磨削加工中的应用

第!!卷"第#期"""""""""""""桂林工学院学报""""""""""""$%&’!!(%’# !))!年*)月"""""""""+,-.(/0,12-303(3(4535-56,15678

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

(,0,29"""""""",:;?##@(!))!))#>)#)*>)?

电火花技术在成型磨削加工中的应用

蒋存波,牛秦洲,朱名日,叶汉民,沈卓君,刘电霆

(桂林工学院电子与计算机系,广西桂林"?#*))#)

摘"要"采用电火花加工技术和计算机控制技术,对成型磨削的方法进行了研究’利用高

纯石墨作磨轮电极材料,并将其预加工成型;通过计算机系统控制磨轮电极与工件间的相

对运动及火花放电的参数,完成对工件的成型磨削加工;利用预成型的样板刀对磨轮进行

实时修整与补偿,可以极大的减少电极损耗对磨削精度和表面粗糙带来的不利影响’该技

术和方法较好地解决了传统方法难以加工的高硬度、易碎和易变型等零件的成型磨削问题’

文中给出了磨轮半径损耗值的估算公式’

关键词:计算机控制;电火花加工;成型磨削

中图分类号:5A!BC;52==*"""""""""文献标识码:/!

""电火花加工技术是利用在液体工作介质中,工具电极与工件电极间的脉冲性火花放电产生的局部高温对工件进行蚀除加工’它的特点是加工过程中无明显的切削力,加工效率高,成本低,特别适用于对高硬度、易碎零件和易变形零件的加工,例如硬质合金零件、薄壳类易变形零件、紫铜和纯铝这类较软的易变形零件等’成型磨削是利用旋转的成型磨轮对工件进行磨削加工的方法,当前一般使用成型砂轮或成型金刚石轮进行成型模削加工,这种方法需要用金刚石修正刀具将砂轮修整成所需要的形状,或用树脂胶粘接、电镀等方法制作成型金刚石磨轮,其特点是加工精度高,表面质量好,但成型磨轮的制作难度大、周期长、加工成本高,对于高硬度、易碎易变形型零件的成型加工比较困难’

""利用计算机控制技术和电火花加工技术相结合形成的电火花数控成型磨削技术,既具有电火花加工的优点,又有成型磨削的优点,可以较好地解决成型磨削,特别是常规加工方法难以进行加工的高硬度、易变形材料的成型磨削问题’*"成型磨削的原理""成型磨轮工具电极在数控系统的控制下以一定的线速度旋转,旋转的磨轮电极与工件间加入脉冲电源,在液体工作介质中,两电极间会产生脉冲性的火花放电,对工件进行蚀除加工,从而将工具电极的几何形状和精度按要求的方式复制到工件上’

""电火花成型磨削的关键技术是磨削工艺的研究以及满足该工艺的计算机控制系统研制、成型磨轮的实时修整与补偿控制、满足电火花成型磨削工艺要求的数控电火花加工脉冲电源的研制’!"!#原理与结构

!!电火花成型磨削是数控技术、电火花加工技术、成型磨削技术结合的产物,因此,在结构上它具有磨削和电火花加工的特点"其简化的结构见图*"包括:磨轮旋转机构;工作台#方向的横向进给、$方向上的纵向进给和%方向上的垂直进给机构;加工用脉冲电源接入装置;工作介质循环及过滤装置;磨轮的成型修整装置等"在通常的磨削情况下,%轴的垂直进给和#轴的横向

!收稿日期:!))!>)B>)*;修订日期:!))!>)D>!=

作者简介:蒋存波(*E=!>),男,广西桂林人,高级工程师,主要研究方向:计算机测量与控制,特种加工工艺与装备’万方数据

电火花加工技术概述

《先进制造技术》课程学习报告 题目:电火花加工技术概述 专业:机械类 姓名:喻娇艳 年级:2013级 班级:机械类 1306 班 学号:201303164193 武汉科技大学机械自动化学院 2016年 6月 10日

电火花加工技术概述 喻娇艳 (武汉科技大学机械自动化学院, 湖北 ,武汉) (13 级机械类专业,学号 201303164193 ) 摘要:电火花加工( Electrospark Machining )在日本和欧美又称为放电加工( Electrical Discharge Machining, 简称EDM) ,是一种直接利用电能和热能进行加工的新工艺,本文从电火花加工的 研究现状、基本原理、发展前景等三方面加以论述关键词:电火花加工的研究现状基本原理 . 发展前景 Summarize of Electrospark Machining Technique YU Jiao-yan (College of Machinery and Automation, WuHan University of Science and Technology, HuBei WuHan 430074) Abstract : Electrospark Machining Technique is also called Electrical Discharge Machining(EDM) in Japan and Occident,it ’s a new technology of machining using electrical and heat energy directly.This article discusses it in addition in three aspects including it ’s research status,fundamental principle,future prospects,etc. Keywords: Research status;Fundamental principle; Future prospects 1、前言 从前苏联科学院拉扎连柯夫妇在1943 年研制出世界上第一台实用化电火花加工装置以 来,电火花加工已有 70 多年的历史 ,发展速度是惊人的 ,目前已广泛应用于机械、宇航、航空、电子、电机、仪器仪表、汽车、轻工等行业,它不仅是一种有效的机械加工手段,而且已经成为在某些场合不可替代的加工方法.例如 ,在解决难、硬材料及复杂零件的加工问题时,应用电火花加工技术十分有效 . 据统计 ,目前电火花加工机床的市场占有率已占世界机床市场的6%以上 .而且随着科学技术的不断发展 ,现代制造技术极其相关技术为电火花技术的发展提供了良好机遇.柔性制造、人工智能技术、网络技术、敏捷制造、虚拟制造和绿色制造等现代制造技术正逐渐渗透到电 火花加工技术中来 ,给电火花加工技术的发展带来了新的生机.近年来 ,国内外很多研究机构对电火花加工技术进行了大量的研究,并且在许多方面取得了显著进展[1-5]. 2、电火花加工技术的研究现状 经过60 多年的发展,电火花加工技术已日趋完善.2011年第十二届中国国际展览会 上 ,40余家国内外特种设备生产商携机参展.在高速铣削技术日趋成熟且飞速发展的今天,包

磨削加工的发展趋势论文

磨削加工的发展趋势 王哲 (北京石油化工学院机械工程学院,机G111班) 摘要多年以来随着我国制造业技术水平的不断发展进步,机械制造业有了长足的发展,磨削加工作为机械制造业金属切削加工方法中的一种,有着不可替代的位置及十分重要的作用,相对于早期的磨削加工技术,今天的金属磨削加工技术有了很大的变化,无论是从材料性质,刀具材料以及磨削加工技术等都有了很大的发展变化,本文主要就磨床磨削加工及发展趋势做简单的介绍。 关键词超高速磨削相关技术;数控磨床;精密磨削;刀具材料 1引言 对于目前机械加工领域磨削加工技术发生的变化,磨削加工技术的发展变化,本文作了简要的论述,磨削加工技术的主要发展方向是自动化、集成化、高速化、精密化等方向发展,分别对应的数控磨床、超高速磨削技术、精密磨削技术,此外刀具材料也发生了很大的变化,向能够耐高温、可用于高速加工等。本文主要引用近几年发表的文献,对于研究磨削加工技术发展有一定的帮助,本文就几个磨削加工的主要发展方向作简要的论述。 在机械制造中,有许多金属加工方法,例如切削加工、电加工、冷冲压、铸造、锻造、焊接、粉末冶金、化学加工和特种加工等。金属切削加工时利用切削刀具在工件上切除多余的金属层,从而获得具有一定的尺寸、形状、位置和表面质量的机器零件的一种加工方法。他已被广泛应用于生产实践中。金属切削机床是用切削方法将金属毛坯加工成机器零件的机床。在各类机械制造部门所拥有的装备中,机床占百分之五十以上,所负担的工作量占总加工量的一半以上,机床的技术水平高低直接影响机械产品的质量和零件制造的经济性。 我们对于磨削技术发展应该有一个简单的了解,一般来讲,按砂轮线速度的高低将磨削分为普通磨削和高速磨削以及超高速磨削。按磨削精度将磨削分为普通磨削、精密磨削、超精密磨削。按磨削效率将磨削分为普通磨削、高效磨削。高效磨削包括高速磨削、超高速磨削、缓进给磨削、高效深切磨削、砂带磨削、快速短行程磨削、高速重负荷磨削。[2]高速高效磨、超高速磨削在欧洲、美国和日本等一些工业发达国家发展很快,如德国的Aachen大学、美国Connecticut大学等,有的在实验室完成了V为250m/s、350m/s、400m/s 的实验。据报道,德国Aachen大学正在进行目标为500m/s的磨削实验研究。在实用磨削方面,日本已有200m/s的磨床在工业中应用。在我国对高速磨削及磨具的研究已有多年的历史,如湖南大学在70年代末期便进行了80m/s、120m/s的磨削工艺实验,前几年某大学也计划开展250m/s的磨削研究。在实际应用中,砂轮线速度,一般还是45m/s-60m/s。[2]对于磨削加工是一种常用的半精加工和精加工方法,砂轮是磨削的切削工具,磨削是由砂轮表面大量随机分布的磨粒在工件表面进行滑擦、刻划和切削三种作用的综合结果。磨削的基本特点如下:

电火花的应用及发展趋势

电火花的技术应用现状 及发展趋势 姓名:张亚超 学号: 班级: 专业:机械设计与制造 日期:2012年12月27日

摘要 在分析总结国内外电火花线切割技术研究现状以及我国近几年来所取得的进步基础上,以及在电火花加工技术在汽车、航空航天、模具等制造工业中有着广泛的应用,模具工业技术快速发展的新形势下, 数控电火花加工技术已取得了突破性的进展。本文从电火花加工技术发展的基本现状、数控电火花加工的操作过程、数控电火花加工新工艺的应用以及电火花加工技术的发展趋势以及发展建议。论述了我国电火花线切割技术的发展趋势及其主要任务。 关键词:电火花线切割;研究现状;发展趋势

目录 引言 (4) 一、数控电火花加工技术现状 (4) 二、电火花技术发展趋势 (5) (一)精密化 (5) (二)智能化 (5) (三)自动化 (6) (四)高效化 (6) (五)绿色工作液得到应用 (7) (六)电火花加工技术的改进 (7) (七)其它 (8) 三、电火花技术中的新应用 (8) (一)标准化夹具实现快速精密定位 (8) (二)混粉加工方法实现镜面加工效果 (8) (三)摇动加工方法实现高精度加工 (9) (四)多轴联动加工方法实现复杂加工 (9) (五)基于PC的数控系统的开发 (10) (六)多次切割工艺的应用 (10) 参考文献 (11)

引言 目前,随着电子、信息等高新技术的不断发展及市场需求个性化与多元化,世界各国都把机械制造技术的研究和开发作为国家的关键技术进行优先发展,将其他学科的高技术成果引入机械制造业中。因此机械制造业的内涵与水平已今非昔比,它是基于先进制造技术的现代制造产业。纵观现代机械制造技术的新发展,其重要特征主要体现在它的绿色制造、计算机集成制造、柔性制造、虚拟制造、智能制造、并行工程、敏捷制造和网络制造等方面。机械制造行业不断遇到高硬度,高韧性,高熔点等难切割加工材料以及特殊结构特别市复杂曲面零件的加工难题。解决这些问题极大地促进了电火花线切割加工技术的发展,促进电火花线切割加工新方法,新工艺的不断表现,扩大了电火花线切割加工的适用范围。电火花切割技术是先进制造技术之一,在机械生产中应用范围广,从国内来看,我国的电火花线切割加工技术发展迅速,尤其是我国特有的单向(高速)走丝电火花线切割机构简单,价格低廉,各方面指标都有了较大的提高。因此,进一步研究高速走丝电火线切割加工技术,扩大其加工范围,尤其是利用计算机等高科技工具和先进的科学方法来提高我国电火花线切割技术水平,缩短同发达国家的差距,不仅具有重要的意义,而且具有显著的经济和社会、效益。近年来,电火花技术的研究和应用日新月异(见下表1),并在精密微细化、智能化、个性化、绿色环保化和高效化等方面获得了长足的发展[1][2]。 一、数控电火花加工技术现状 电火花线切割技术经过近半个世纪的发展,现已十分成熟,并达到了相当高的工艺水平:最大的切割速度可达325mm2/min,最佳表面粗糙度达Ra0.1~0.2μm,加工尺寸精度可控制在几个微米之内,高速走丝电火花线切割机还能稳定切割1米的超厚工件。数控电火花加工技术正不断向精密化、自动化、智能化、高效化等方向发展。如今新型数控电火花机床层出不穷,如瑞士阿奇、瑞士夏米尔、日本沙迪克、日本牧野、日本三菱等机床在这方面技术都有了全面的提高。该项技术在20世纪40年代开始研究并逐步应用于生产。从最初只能去除折断在工件中

模具零件电火花加工

第 4 章模具零件电火花加工 电火花加工又称放电加工(Electrical Discharge Machining 简称EDM),在20 世纪40 年代开始研究并逐步应用于生产。它是在加工过程中,利用两极(工具电极和工件电极)之间不断产生脉冲性的火花放电,靠放电时局部、瞬时产生的高温把金属蚀除下来,以使零件的尺寸、形状和表面质量达到预定要求的加工方法。因放电过程中可见到火花,故称之为电火花加工,也称电蚀加工。加工中工件和电极都会受到电腐蚀作用,只是两极的蚀除量不同, 这种现象成为极性效应。工件接正极的加工方法称为正极性加工;反之,称为负极性加工。 电火花加工的质量和加工效率不仅与极性选择有关,还与电规准(即电加工的主要参数)、工作液、工件、电极的材料、放电间隙等因素有关。 电火花放电加工按工具电极和工件的相互运动关系的不同,可以分为电火花穿孔成形加工、电火花线切割、电火花磨削、电火花展成加工、电火花表面强化和电火花刻字等。其中, 电火花穿孔成形加工和电火花线切割在模具加工中应用最广泛。 4.1电火花加工的基础知识 4.1.1 电火花加工的基本原理及必要条件 电腐蚀现象早在19 世纪初就被人们发现并加以研究。例如,电器开关在闭合或断开时,往往产生火花放电而把接触表面烧毛、腐蚀。所以人们一直认为电腐蚀是有害的。因而不断 地研究它的成因,并设法减轻和避免。研究结果表明,电火花腐蚀的主要原因在于火花放电时,火花通道瞬时产生大量的热,以致使电极表面的金属局部熔化甚至汽化而被蚀除下来,形成放电凹坑。要将放电腐蚀原理用于导电材料的尺寸加工,必须具备以下几个基本条件。 1)工具电极和工件电极之间在加工时必须保持一定的间隙,一般是几个微米至数百微米。因此,加工中必须用自动进给调节机构来保证加工间隙随加工状态而变化。 2)火花放电必须在一定绝缘性能的介质中进行,液体介质有压缩放电通道的作用,同时液体介质还能把电火花加工过程中产生的金属屑、炭黑等电蚀产物从放电间隙中排出去,并对电极和工件有较好的冷却作用。 对导电材料进行尺寸加工时,极间应有液体介质;表面强化时,极间为气体介质。 3)放电点局部区域的功率密度足够高,即放电通道要有很高的电流密度(一般为105~106A/cm )。这时,放电所产生的热量就足以使电极表面的局部金属瞬时熔化甚至汽化。 4)火花放电是瞬时的脉冲性放电。放电的持续时间一般为1~1000卩s,这样才能使放电产生的热量来不及传导扩散到材料的其余部份,放电点集中在很小范围,内能量集中,温度高。如果放电时间过长, 就会形成持续电弧放电, 使加工表面材料大范围熔化烧伤而无法用作尺寸加工。 5)在先后两次脉冲放电之间,应有足够的停歇时间,排除电蚀产物,使极间介质充分 消电离,恢复介电性能, 以保证每次脉冲放电不在同一点进行,避免发生局部烧伤现象,使重复性脉冲放电顺利进行。图4.1.1 所示为脉冲电源的空载电压波形。图中t i 为脉冲宽度, t o为脉冲间隔,t p为脉冲周期,U i脉冲峰值电压或空载电压。

电火花加工报告技术

电火花加工技术 一:电火花技术概述 电火花加工是利用两极见脉冲放电时产生的电腐蚀现象,放电时局部瞬时产生的高温把金属蚀除下来。 早在十九世纪,人们就发现了电器开光的触点开闭时,以为放电,使接触部位烧蚀,造成接触面的损坏。这种放电引起的电极烧蚀现象叫做电腐蚀。起初,电腐蚀被认为是有害的,为减少和避免这种有害的电腐蚀,人们一直在研究电副食产生的原因和防止的办法。当人们掌握了它的规律之后,便创造条件,转害为益,把电腐蚀用于生产中。1870年,英国科学家普利斯特里最早发现电火花对金属的腐蚀作用。当两极产生放电的过程中,放电通道瞬时产生大量的热,足以使电极材料表面局部熔化或汽化,并在一定条件下,熔化或汽化的部分能抛离电极表面,形成放电腐蚀的坑穴。直到1934年,前苏联科学家拉扎连柯等把电火花对金属的腐蚀作用利用起来。 后来,人们进一步认识到,在液体介质中进行重复性脉冲放电时,能够对导电材料进行尺寸加工,因此,创立了“电火花加工法”。电火花加工技术作为特种加工领域的重要技术之一,最早应用于二战时期折断丝锥取出时的加工。随着人类进入信息化时代,电加工技术取得了突飞猛进的发展,可控性更高,数字化程度更好。 在中国电火花加工技术起步稍晚。根据中国的国情,实现电火花加工技术的原始创新是很困难的,只能采取引进消化吸收再创新的策

略,因为这套系统集成了很多学科领域的知识,如计算机的软硬件、微电子、数控、电力半导体、机械技术、电气技术等,是多方面、多学科集成的产品,是比较复杂的高科技产品。国内现在显然还没有一个能够独立进行原始创新的团队,因此注定要经历一个长时间痛苦的积淀过程,所以我认为中国的电火花技术创新之路别无选择。政府也越来越认识到高校已经不再是创新的主战场,必须依托企业才能实现。 制造业是一个传统行业。一个国家的发展终归要落脚于制造业,因此作为基础工业,制造业必定拥有永久的生命力,而电加工行业也不例外。随着各项技术的不断发展,电加工技术也在进步,至于一项技术能够发展多久,也要看这个行业中的人怎样去尽心敬业、钻研并推进它。 二: 加工原理及原理图 电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电 蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工,英文简称EDM。 电火花加工时,脉冲电源的一极接工具电极,另一极接工件电极,两极均浸入具有一定绝缘度的液体介质(常用煤油或矿物油或去离子水)中。工具电极由自动进给调节装置控制,以保证工具与工件在正常加工时维持一很小的放电间隙(0.01~ 0.05mm)。当脉冲电压加到两极之间,便将当时条件下极间最近

电火花加工的费用.doc

电火花加工 一、加工费用:电火花加工的费用计算方法与其它机加工方法是相似的,一般是按小时来计算加工费的。时间可以按从调平工件开始到完成加工为止来计算,也可以按自动加工的时间累加时间来计算。每小时的加工费用,可以按照[(电极设计费+电极加工费+机器折旧费+人工费+电费+期望的利润值)*(1+税率)]来计算。当然,加工后工件的表面粗糙度和精度是每小时加工费用的重要参考指标,工件在加工后表面粗糙度越小、精度越高,则每小时加工费越高。 电火花加工需要丰富的经验,用合适的加工方式、到位的粗加工和半精加工、以及用高效的精加工条件一次性地完成图纸的要求,是获取低成本电火花加工的决定因素。 机床的精度、电极的精度以及电极的损耗程度是电火花加工精度的决定因素。

二、电火花加工 目录 发明与发展 工作原理 分类 使用说明 电火花加工特点 电火花加工的特点如下: 简介 发明与发展 工作原理 分类 使用说明 电火花加工特点 电火花加工的特点如下: 简介 电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工,英文简称EDM。 发明与发展 由苏联学者发明 1943年,苏联学者拉扎连科夫妇研究发明电火花加工,之后随着脉冲电源和控制系统的改进,而迅速发展起来。最初使用的脉冲电源是简单的电阻-电容回路。

50年代初 改进为电阻-电感-电容等回路。同时,还采用脉冲发电机之类的所谓长脉冲电源,使蚀除效率提高,工具电极相对损耗降低。 随后又出现了大功率电子管、闸流管等高频脉冲电源,使在同样表面粗糙度条件下的生产率得以提高。 60年代中期 出现了晶体管和可控硅脉冲电源,提高了能源利用效率和降低了工具电极损耗,并扩大了粗精加工的可调范围。 70年代 出现了高低压复合脉冲、多回路脉冲、等幅脉冲和可调波形脉冲等电源,在加工表面粗糙度、加工精度和降低工具电极损耗等方面又有了新的进展。在控制系统方面,从最初简单地保持放电间隙,控制工具电极的进退,逐步发展到利用微型计算机,对电参数和非电参数等各种因素进行适时控制。 电火花加工 工作原理 进行电火花加工时,工具电极和工件分别接脉冲电源的两极,并浸入工作液中,或将工作液充入放电间隙。通过间隙自动控制系统控制工具电极向工件进给,当两电极间的间隙达到一定距离时,两电极上施加的脉冲电压将工作液击穿,产生火花放电。 电火花加工 在放电的微细通道中瞬时集中大量的热能,温度可高达一万摄氏度以上,压力也有急剧变化,从而使这一点工作表面局部微量的金属材料立刻熔化、

电火花加工技术概述

电火花加工技术概述-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《先进制造技术》课程学习报告 题目:电火花加工技术概述 专业:机械类 姓名:喻娇艳 年级: 2013 级 班级:机械类1306班 学号: 201303164193 武汉科技大学机械自动化学院 2016年 6月 10日

电火花加工技术概述 喻娇艳 (武汉科技大学机械自动化学院, 湖北,武汉) (13级机械类专业,学号201303164193) 摘要:电火花加工(Electrospark Machining)在日本和欧美又称为放电加工(Electrical Discharge Machining,简称EDM),是一种直接利用电能和热能进行加工的新工艺,本文从电火花加工的研究现状、基本原理、发展前景等三方面加以论述. 关键词:电火花加工的研究现状基本原理发展前景 Summarize of Electrospark Machining Technique YU Jiao-yan (College of Machinery and Automation, WuHan University of Science and Technology, HuBei WuHan 430074) Abstract: Electrospark Machining Technique is also called Electrical Discharge Machining(EDM) in Japan and Occident,it’s a new technology of machining using electrical and heat energy directly.This article discusses it in addition in three aspects including it’s research status,fundamental principle,future prospects,etc. Keywords: Research status;Fundamental principle; Future prospects 1、前言 从前苏联科学院拉扎连柯夫妇在1943年研制出世界上第一台实用化电火花加工装置以来,电火花加工已有70多年的历史,发展速度是惊人的,目前已广泛应用于机械、宇航、航空、电子、电机、仪器仪表、汽车、轻工等行业,它不仅是一种有效的机械加工手段,而且已经成为在某些场合不可替代的加工方法.例如,在解决难、硬材料及复杂零件的加工问题时,应用电火花加工技术十分有效. 据统计,目前电火花加工机床的市场占有率已占世界机床市场的6%以上.而且随着科学技术的不断发展,现代制造技术极其相关技术为电火花技术的发展提

电火花穿孔成型加工

电火花穿孔成型加工 主要用途及适用范围 高速电火花穿孔机采用电极管(黄铜管、紫铜管)作为工具电极利用电火花放电蚀除原理,在电极(空心铜管)与工作之间施加高频脉冲电源形成小脉宽,大峰值电流的放电加工,辅以高压水冷却排渣,使工件的蚀除速度大加快,特别适用于在不锈钢,淬火钢、铜、铝,硬质合金等各种导电材料上加工直径Φ0.2~Φ3.0之间的深小孔,深径比最高可达300:1,可直接在工件的斜面,曲面进入加工, 本机床主要用于电火花线切割加工的穿丝孔、化纤喷丝头、喷丝板的喷丝孔、滤板、筛板的群孔、发动机叶片、缸体的散热孔、液压、气动阀体的油路、气路孔等。也可用于蚀除折断在工件中的钻头,丝锥等,而不损坏原孔成螺纹。 特点: 1.能加工孔径Φ0.2~Φ3.0? mm,最大深径比能达300:1以上; 2.加工速度每分钟可达30~60mm; 3.能加工不锈钢、淬火钢、硬质合金、铜、铝等各种导电材料; 4.能直接从斜面、曲面穿入; 5.具有电极自动修复功能,提高加工孔的精度; 6.带集中润滑系统,以及专业手控装置 7.具有掉电记忆功能 8.数控轴具有反向间隙补偿功能 9.具有数控轴人工清零功能(设定相对零位) 10.X、Y、Z轴采用滚珠丝杠,直线导轨; 11.X、Y、Z轴都采用伺服电机驱动,控制精度0.001mm; 12.具有加工孔位编程功能以及加工参数编程功能 13.可选配C轴(旋转轴)实现四轴数控,为一些特定产品的小孔加工 提供了解决方案;

电火花磨削和镗削加工。磨削各种工件,如小孔、深孔、内圆、外圆、平面等磨削和成型磨削。 图3-11 Dk6825数控旋转电火花机床加工范围 图3-12 电火花镗磨 14.5.加工各种成型刀、样板、工具、量具、螺纹等成型零件。

特种加工技术的应用及发展趋势.教学提纲

特种加工摘要随着我国机械制造业的快速发展,电火花加工技术在民用和国防工业中的应用越来越多,特别是数控电火花成形加工机床和数控电火花线切割加工机床不仅在模具制造业中广泛应用,而且在一般机械加工企业中逐渐普及.电火花加工技术是实践性与理论性都很强的一门技术,用户既要掌握电火花工艺方面的知识,又要充分熟悉电火花机床的功能与编程知识。目前,我国的电火花机床操作者中,大多只经过短期培训,缺乏系统的理论知识,只能进行简单加工的程序编制,严重影响了加工设备的高效使用。为适应现代化加工技术的要求,电火花机床操作者,要全面掌握所需的专业知识;从事电火花加工的技术人员也需要提高自身的技术水平;企业也急需一批电火花加工方面懂工艺、会编程,能够熟练操作和维护机床的应用型技术人才。针对上述现状,作者对高职高专目前常见的电火花加工技术方面的教材进行了认真研究,并对国内数十家企业进行了调研,根据电火花加工技术人才知识结构的市场需求,从培养学生必备的基础知识和操作技能出发,汇集多年的教学和在企业的实践经验,编写了本书。本书由电火花加工技术基础,电火花成形加工机床、加工工艺及编程,电火花线切割加工机床、加工工艺及编程三部分组成。学生在学习本课程前,已学过“机械制造技术”和“数控原理及其应用”课程,并已进行过金工实习或生产实习,对机械加工工艺和数控机床已有初步了解。关键字:电火花加工技术 1.激光加工技术原理 1.1激光加工技术简介激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属进行切割、焊接、表面处理、打孔、微加工等的一门技术。激光加工作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等起到愈来愈重要的作用。 1.2激光技术分类激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为: 1)激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统。 2)激光加工工艺。包括切割、焊接、表面处理、打孔、打标、划线、微调等各种加工工艺。 3)激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。目前使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器。4)激光切割:汽车行业、计算机、

磨削加工通用工艺

磨削加工通用工艺 范围 本守则规定了磨削加工的工艺规则,适用于公司的磨削加工。 2工件的装夹 2.1轴类工件装夹前应检查中心孔,不得有椭圆、碰伤、毛刺等缺陷,并擦干净,经热处理的工件,须修好中心孔,并加好润滑油。 2.2在两顶尖间装夹轴类工件时,装夹前要调整尾部,使两顶尖轴线重合在外圆磨床上用尾座顶紧顶紧工件磨削时,其顶紧力应适当,在磨削中还应根据工件的涨缩情况调整顶紧力。 2.4在平面磨床上用磁盘吸住磨削支承面较小或较高的工件时,应在适当位置增加挡铁,以防磨削时工件飞出。 3砂轮的选用和安装 3.1根据工件的材料、硬度、精度和表面粗糙的要求,合理选用砂轮牌号和精度。根据目前的生产情况,一般选用的砂轮牌号是GZ、GB,粒度为36#-46#。 3.2安装砂轮时,不得使用两个尺寸不同或不平的法兰盘,并在法兰盘和砂轮之间垫入橡皮等弹性垫。 3.3装夹砂轮时,必须在修砂轮前后进行静平衡,并进行空运转。 3.4修砂轮时,应不间断的充分使用冷却液。 4磨削加工 4.1在磨削工件前,机床应空运转5min以上。 4.2在磨削过程中,不得中途停车,要停车时,必须先停止进给退出砂轮。 4.3砂轮使用一段时间后,如发现工件产生棱形振痕,应拆下砂轮重新校平衡后使用。 4.4在磨削细长轴时,严禁使用切入法磨削。

4.5在平面磨床上磨削的工件,加工完应去磁。 4.6磨深孔时,尽可能先用较粗的磨杆,以增加刚性,砂轮转整要适当降低。 4.7在精磨结束前,应无进给量的多次走刀至无火花止。 5一般精磨外圆的切削用量 5.1纵进给量根据所要求的表面粗糙度而定。 表面粗糙度Ra1.6SB=(0.5-0.8)Bm 表面粗糙度Ra0.8-0.4SB=(0.25-0.5)Bm SB—纵进给量(mm/r)Bm—磨轮宽度mm 5.2横进给量

电火花加工工艺介绍

电火花加工工艺介绍 电火花加工是使工具和工件之间不断产生脉冲性的火花放电,靠放电时局部、瞬时产生的高温把工件材料蚀除下来,电火花加工也有自己的分类和原理。 电火花成型加工基本原理 脉冲电源的一极接工具电极,另一极接工件电极,两极均浸入具有一定绝缘度的液体介质(常用煤油或矿物油或去离子水)中。工具电极由自动进给调节装置控制,以保证工具与工件在正常加工时维持一很小的放电间隙(0。01~0。05mm)。当脉冲电压加到两极之间,便将当时条件下极间最近点的液体介质击穿,形成放电通道。由于通道的截面积很小,放电时间极短,致使能量高度集中(10~107W/mm),放电区域产生的瞬时高温足以使材料熔化甚至蒸发,以致形成一个小凹坑。第一次脉冲放电结束之后,经过很短的间隔时间,第二个脉冲又在另一极间最近点击穿放电。如此周而复始高频率地循环下去,工具电极不断地向工件进给,它的形状最终就复制在工件上,形成所需要的加工表面。与此同时,总能量的一小部分也释放到工具电极上,从而造成工具损耗。 电火花加工的分类 电火花加工在电加工行业中应用最为广泛的一种加工方法,约占该行业的90%。按工具电极和工件相对运动的方式不同,大致可分为电火花成型加工、线切割加工、电火花磨削加工、电火花同步共轭回转加工、电火花高速小孔加工、电火花表面强化与刻字加工等六大类。其中线切割加工占了电火花加工的60%,电火花成型加工占了30%。随着电加工工艺的蓬勃发展,线切割加工就成了先进工艺制作的标志。 线切割放电加工基本原理 线切割放电加工以铜线作为工具电极,在铜线与铜、钢或超硬合金等被加工物材料之间施加60~300V 的脉冲电压,并保持5~50um间隙,间隙中充满煤油、纯水等绝缘介质,使电极与被加工物之间发生火花放电,并彼此被消耗、腐蚀。在工件表面上电蚀出无数的小坑,通过NC控制的监测和管控,伺服机构执行,使这种放电现象均匀一致,从而达到加工物被加工,使之成为合乎要求之尺寸大小及形状精度的产品。

外径磨削加工工艺

一技术条件及检查方法 磨削轴承外圈外径(包括内圈挡边外径)的技术条件有:外径尺寸单一径向平面内的外径变动量(VDp);单个套圈最大与最小单一外径之差(VDs),圆形偏差外经表面母线对基准端面倾斜度变动量(SD),母线直线性,外观(包括烧伤),表面粗糙度等。其容许偏差均规定于工序间技术条件和其他技术条件之中。 检查外径尺寸,单一径向平面内的外径变动量,单个套圈最大与最小单一外径之差,外径表面母线对基准端面倾斜度的变动量,均可在D913 D914等仪器上测量,其测量方法见图8-38所示。 测量前必须调整好仪器,表尖和相对应的支点的连线要通过工件圆心(通称找最大点),同时调整仪器各支点至端面的距离相等(通称同一个水平面),并大于倒角公称尺寸的两倍。测量时,在仪器上将套圈旋转一周以上,所测的是直径尺寸,同时在旋转时,所测的最大直径尺寸与最小直径尺寸之差为单一径向平面内的外径变动量。 对于单个套圈最大与最小单一外径之差的测量,习惯上是采用通过套圈中心的同一纵截面上两端直径之差的方法确定。 测量外径表面母线对基准端面倾斜度的变动量仍可在上述仪器上测量,其测量方法是图8-39所示,即以基准端面和外径母线一个支撑点定位,另一个为测量点,将套圈旋转一周以上,所测得的指针摆动量即是。 套圈圆形偏差的测量仍可在D913 D914等仪器上进行,但必须更换支撑点为V形块进行测量(若测量微型轴承套圈的圆形偏差时,则采用圆度仪测量),测量时将被测的套圈放在V形块上回转一周,其仪表读数的最大差之半作为单个截面圆度误差(图8-40) 为了扩大V形块的使用范围,可将测量表尖偏斜一个角度(图8-40a b),测量数值情况见表8-4

电火花线切割的优缺点及应用

本科课程论文 题目电火花线切割的优缺点及应用 学院工程技术学院 专业机械设计制造及其自动化 年级_____2008级_____ 学号_222008322222107 姓名__陈________玺__ 指导教师 _邱______ 兵__ 成绩 _______________

目录 摘要................................................................................................1前言 (3) 2正文 (3) 2.1电火花线切割的原理 (3) 2.1.1工作原理 (3) 2.1.2机床种类 (3) 2.2电火花线切割的特点 (4) 2.2.1优点 (4) 2.2.2使用中易出现的问题 (4) 2.3电火花线切割的应用及发展 (4) 2.3.1加工范围 (4) 2.3.2未来发展的展望 (5) 2.4总结 (6) 参考文献 (6)

电火花线切割的优缺点及应用 陈玺 邱兵 西南大学工程技术学院 2008级机械设计制造及其自动化2班 摘要:本文通过对电火花线切割的优缺点及应用的概述,阐述了电火花线切割在未来的发展方向,以及电火花线切割将应用更广。 关键词:电火花线切割线切割走丝 1. 前言 电火花加工作为一种现代的特种加工方式,具有许多传统加工所不具有的优点以及良好的发展前景。 2. 正文 2.1电火花线切割的原理 2.1.1工作原理 电火花线切割机(Wire cut Electrical Discharge Machining简称WEDM),属电加工范畴,是由前苏联拉扎林科夫妇研究开关触点受火花放电腐蚀损坏的现象和原因时,发现电火花的瞬时高温可以使局部的金属熔化、氧化而被腐蚀掉,从而开创和发明了电火花加工方法。工作原理是自由正离子和电子在场中积累,很快形成一个被电离的导电通道。在这个阶段,两板间形成电流。导致粒子间发生无数次碰撞,形成一个等离子区,并很快升高到8000到12000度的高温,在两导体表面瞬间熔化一些材料,同时,由于电极和电介液的汽化,形成一个气泡,并且它的压力规则上升直到非常高。然后电流中断,温度突然降低,引起气泡内向爆炸,产生的动力把溶化的物质抛出弹坑,然后被腐蚀的材料在电介液中重新凝结成小的球体,并被电介液排走。然后通过NC控制的监测和管控,伺服机构执行,使这种放电现象均匀一致,从而达到加工物被加工,使之成为合乎要求之尺寸大小及形状精度的产品。 2.1.2机床种类 电火花线切割机按走丝速度可分为高速往复走丝电火花线切(Reciprocating type High Speed Wire cut Electrical Discharge Machining俗称“快走丝”)、低速单向走丝电火花线切割机(Low Speed one-way walk Wire cut Electrical Discharge

先进磨削技术的新发展

先进磨削技术的新发展
摘要:磨削是指用磨料或磨具去除材料的加工工艺方法,磨削加工的发展趋势正朝 着采用超硬磨料、磨具,高速、高效、高精度磨削工艺及柔性复合磨削、绿色生态 磨削方向发展。为适应现代工业技术和高性能科技产品对机械零件加工精度、表面 粗糙度与完整性、加工效率和批量化质量稳定性的要求,近年出现了一些先进的磨 削加工技术,其中以超高砂轮线速度和超硬磨料砂轮为主要技术特征的超高速外圆 磨削、高效深切磨削、快速点磨削技术的发展最为引人注目。我们也需要了解超高 速磨削加工的机理及超高速磨削的优越性,把握高速超高速磨削加工技术的发展前 景。为适应现代工业技术和高性能科技产品对机械零件加工精度、表面粗糙度与完 整性、 加工效率和批量化质量稳定性的要求, 近年出现了一些先进的磨削加工技术, 其中以超高砂轮线速度为主要技术特征的超高速外圆磨削、高效深切磨削、快速点 磨削技术的发展最为引人注目。 关键词:先进磨削 超高速磨削 发展方向 关键技术 正文: 超高速磨削是近年迅猛发展的一项先进制造技术, 被誉为现代磨削技术的最高 峰。日本先端技术研究学会把超高速加工列为五大现代制造技术之一。国际生产工 程学会将超高速磨削技术确定为面向 21 世纪的中心研究方向之一。东北大学自上 世纪 80 年始一直跟踪高速/超高速磨削技术发展,并对超高速磨削机理、机床设备 及其关键技术等开展了连续性的研究,建造了我国第一台额定功率 55kw 、最高砂 轮线速度达 250m/s 的超高速试验磨床,进行了超高速大功率磨床动静压主轴系统 研究、电镀 CBN 超高速砂轮设计与制造、超高速磨削成屑机理及分子动力学仿真研 究、超高速磨削热传递机制和温度场研究、高速钢等材料的高效深磨研究、超高速 单颗磨粒 CBN 磨削试验研究、超高速磨削砂轮表面气流场和磨削摩擦系数的研究 等,部分研究成果达到国际先进水平。 超高速磨削技术特点: 超高速磨削之所以应用这么广泛,与它特有的特点是分不开的,主要体现在以 下几个方面 磨削效率高。超高速磨削时,单位时间内通过磨削区的磨粒数增多,如保持每 颗磨粒的切深与普通磨削一样,其切入进给量可以大大增加,金属去除率 得到提 高, 磨削效率大幅度提高。 加工精度高。在进给量不变的条件下,超高速磨削的磨屑厚度更薄,在磨削效 率不变时,法向磨削力随磨削速度的增大而大幅度减小,继而减小磨削过程中的变 形,提高工件的加工精度。可以得到高质量、小粗糙度值的工件表面。砂轮耐用度 大幅提高,有利于实现磨削加工自动化。超高速磨削时,单颗磨粒的切削力较小, 使每颗磨粒的可切削时间相对延长。 可磨削难加工材料。超高速磨削可实现硬脆 材料的延性域磨削,使陶瓷材料的 磨削加工成为了现实,并且能够获得极好的磨削表面质量和极高的磨削效率。 大幅度提高磨削效率,设备使用台数少。磨削力小、磨削温度低、加工表面完整 性好。砂轮使用寿命长,有助于实现磨削加工的自动化。实现对难加工材料的磨削 加工。 超高速磨削不仅可对硬脆材料实行延性域磨削, 而且对钦合金、 镍基耐热合金、 高温合金、铝及铝合金等高塑性的材料也可获得良好的磨削效果。超高速磨削纯铝 的实验表明,当磨削速度超过 200m /s 时,工件表面硬化程度和表面粗糙度值开始

电火花成型加工论文

电火花加工技术 摘要本文主要介绍了电火花加工技术的原理,电火花加工技术的发展历程以及应用现状和发展前景 关键词电火花加工发展历程发展现状应用前景 一加工原理及原理图 加工原理图: 加工原理: 电火花加工时,脉冲电源的一极接工具电极,另一极接工件电极,两极均浸入具有一定绝缘度的液体介质(常用煤油或矿物油或去离子水)中。工具电极由自动进给调节装置控制,以保证工具与工件在正常加工时维持一很小的放电间隙(0.01~0.05mm)。当脉冲电压加到两极之间,便将当时条件下极间最近点的液体介质击穿,形成放电通道。由于通道的截面积很小,放电时间极短,致使能量高度集中(10~107W/mm),放电区域产生的瞬时高温足以使材料熔化甚至蒸发,以致形成一个小凹坑。第一次脉冲放电结束之后,经过很短的间隔时间,第二个脉冲又在另一极间最近点击穿放电。如此周而复始高频率地循环下去,工具电极不断地向工件进给,它的形状最终就复制在工件上,形成所需要的加工表面。与此同时,总能量的一小部分也释放到工具电极上,从而造成工具损耗。 二电火花加工发展历程

电火花加工是利用两极见脉冲放电时产生的电腐蚀现象,对材料进行加工的方法。 早在十九世纪,人们就发现了电器开光的触点开闭时,以为放电,使接触部位烧蚀,造成接触面的损坏。这种放电引起的电极烧蚀现象叫做电腐蚀。起初,电腐蚀被认为是有害的,为减少和避免这种有害的电腐蚀,人们一直在研究电副食产生的原因和防止的办法。当人们掌握了它的规律之后,便创造条件,转害为益,把电腐蚀用于生产中。研究结果表明,当两极产生放电的过程中,放电通道瞬时产生大量的热,足以使电极材料表面局部熔化或汽化,并在一定条件下,熔化或汽化的部分能抛离电极表面,形成放电腐蚀的坑穴。 二十世纪四十年代初,人们进一步认识到,在液体介质中进行重复性脉冲放电时,能够对导电材料进行尺寸加工,因此,创立了“电火花加工法”。 电火花加工技术作为特种加工领域的重要技术之一,最早应用于二战时期折断丝锥取出时的加工。随着人类进入信息化时代,电加工技术取得了突飞猛进的发展,可控性更高,数字化程度更好。 在中国电火花加工技术起步稍晚。根据中国的国情,实现电火花加工技术的原始创新是很困难的,只能采取引进消化吸收再创新的策略,因为这套系统集成了很多学科领域的知识,如计算机的软硬件、微电子、数控、电力半导体、机械技术、电气技术等,是多方面、多学科集成的产品,是比较复杂的高科技产品。国内现在显然还没有一个能够独立进行原始创新的团队,因此注定要经历一个长时间痛苦的积淀过程,所以我认为中国的电火花技术创新之路别无选择。政府也越来越认识到高校已经不再是创新的主战场,必须依托企业才能实现。 制造业是一个传统行业。一个国家的发展终归要落脚于制造业,因此作为基础工业,制造业必定拥有永久的生命力,而电加工行业也不例外。随着各项技术的不断发展,电加工技术也在进步,至于一项技术能够发展多久,也要看这个行业中的人怎样去尽心敬业、钻研并推进它。 众所周知,模具也是一个国家发展的基础行业,许多批量生产的产品都离不开模具,而电火花加工是制造模具的最主要技术之一。电火花加工仿形逼真以柔克刚,只要是导电的材料均可加工,而不受硬度、脆性、粘性等材料特性的限制,这是其他加工方法无法比拟的。电火花加工的另一个特点是可进行精密微细加工,微小孔、异型腔等的微细加工是其他设备无法替代的。这些特点决 从技术发展过程来看,电火花加工技术经历了手动电火花加工、液压伺服、直流电机、步进电机、交流伺服电机等一系列过程。控制系统也越来越复杂,从

磨削加工基础-机械工人切削实用技术手册

第八章!磨削加工 第八章!磨削加工 一!磨削加工基础 磨削是指磨具以较高的线速度旋转!对工件表面进行加工的方法" #一$常见的磨削方式 常见的磨削方式如图 !"所示" Array # $ #

图!"!常见的磨削方式示意 #二$磨削的基本概念 "%磨削加工的相对运动 在磨削过程中!为了切除工件表面多余的金属!必须使工件和刀具做相对运动"如图!&所示为外圆%内圆和平面磨削的运动" #" $磨削运动的分类"磨削运动可分为主运动和进给运动两种"!主运动&指直接切除工件表面金属!使之变为切屑!形成工件新表面的运动"主运动一般为一个!如图!&所示中的运动"!即砂轮的旋转运动为主运动"其运动的速度较高!消耗的切削功率较大" "进给运动&指使新金属层不断投入磨削的运动"如图!&所示中的运动&%’%(均为进给运动!视磨削方式的不同!其运动方向有所区别 "图!#!磨削的运动方式 #& $不同磨削方式的进给运动"!外圆磨削的进给运动包括&工件的圆周运动!工件的纵向进给运动和) )!机械工人切削实用技术手册

砂轮的横向进给运动#吃刀运动$!如图!&#* $所示""内圆磨削的进给运动与外圆磨削相同!如图!&# +$所示"#平面磨削的进给运动包括&工件的纵向# 往复$进给运动!砂轮或工件的横向进给运动和砂轮的垂直进给#吃刀运动$!如图!&#, $所示"&%磨削运动基本参数与磨削运动有关的参数见表!""表!" 磨削运动参数参!数说!!明 砂轮圆周 速度!-!指砂轮外圆表面上任意一磨粒在单位时间内所经过的路程!用!-表示"砂轮圆周速度可按下列公式计算& !!" $#!$!")))%.)式中&!-’’’砂轮圆周速度!/(-#-’ ’’砂轮直径!//$-’ ’’砂轮转速!0(/12")!第八章!磨削加工

钛合金材料磨削加工技术

钛合金材料磨削加工技术 现阶段,航空发动机零件多数采用钛合金材料,根据装配需求,精加工表面尺寸精度和表面粗糙度都需要磨削加工才能保证零件表面的质量。由于钛合金材料本身物理机械性能,磨削加工时易出现表面烧伤、表面完整性降低,目前急需解决对钛合金材料磨削的问题,所以选择合适的砂轮是非常必要的。 1钛合金材料性能分析 钛合金的种类大致分为三类,α钛合金、β钛合金、α+β钛合金。具有比重小,比强高,耐高温,耐腐蚀、超记忆,无磁性,弹性模量低,生物相容性号,这一系列优良的使其在广泛的领域得到应用。钛的熔点为1668℃,沸点为3400℃,高于镍铁,因此,轻型耐热成为了其优良的基础,可在500℃下长期工作。新型钛合金长期工作温度还要高,在300-350℃下其强度比铝合金高10倍。常用α+β钛合金强度达到1.2GPa,比重0.44MPa,比强度23-27,均高于合金钢。钛合金的抗拉强度可超过1.5GPa,对其加工必须施加很大的力,是典型的难加工材料。 钛的热导系数为0.036cal,TC11钛合金的导热性能更差。钛的弹性模量约为钢的1/2,加工时回弹性大,容易振动。 钛合金中含有氧,氢、氮、碳,有时还包括硅,铁等杂质元素,这些元素进行了强烈的反应,以间隙式存在于晶格中,可使钛合金强度提高,塑性下降,甚至使断裂韧性、低温韧性、疲劳强度、耐蚀性、冷成型和可焊性变坏。钛合金在高温中化学性极高,在一定磨削温度下,钛形成氧化,氮化保护膜,使表面层硬化变脆,降低了弹性,加大了加工硬化程度,磨削时容易贴附,堵

塞砂轮,造成磨削过热,表面完整性降低。 2钛合金磨削砂轮的选择 2.1钛合金磨削要求砂轮粘附小,磨损小,不易堵塞,磨削温度低 这主要包括磨料的粒度结合剂组织形状尺寸。普通砂轮由磨料结合剂和气孔组成。磨料作用是磨削被加工材料形成符合要求的表面。结合剂的作用是把磨料粘结到一起,形成一定形状和硬度,使磨粒在磨削过程中保持稳定的运动轨迹,并能自脱。气孔是在磨削进程中起到排屑,冷却兼有润滑作用。普通磨料包括刚玉系列(氧化铝),和碳化硅系列。磨削钛合金应选择碳化硅砂轮。 2.2结合剂的选择 结合剂分树脂和陶瓷两种: 1)陶瓷结合剂颗粒能力强,热稳定性与化学稳定性好,防水,耐热,耐腐蚀,磨损小,长时间保持磨削性能,具有多孔性,不易堵塞,生产率高。脆性大,不能经受较大冲击负荷。 2)树脂结合剂砂轮强度高,有弹性,耐冲击好,热稳定性差,耐腐蚀性差,高温下会软化失去强度。 磨削钛合金应选陶瓷结合剂砂轮。

相关主题
文本预览
相关文档 最新文档