当前位置:文档之家› 曲线与方程,圆的方程

曲线与方程,圆的方程

曲线与方程,圆的方程
曲线与方程,圆的方程

曲线与方程、圆的方程

江苏 郑邦锁

1.曲线C 的方程为:f(x,y)=0?曲线C 上任意一点P (x 0,y 0)的坐标满足方程f(x,y)=0,即f (x 0,y 0)=0;且以f(x,y)=0的任意一组解(x 0,y 0)为坐标的点P (x 0,y 0)在曲线C 上。 依据该定义:已知点在曲线上即知点的坐标满足曲线方程;求证点在曲线上也只需证点的坐标满足曲线方程。求动点P(x,y)的轨迹方程即求点P 的坐标(x,y)满足的方程(等式)。求动点轨迹方程的步骤:①建系,写(设)出相关点的坐标、线的方程,动点坐标一般设为(x,y),②分析动点满足的条件,并用等式描述这些条件,③化简,④验证:满足条件的点的坐标都是方程的解,且以方程的解为坐标的点都满足条件。

[举例1] 方程04)1(22=-+-+y x y x 所表示的曲线是: ( )

A B C D

解析:原方程等价于:???≥+=--4

0122y x y x ,或422=+y x ; 其中当01=--y x 需422-+y x 有意义,等式才成立,即422≥+y x ,此时它表示直

线01=--y x 上不在圆422=+y x 内的部分,这是极易出错的一个环节。选D 。

[举例2] 已知点A (-1,0),B (2,0),动点M 满足2∠MAB=∠MBA ,求点M 的轨迹方程。 解析:如何体现动点M 满足的条件2∠MAB=∠MBA

是解决本题的关键。用动点M 的坐标体现2∠MAB=∠MBA 的最佳载体是直线MA 、MB 的斜率。

设M (x ,y ),∠MAB=α,则∠MBA=2α,它们是直线 MA 、MB 的倾角还是倾角的补角,与点M 在x 轴的上方 还是下方有关;以下讨论:

① 若点M 在x 轴的上方, ,0),90,0(00>∈y α

此时,直线MA 的倾角为α,MB 的倾角为π-2α,

,2

)2tan(,1tan -=-+==∴x y x y k MA απα (2090≠α) ,2tan )2tan(ααπ-=- ,)1(11222

2+-+?=--∴x y x y

x y

得: 132

2

=-y x ,∵1,>∴>x MB MA .

当2090=α时, α=450

,MAB ?为等腰直角三角形,此时点M 的坐标为(2,3),它满足上述方程. ②当点M 在x 轴的下方时, y <0,同理可得点M 的轨迹方程为)1(132

2

≥=-x y x , ③当点M 在线段AB 上时,也满足2∠MAB=∠MBA,此时y=0(-1<x<2). 综上所求点的轨迹方程为)21(0)1(132

2

<<-=≥=-x y x y x 或.

[巩固1]右图的曲线是以原点为圆心,1为半径的圆的一部分,

则它的方程是

A .(21y x -+)·(21x y -+)=0

B .(21y x --)·(21x y --)=0

C .(21y x -+)·(21x y --)=0

D .(21y x --)·(21x y -+)=0

[巩固2]已知点R (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足RP ·PM =0,2PM +3MQ =0,当点P 移动时,求M 点的轨迹方程。

[迁移]正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 是棱AB 的中点,点P 是平面ABCD 上的一动点,且点P 到直线A 1D 1的距离两倍的平方比到点M 的距离的平方大4,则点P 的轨迹为: A .圆 B .椭圆 C .双曲线 D .抛物线

2.圆的标准方程刻画了圆的位置特点(圆心与半径),圆的一般方程反映了圆的代数特点(二

元二次方程Ax 2+By 2+Cxy+Dx+Ey+F=0?A=B ≠0,C=0,且D 2+E 2-4AF>0)。判断点P (x 0,y 0)与

⊙M :(x-a)2+(y-b)2= r 2的位置关系,用|PM|与r 的大小,即:|PM|>r ?(x 0-a)2+(y 0-b)2> r 2?P 在⊙M 外;|PM|

[举例1]一圆经过A (4,2),B (-1,3)两点,且在两坐标轴上的四个截距之和为2,则圆的方程为 。

解析:研究圆在坐标轴上的截距,宜用一般方程(因为与圆心、半径没有直接联系),设圆

的方程为x 2+y 2+Dx+Ey+F=0,∵圆过点A 、B ,∴4D+2E+F+20=0 ①,-D+3E+F+10=0 ②,

圆在x 轴上的截距即圆与x 轴交点的横坐标,当y=0时,x 2+Dx+F=0,x 1+x 2=-D

圆在y 轴上的截距即圆与y 轴交点的纵坐标,当x=0时,y 2+Ey+F=0,y 1+y 2=-E

由题意知:-D-E=2 ③,解①②③得D=-2,E=0,F=-12。

[举例2]若存在实数k 使得直线l :kx-y-k+2=0与圆C :x 2+2ax+y 2-a+2=0无公共点,则实数

a 的取值范围是: 。

解析:本题看似直线远的位置关系问题,其实不然。注意到直线l 对任意的实数k 恒过定点

M (1,2),要存在实数k 使得直线l 与⊙C 相离,当且仅当M 点在圆外;方程x 2+2ax+y 2-a+2=0

变形为:(x+a)2+y 2= a 2+a -2, M 点在⊙C 外?(1+a)2+4>a 2+a -2>0,解得:-71. 注:本题中a 2+a -2>0是极易疏漏的一个潜在要求。

[巩固1]过点A (3,-2),B (2,1)且圆心在直线x-2y-3=0上的圆的方程是 。

[巩固2]已知定点M(x 0,y 0)在第一象限,过M 点的两圆与坐标轴相切,它们的半径分别为r 1,

r 2,则r 1r 2= 。

[迁移] 关于曲线42:1C x y +=给出下列说法:①关于直线0y =对称;②关于直线0x =对称;③关于点(0,0)对称;④关于直线y x =对称;⑤是封闭图形,面积小于π;⑥是封闭图形,面积大于π;则其中正确说法的序号是

3.涉及直线与圆的位置关系的问题,宜用圆心到直线的距离d 来研究。d =r (r 为圆的半径)?直线与圆相切;过圆x 2+y 2=r 2上一点M (x 0,y 0)的切线方程为x 0x+y 0y=r 2;过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点A 、B 连线的直线方程为x 0x+y 0y=r 2。过⊙A 外一

点P 作圆的切线PQ (Q 为切点),则|PQ|=22||r PA -。d

|AB|=222d r -;过直线A x +B y +C =0与圆:F Ey Dx y x ++++22=0的交点的圆系方程:F Ey Dx y x ++++22+λ(A x +B y +C )=0 。d >r ?直线与圆相离,圆周上的点到直线距离的最小值为d -r ,最大值为d +r 。

[举例1] 从直线x -y+3=0上的点向圆1)2()2(22=+++y x 引切线,则切线长的最小值是 A.223 B.214 C.423 D. 2

23-1 解析:圆1)2()2(22=+++y x 的圆心A (-2,-2),直线x -y+3=0上任一点P ,过引圆的

切线PQ (Q 为切点),则|PQ|=1||2-PA ,当且仅当|PA|最小时|PQ|最小,易见|PA|的最

小值即A 到直线x -y+3=0的距离,为

223,此时|PQ|=214,选B 。 [举例2] 能够使得圆222410x y x y +-++=上恰有两个点到直线20x y c ++=距离等于

1的c 的一个值为:A .2 C .3 D .

解析:本题如果设圆上一点的坐标,用点到直线的距离公式得到一个方程,进而研究方程解的个数,将是非常麻烦的。注意到圆心M (1,-2),半径r =2,结合图形容易知道,当且仅当M 到直线l :20x y c ++=的距离d ∈(1,3)时,⊙M 上恰有两个点到直线l 的距离等于1,由d =5|

|c ∈(1,3)得:)53,5()5,53(?--∈c ,选C 。

[巩固1] 若直线(1+a)x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为 ( )

(A )1,-1 (B )2,-2 (C )1 (D )-1

[巩固2]直线l 1:y=kx +1与圆C :x 2+y 2+2kx+2my=0的两个交点A 、B 关于直线l 2:x+y=0对称,则CB CA ?= 。

[迁移]实数x ,y 满足24,012222--=+--+x y y x y x 则

的取值范围为 ( )

A .),34

[+∞ B .]34

,0[ C .]34,(--∞ D .)0,34[- 4.判断两圆的位置关系用圆心距与它们半径和、差的大小。⊙M 、⊙N 的半径分别为1r 、2r , |MN|>1r +2r ?外离,|MN|=1r +2r ?外切,|1r -2r |<|MN|<1r +2r ?相交,此时,若⊙M :

011122=++++F y E x D y x ,⊙N :022222=++++F y E x D y x ,

过两圆交点的圆(系)的方程为:11122F y E x D y x +++++λ(22222F y E x D y x ++++)=0(⊙N 除外)。 特别地:当λ= -1时,该方程表示两圆的公共弦。连心线垂直平分公共弦。|MN|=|1r -2r |?内切,|MN|<|1r -2r |?内含。

[举例1]已知两圆O 1:x 2+y 2=16,O 2:(x-1)2+(y+2)2=9,两圆公共弦交直线O 1O 2于M 点,则O 1分有向线段MO 2所成的比λ= ( )

A .56

B .65

C .-5

6 D .-

6

5 解析:直线O 1 O 2:y= -2x ,两圆公共弦:x-2y=6,于是有:M (56,512-),有定比分点坐标公式不难得到λ的值,选C 。

[举例2] 若,}1)2(|),{(},16|),{(2222B B A a y x y x B y x y x A =-≤-+=≤+= 且 则a 的取值范围是 ( ) A .1≤a B .5≥a C .51≤≤a D .5≤a

解析:集合A 、B 分别表示两个圆面(a=1时集B 表示一个点),A ∩B=B ?B ?A ,即两圆内含;有两圆圆心分别为原点和(0,2),半径分别为4和1-a ,于是有:2≤4-1-a ,解得:51≤≤a ,选C 。

[巩固1]圆心在直线034,034,042222=--+=--+=--y y x x y x y x 且经过两圆上的交点的圆的方程为

( ) A .032622=-+-+y x y x

B .032622=-+++y x y x

C .032622=---+y x y x

D .03262

2=--++y x y x [巩固2]若圆(x -a )2+(y -b )2=6始终平分圆x 2+y 2+2x +2y -3=0的周长,则动点M (a ,b )的轨迹

A.a 2+b 2-2a -2b +1=0

B.a 2+b 2+2a +2b +1=0

C.a 2+b 2-2a +2b +1=0

D.a 2+b 2+2a -2b +1=0

[迁移]与圆2x +2y x 2-=0外切且与y 轴相切的动圆圆心的轨迹方程为 。

5.圆的参数方程的本质是sin 2θ+ cos 2θ=1。参数方程的重要用途是设圆上一点的坐标时,可以减少一个变量,或者说坐标本身就已经体现出点在圆上的特点了,而无需再借助圆的方程来体现横纵坐标之间的关系。

[举例]已知圆1)1(22=-+y x 上任意一点P(x 、y)都使不等式x+y+m ≥0成立,则m 的取值范围是:A .[),12+∞- B (]0,∞- C (+∞,2) D ),21[+∞- ( ) 解析:不等式x+y+m ≥0恒成立?m ≥ -(x+y )恒成立,以下求-(x+y )的最大值: 记x= cos θ、y=1+ sin θ,-(x+y )= -( cos θ+1+ sin θ)= -1-2sin(θ+

4π)≤-1+2,选A 。 [巩固1] θθ

θcos 2sin )(+=f 的最大值为 。

[巩固2]在⊿ABC 中,已知

4

3cos cos ==b a A B ,c=10,P 是⊿ABC 的内切圆上一点,则PA 2+PB 2 +PC 2的最大值为 [迁移]动点P ,Q 坐标分别为()()p Q cos sin sin cos αααα,,,31--+,(α是参数),则|PQ |的最大值与最小值的和为 .

答案

1.[巩固1] D,[巩固2]y 2=4x (x>0),[迁移]在平面ABCD 上建立平面直角坐标系,选C 。

2、[巩固1] (x-1)2+(y+1)2= 5,[巩固2]∵点M 在第一象限,∴过点M 与两坐标轴相切的圆的方程可设为:(x -r)2+(y -r)2= r 2 , ∵圆过M(x 0,y 0)点,∴(x 0-r)2+(y 0-r)2= r 2,整理得: r 2-2(x 0+y 0)r+ x 02+y 02=0,由题意知r 1,r 2为该方程的两根,故r 1r 2= x 02+y 02。[迁移]在曲线C 上任取一点M(x 0,y 0),x 04+y 02=1, ∵|x 0|≤1, ∴x 04≤x 02, ∴x 02+y 02 ≥x 04+y 02=1,即点M 在圆 x 2+y 2=1外,选①②③⑥;

3、[巩固1]D ,[巩固2]-1,[迁移]A ;

4、[巩固1]A ,[巩固2] 圆x 2+y 2+2x +2y -3=0的圆心A (-1,-1),半径为5,⊙M 始终平分⊙A 的周长即

两圆的公共弦是⊙A 的直径,A 在直线:2(a+1)+2(b+1)y-(a 2+b 2)+3=0上,将a 点坐标代入即得,选B ;[迁移] x y 42=)0(>x 和0=y )0(

圆与方程基础练习题.

直线与圆的方程练习题 1.圆的方程是(x -1)(x+2)+(y -2)(y+4)=0,则圆心的坐标是( ) A 、(1,-1) B 、(21,-1) C 、(-1,2) D 、(-2 1,-1) 2.过点A(1,-1)与B(-1,1)且圆心在直线x+y -2=0上的圆的方程为( ) A .(x -3)2+(y+1)2=4 B .(x -1)2+(y -1)2=4 C .(x+3)2+(y -1)2=4 D .(x+1)2+(y+1)2=4 3.方程()22()0x a y b +++=表示的图形是( ) A 、以(a,b)为圆心的圆 B 、点(a,b) C 、(-a,-b)为圆心的圆 D 、点(-a,-b) 4.两圆x2+y2-4x+6y=0和x2+y2-6x=0的连心线方程为( ) A .x+y+3=0 B .2x -y -5=0 C .3x -y -9=0 D .4x -3y+7=0 5.方程 052422=+-++m y mx y x 表示圆的充要条件是( ) A .141<m 6.圆x 2+y 2+x -y -32 =0的半径是( )A .1 B . 2 C .2 D .2 2 7.圆O 1:x 2+y 2-2x =0与圆O 2:x 2+y 2 -4y =0的位置关系是( )A .外离 B .相交C .外切 D .内切 8.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .4 B .3 C .2 D .1 9.设直线过点(a,0),其斜率为-1,且与圆x 2+y 2=2相切,则a 的值为( )A .± 2 B .±2C.±2 2 D .±4 10.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( ) A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0 D .x 2+y 2-2x -4y =0 11.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( ) A .6 B .4 C .3 D .2 12.已知三点A(1,0),B(0,3),C(2,3),则△ABC 外接圆的圆心到原点的距离为( )A .53 B .213C .253 D .43 13.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0 14.圆22220x y x y +-+=的周长是( )A . B .2π C D .4π 15.若直线ax+by+c=0在第一、二、四象限,则有( ) A 、ac>0,bc>0 B 、ac>0,bc<0 C 、ac<0,bc>0 D 、ac<0,bc<0 16.点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( ) A .-1

高中数学知识要点-曲线与方程,圆的方程

曲线与方程、圆的方程 1.曲线C 的方程为:f(x,y)=0?曲线C 上任意一点P (x 0,y 0)的坐标满足方程f(x,y)=0,即f (x 0,y 0)=0;且以f(x,y)=0的任意一组解(x 0,y 0)为坐标的点P (x 0,y 0)在曲线C 上。 依据该定义:已知点在曲线上即知点的坐标满足曲线方程;求证点在曲线上也只需证点的坐标满足曲线方程。求动点P(x,y)的轨迹方程即求点P 的坐标(x,y)满足的方程(等式)。求动点轨迹方程的步骤:①建系,写(设)出相关点的坐标、线的方程,动点坐标一般设为(x,y),②分析动点满足的条件,并用等式描述这些条件,③化简,④验证:满足条件的点的坐标都是方程的解,且以方程的解为坐标的点都满足条件。 [举例1] 方程04)1(22=-+-+y x y x 所表示的曲线是: ( ) A B C D 解析:原方程等价于:???≥+=--4 0122y x y x ,或422=+y x ; 其中当01=--y x 需422-+y x 有意义,等式才成立,即422≥+y x ,此时它表示直 线01=--y x 上不在圆422=+y x 内的部分,这是极易出错的一个环节。选D 。 [举例2] 已知点A (-1,0),B (2,0),动点M 满足2∠MAB=∠MBA ,求点M 的轨迹方程。 解析:如何体现动点M 满足的条件2∠MAB=∠MBA 是解决本题的关键。用动点M 的坐标体现2∠MAB=∠MBA 的最佳载体是直线MA 、MB 的斜率。 设M (x ,y ),∠MAB=α,则∠MBA=2α,它们是直线 MA 、MB 的倾角还是倾角的补角,与点M 在x 轴的上方 还是下方有关;以下讨论: ① 若点M 在x 轴的上方, ,0),90,0(00>∈y α 此时,直线MA 的倾角为α,MB 的倾角为π-2α, ,2 )2tan(,1tan -=-+==∴x y x y k MA απα (2090≠α) ,2tan )2tan(ααπ-=- ,)1(11222 2+-+?=--∴x y x y x y 得: 132 2 =-y x ,∵1,>∴>x MB MA .

(数学试卷高一)圆与方程测试题及答案

必修2第四章《圆与方程》单元测试题 (时间:60分钟,满分:100分) 班别 座号 姓名 成绩 一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值依次为 (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)2 3.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( ) (A) 11<<-a (B) 10<-所表示的曲线关于直线y x =对称,必有 ( ) A .E F = B .D F = C . D E = D .,,D E F 两两不相等 8. 已知点A(1,-2,11),B(4,2,3),C(6,-1,4)则三角形ABC 的形状是( ) (A) 直角三角形 (B )锐角三角形 (C )钝角三角形 (D )斜三角形 9.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 A 、6π B 、4π C 、3π D 、2π 10.两圆x 2+y 2-4x+6y=0和x 2+y 2 -6x=0的连心线方程为 ( ) A .x+y+3=0 B .2x -y -5=0

求曲线方程的几种常用方法

求曲线方程的几种常用方法 求曲线的方程,是学习解析几何的基础,求曲线的方程常用的方法主要有: 1.直接法:就是课本中主要介绍的方法。若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。 解法一:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的有中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则A (,0)a -,B (,0)a 。 设动点C 为(,)x y , ∵222||||||AC BC AB +=, ∴2 224a +=, 即222x y a +=. 由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点, 故所求方程为222x y a +=(x a ≠±)。 解法二:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,C (,)x y ∵1AC BC k k =-, (1) ∴1y y x a x a =-+- , (2) 化简得:222 x y a += , (3) 由于在x a ≠±时方程(2)与(3)不等价,故所求轨迹方程为222x y a +=(x a ≠±)。 解法三:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,且设动点C (,)x y 。 ∵1||||2 CO AB =, a =,即222x y a +=。 轨迹中应除去A 、B 两点(理由同解法一),故所求轨迹方程为222x y a +=(x a ≠±)。 说明:利用这种方法求曲线方程的一般方法步骤:

椭圆及其标准方程练习题与详细答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 椭圆及其标准方程练习题 一、 1.椭圆 19 252 2=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.5 B.6 C.4 D.10 2.椭圆 1169 252 2=+y x 的焦点坐标是( ) A.(±5,0) B.(0,±5) C.(0,±12) D.(±12,0) 3.已知椭圆的方程为 1822 2=+m y x ,焦点在x 轴上,则其焦距为( A ) A.228m - B.2m -22 C.28 2-m D.222-m 4.方程1) 4 2sin(3 2 2 =+ -π αy x 表示椭圆,则α的取值范围是( ) A.838παπ ≤ ≤- B.k k k (838ππαππ+<<-∈Z) C. 838παπ<<- D. k k k (83282π παππ+<<-∈Z) 5.在方程 22110064 x y +=中,下列a , b , c 全部正确的一项是 (A )a =100, b =64, c =36 (B )a =10, b =6, c =8 (C )a =10, b =8, c =6 (D )a =100, c =64, b =36 6.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是

(A )椭圆 (B )直线 (C )圆 (D )线段 二、 7.1,6==c a ,焦点在y 轴上的椭圆的标准方程是 8.椭圆19 162 2=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2?的周长为 9.椭圆以坐标轴为对称轴,长、短半轴之和为10,焦距为45,则椭圆方程为 . 10.P 点在椭圆452x +20 2 y =1上,F 1,F 2是椭圆的焦点,若PF 1⊥PF 2,则P 点的坐标 是 . 三、 11.椭圆22a x +22 b y =1(a >b >0)的两个焦点及其与坐标轴的一个交点正好是一个 等边三角形的三个顶点,且椭圆上的点到焦点距离的最小值为3,求椭圆的方程. 12.已知椭圆92x +4 2 y =1上的点P 到其右焦点的距离是长轴两端点到右焦点的距 离的等差中项,求P 点坐标. 13.写出适合下列条件的椭圆的标准方程: ⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10; ⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,2 5 )

求曲线方程的常用方法

求曲线方程的常用方法 1. 直接法——若动点的运动规律就是一些几何量的等量关系,这些条件简单明确易于表 达,则可根据已知(或可求)的等量关系直接列出方程的方法。 2. 定义法——利用二次曲线的定义求轨迹方程。 (1) 若平面上的动点P(x,y)满足条件:11||||PF PF +=定长2a ,且122||a F F >(F 1F 2 为定点),那么P 点的轨迹为以F 1、F 2为焦点的椭圆。故只须选择恰当的坐标系, 就可直接写出椭圆的方程。 (2) 若平面上的动点P(x,y)满足条件:11||||||PF PF -=定长2a ,且122||a F F <(F 1F 2 为定点),那么P 点的轨迹为以F 1、F 2为焦点的双曲线。当122||a F F =时,P 点的轨迹为射线;如果不含绝对值,那么轨迹是一支双曲线或一条射线。故只 须选择恰当的坐标系,依双曲线的定义,就可直接写出椭圆的方程。 3. 代入法(或称相关点法)——有时动点P 所满足的几何条件不易求出,但它随另一动点 P ’的运动而运动,称之为相关点,若相关点P ’满足的条件简单、明确(或P ’的轨迹方程已知),就可以用动点P 的坐标表示出相关点P ’的坐标,再用条件把相关满足的轨迹方程表示出来(或将相关点坐标代入已知轨迹方程)就可得所求动点的轨迹方程的方法。 4. 几何法——利用平面几何的有关知识找出所求动点满足的几何条件,并写出其方程的方 法。 5. 参数法——有时很难直接找出动点的横纵坐标间的关系,可选择一个(有时已给出)与 所求动点的坐标x,y 都相关的参数,并用这个参数把x,y 表示出来,然后再消去参数的方法。 如:遇求两动直线的交点的轨迹方程问题,可适当引进参数(如斜率、截距等),写出两动直线的方程,然后消去参数就得到所求的两动直线的交点的轨迹方程,这种方法又称交轨法,其关键有二:一是选参,要容易写出动直线的方程;二是消参,消参的途径灵活多变,有时分别从两个方程中解出参数,再消参;有时分别解出x,y ,再消参;有时直接或适当变形后,通过加、减、乘、除,求平方和,求平方差等方法整体消参。 5.定义法—— 注意点:求动点轨迹方程在掌握一般步骤的基础上还要注意以下两点,一选建适当的坐标系,以简化运算;二是要注意曲线图形的范围,即根据条件限定方程中变量x,y 的取值范围,将方程中不适合题意的解去掉。 思路方法技巧: 1.“直接法”求动点的轨迹方程 例1. 在正三角形ABC 内有一动点P ,已知P 到三个顶点的距离分别为|PA|、|PB|、|PC| 且满足22||||||P A P B P C =+,求动点P 的轨迹方程。 222()4(0(2)x y a y +=<≤ 例2. 互相垂直的两条直线1l 、2l 的交点为P(a,b),长为2r 的线段MN 的两端点分别在1l 、 2l 上滑动,求线段MN 的中点Q 的轨迹。 (|PQ|=1/2|MN|222()()x a y b r -+-=) 例3. 已知一条曲线在x 轴的上方,它上面的每一个点到A(0,2) 的距离减去它到x 轴的

圆的方程练习题答案

圆的方程练习题答案 A级基础演练 一、选择题 1.(2013·济宁一中月考)若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为 ( ).A.-1 B.1 C.3 D.-3 解析化圆为标准形式(x+1)2+(y-2)2=5,圆心为(-1,2).∵直线过圆心,∴3×(- 1)+2+a=0,∴a=1. 答案 B 2.(2013·太原质检)设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若00,所以原点在圆外. 答案 B 3.圆(x+2)2+y2=5关于直线y=x对称的圆的方程为 ( ).A.(x-2)2+y2=5 B.x2+(y-2)2=5 C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=5 解析由题意知所求圆的圆心坐标为(0,-2),所以所求圆的方程为x2+(y+2)2=5. 答案 D 4.(2013·郑州模拟)动点P到点A(8,0)的距离是到点B(2,0)的距离的2倍,则动点P的轨迹方程为 ( ). A.x2+y2=32 B.x2+y2=16 C.(x-1)2+y2=16 D.x2+(y-1)2=16 解析设P(x,y),则由题意可得:2x-22+y2=x-82+y2,化简整理得x2+y2=16,故选B. 答案 B 二、填空题 5.以A(1,3)和B(3,5)为直径两端点的圆的标准方程为________.

曲线与方程(轨迹方程)

高二数学第二章曲线与方程学案 学习目标: 1、理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 2、掌握求曲线的方程的方法及一般步骤; 学习重点:理解曲线和方程的概念,掌握求曲线的方程的方法及一般步骤; 学习难点:曲线和方程概念的理解; 学习过程: 完成教学目标1:理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 新授知识:曲线的方程与方程的曲线的概念 一般地,在直角坐标系中,如果其曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点; 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 例1、判断下列结论的正误并说明理由 (1)过点A (3,0)且垂直于x 轴的直线为x=3 ; (2)到x 轴距离为2的点的轨迹方程为y=2 ; (3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 ; 练习:1、到两坐标轴距离相等的点组成的直线方程是0=-y x 吗? 2、已知等腰三角形三个顶点的坐标是)3,0(A ,)0,2(-B ,)0,2(C ,中线O AO (为原点)的 方程是0=x 吗?为什么? 3、若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是( ) A.曲线C 的方程是(,)0f x y = B.方程(,)0f x y =的曲线是C C.坐标不满足方程(,)0f x y =的点都不在曲线C 上 D.坐标满足方程(,)0f x y =的点都在曲线C 上 例2、已知方程252 2=+by ax 的曲线经过点)3 5,0(A 和点)1,1(B ,求a 、b 的值。 练习:已知方程 2 2 25x y +=表示的曲线C 经过点)A m ,求m 的值。 完成教学目标2:掌握求曲线的方程的方法及一般步骤; 类型一:待定系数法求轨迹方程(设出标准方程,根据题意求出a ,b ,p ) 例1:已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O , 且0=?,||2||=,求椭圆的方程。 练习:已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.求椭圆C 的标准方程; 类型二:直接法求轨迹方程(根据题目条件,直译为关于动点的几何关系,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。注意:是否应该建立适当的坐标系) 例2:已知点F(1,0),直线l:x =-1,P为平面上的动点,过点P作直线l的垂线,垂 足为点Q,且FQ FP QF QP ?=?,求动点P的轨迹C的方程; **练习:已知动点M 到定点A (1,0)与到定直线l :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?

圆的一般方程练习题

课时作业23 圆的一般方程 (限时:10分钟) 1.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为2 2,则a 的值为( ) A .-2或2 或32 C .2或0 D .-2或0 解析:圆的标准方程为(x -1)2+(y -2)2=5,圆心为(1,2),圆心到 直线的距离|1-2+a |12+-1 2=22,解得a =0或2. 答案:C 2.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:圆心为? ?? ??a ,-32b ,则有a <0,b >0.直线x +ay +b =0变为y =-1a x -b a .由于斜率-1a >0,在y 轴上截距-b a >0,故直线不经过第四象限. 答案:D 3.直线y =2x +b 恰好平分圆x 2+y 2+2x -4y =0,则b 的值为 ( ) A .0 B .2 C .4 D .1 解析:由题意可知,直线y =2x +b 过圆心(-1,2), ∴2=2×(-1)+b ,b =4. 答案:C 4.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程为________,最短的弦所在的直线方程是________. 解析:由圆的几何性质可知,过圆内一点M 的最长的弦是直径,最短的弦是与该点和圆心的连线CM 垂直的弦.易求出圆心为C (4,1), k CM =1-04-3=1,∴最短的弦所在的直线的斜率为-1,由点斜式,分

别得到方程:y=x-3和y=-(x-3),即x-y-3=0和x+y-3=0. 答案:x-y-3=0x+y-3=0 5.求经过两点A(4,7),B(-3,6),且圆心在直线2x+y-5=0上的圆的方程. 解析:设圆的方程为x2+y2+Dx+Ey+F=0,其圆心为? ? ? ? ? - D 2,- E 2, 由题意得 ?? ? ??42+72+4D+7E+F=0, -32+62-3D+6E+F=0, 2· ? ? ? ? ? - D 2+? ? ? ? ? - E 2-5=0. 即 ?? ? ??4D+7E+F=-65, 3D-6E-F=45, 2D+E=-10, 解得 ?? ? ??D=-2, E=-6, F=-15. 所以,所求的圆的方程为x2+y2-2x-6y-15=0. (限时:30分钟) 1.圆x2+y2+4x-6y-3=0的圆心和半径分别为() A.(2,-3);16B.(-2,3);4 C.(4,-6);16 D.(2,-3);4 解析:配方,得(x+2)2+(y-3)2=16,所以,圆心为(-2,3),半径为4. 答案:B 2.方程x2+y2+4x-2y+5m=0表示圆的条件是() 1 C.m< 1 4D.m<1 解析:由42+(-2)2-4×5m>0解得m<1. 答案:D 3.过坐标原点,且在x轴和y轴上的截距分别是2和3的圆的方程为() A.x2+y2-2x-3y=0 B.x2+y2+2x-3y=0 C.x2+y2-2x+3y=0

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。 a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

圆与方程单元测试题及答案

第四章单元测试题 (时间:120分钟总分:150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是( ) A.相离B.相交 C.外切D.内切 2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为( ) A.3x-y-5=0 B.3x+y-7=0 C.x+3y-5=0 D.x-3y+1=0 3.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为( ) A.1,-1 B.2,-2 C.1 D.-1 4.经过圆x2+y2=10上一点M(2,6)的切线方程是( ) A.x+6y-10=0 x-2y+10=0 C.x-6y+10=0 D.2x+6y-10=0 5.点M(3,-3,1)关于xOz平面的对称点是( ) A.(-3,3,-1) B.(-3,-3,-1) C.(3,-3,-1) D.(3,3,1) 6.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=( ) A.5 C.10 7.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为( ) 或- 3 和-2 8.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是( ) A.4 B.3 C.2 D.1 9.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是( ) A.2x-y=0 B.2x-y-2=0 C.x+2y-3=0 D.x-2y+3=0

圆的切点弦方程的九种求法

圆的切点弦方程的解法探究 在理解概念熟记公式的基础上,如何正确地多角度观察、分析问题,再运用所学知识解决问题,是解题的关键所在。本文仅通过一个例题,圆的部分的基本题型之一,分别从不同角度进行观察,用不同的知识点和九种不同的解法,以达到介绍如何观察、分析、解决关于圆的切点弦的问题。 一、预备知识: 1、在标准方程 2 22)()r b y a x =-+-(下过圆上一点),00y x P (的切线方程为: 200))(())r b y b y a x a x =--+--(( ; 在一般方程02 2 =++++F Ey Dx y x (042 2>-+F E D ) 下过圆上 一点),00y x P (的切线方程为: 02 20 000=++++++F y y E x x D yy xx 。 2、两相交圆01112 2=++++F y E x D y x (0412 12 1>-+F E D )与 022222=++++F y E x D y x (0422 22 2>-+F E D ) 的公共弦所在的直线方程为:0)()()(212121=-+-+-F F y E E x D D 。 3、过圆02 2 =++++F Ey Dx y x (042 2>-+F E D )外一点 ),11y x P (作圆的切线,其切线长公式为:F Ey Dx y x PA ++++=112121||。 4、过圆02 2 =++++F Ey Dx y x (042 2>-+F E D )外一点 ),11y x P (作圆的切线,切点弦AB 所在直线的方程为:211))(())r b y b y a x a x =--+--(((在圆的标准方程下的形式); 02 21 111=++++++F y y E x x D yy xx (在圆的一般方程下的形式) 。 二、题目 已知圆04422 2=---+y x y x 外一点P (-4,-1),过点P 作圆 的切线PA 、PB ,求过切点A 、B 的直线方程。 三、解法 解法一:用判别式法求切线的斜率 如图示1,设要求的切线的斜率为k (当切线的斜率存在时),那么过点P (-4,-1)的切线方 程为:)]4([)1(--=--x k y 即 014=-+-k y kx 由 ? ??=---+=-+-04420 142 2y x y x k y kx 消去y 并整理得 0)12416()268()1(2222=+-+--++k k x k k x k ① 令 0)12416)(1(4)268(2 2 2 2 =+-+---=?k k k k k ② 解②得 0=k 或8 15 = k

(完整版)圆的参数方程练习题有答案

圆的参数方程 1.已知曲线C 的参数方程为? ????x =2cos θ y =3sin θ,(θ为参数,0≤θ<2π)判断点A (2,0), B ? ???-3,3 2是否在曲线C 上?若在曲线上,求出点对应的参数的值. 解:将点A (2,0)的坐标代入?????x =2cos θy =3sin θ,得?????cos θ=1,sin θ=0. 由于0≤θ<2π, 解得θ=0,所以点A (2,0)在曲线C 上,对应θ=0. 将点B ????-3,32的坐标代入? ????x =2cos θy =3sin θ, 得???? ?-3=2cos θ, 32=3sin θ, 即???cos θ=-32, sin θ=1 2. 由于0≤θ<2π, 解得θ=5π 6 , 所以点B ????-3,32在曲线C 上,对应θ=5π 6 . 2.已知曲线C 的参数方程是? ????x =2t y =3t 2-1,(t 为参数). (1)判断点M 1(0,-1)和M 2(4,10)与曲线C 的位置关系; (2)已知点M (2,a )在曲线C 上,求a 的值. [思路点拨] (1)将点的坐标代入参数方程,判断参数是否存在. (2)将点的坐标代入参数方程,解方程组. [解] (1)把点M 1(0,-1)的坐标代入参数方程? ????x =2t ,y =3t 2-1,得?????0=2t -1=3t 2-1,∴t = 0. 即点M 1(0,-1)在曲线C 上. 把点M 2(4,10)的坐标代入参数方程? ????x =2t ,y =3t 2-1,得?????4=2t 10=3t 2-1,方程组无解. 即点M 2(4,10)不在曲线C 上. (2)∵点M (2,a )在曲线C 上, ∴? ??? ?2=2t ,a =3t 2-1. ∴t =1,a =3×12-1=2. 即a 的值为2. 3.已知曲线C 的参数方程为? ????x =t 2+1 y =2t ,(t 为参数). ①判断点A (1,0),B (5,4),E (3,2)与曲线C 的位置关系; ②若点F (10,a )在曲线C 上,求实数a 的值. 解:①把点A (1,0)的坐标代入方程组,解得t =0, 所以点A (1,0)在曲线上. 把点B (5,4)的坐标代入方程组,解得t =2, 所以点B (5,4)也在曲线上. 把点E (3,2)的坐标代入方程组,得到???? ?3=t 2+1,2=2t ,即???t =±2,t =1. 故t 不存在,所以点E 不在曲线上. ②令10=t 2+1,解得t =±3,故a =2t =±6. 4.(1)曲线C :? ????x =t y =t -2,(t 为参数)与y 轴的交点坐标是____________. 解析:令x =0,即t =0得y =-2,∴曲线C 与y 轴交点坐标是(0,-2). 答案:(0,-2)

圆的方程_基础 知识讲解

圆的方程 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程. 2.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程. 【要点梳理】 【高清课堂:圆的方程370891 知识要点】 要点一:圆的标准方程 222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径. 要点诠释: (1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是2 2 2 x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时: ||||a b r ==;过原点:222a b r += (2)圆的标准方程2 2 2 ()()x a y b r -+-=?圆心为()a b ,,半径为r ,它显现了圆的几何特点. (3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法. 要点二:点和圆的位置关系 如果圆的标准方程为2 2 2 ()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有 (1)若点()00M x y ,在圆上()()2 2 200||CM r x a y b r ?=?-+-= (2)若点()00M x y ,在圆外()()2 2 200||CM r x a y b r ?>?-+-> (3)若点()00M x y ,在圆内()()2 2 200||CM r x a y b r ?时,方程2 2 0x y Dx Ey F ++++=叫做圆的一般方程.,22D E ?? - - ?? ?为圆心, 为半径. 要点诠释: 由方程2 2 0x y Dx Ey F ++++=得22 224224D E D E F x y +-? ???+++= ? ?? ??? (1)当2240D E F +-=时,方程只有实数解,22D E x y =- =-.它表示一个点(,)22 D E --. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.

曲线与方程圆的方程

曲线与方程、圆的方程 1.曲线C的方程为:f(x,y)=o 曲线C上任意一点P (X o,y o)的坐标满足方程f(x,y)=O,即 f(x o,y o)=0 ;且以f(x,y) =0的任意一组解(x o,y o)为坐标的点P (x o,y o)在曲线C上。依据该定义:已知点在曲线上即知点的坐标满足曲线方程;求证点在曲线上也只需证点的坐 标满足曲线方程。求动点P(x,y)的轨迹方程即求点P的坐标(x,y)满足的方程(等式)。求动 点轨迹方程的步骤:①建系,写(设)出相关点的坐标、线的方程,动点坐标一般设为(x,y), ②分析动点满足的条件,并用等式描述这些条件,③化简,④验证:满足条件的点的坐标都 是方程的解,且以方程的解为坐标的点都满足条件。 解析:原方程等价于: x y 1 0 2 2 2 2 ',或x y 4;x y 4 其中当x y 1 0需;x2y24有意义,等式才成立,即x2y24,此时它表示直线x y 1 0上不在圆x2y? 4内的部分,这是极易出错的一个环节。选 [举例2]已知点A (- 1 , 0), B (2, 0),动点M满足2 / MAB2 MBA求点M的轨迹方程。 解析:如何体现动点M满足的条件2/ MAB M MBA 是解决本题的关键。用动点M的坐标体现2 / MAB M MBA 的 最佳载体是直线MA MB的斜率。 设M(x, y), / MAB=,则/ MBA=2,它们是直线 MA MB的倾角还是倾角的补角,与点M在x轴的上方 还是下方有关;以下讨论: ① 若点M在x轴的上方,(00,900), y 0 , 此时,直线MA的倾角为,MB的倾角为-2 , tan k MA xV an( 2)七(2 900) [举例1]方程(x y 1). x2y2 4 0所表示的曲线是:( )

曲线与方程word版

8.10 曲线与方程 一、选择题 1.方程|x |-1= 1-(y -1)2 所表示的曲线是( ) A .一个圆 B .两个圆 C .半个圆 D .两个半圆 解析:|x |-1= 1-(y -1)2 ?????? |x |-1≥01-(y -1)2≥0 (|x |-1)2=1-(y -1)2 ? ? ???? |x |-1≥0 (|x |-1)2=1-(y -1)2 ?????? x ≥1或x ≤-1(|x |-1)2+(y -1)2 =1?????? x ≥1(x -1)2+(y -1)2 =1 或????? x ≤-1,(x +1)2+(y -1)2 =1. 则方程|x |-1=1-(y -1)2 所表示的曲线如图所示. 答案:D 2.如图所示,已知两点A (-2,0)、B (1,0),动点P 不在x 轴上,且满足 ∠APO =∠BPO ,其中O 为坐标原点,则点P 的轨迹方程是( ) A .(x +2)2 +y 2 =4(y ≠0) B .(x +1)2 +y 2 =1(y ≠0) C .(x -2)2 +y 2 =4(y ≠0) D .(x -1)2 +y 2 =1(y ≠0) 解析:由∠APO =∠BPO ,设P 点坐标为(x ,y ), 则|PA |∶|PB |=|AO |∶|BO |=2,即|PA |=2|PB |, ∴ (x +2)2 +y 2 =2 (x -1)2 +y 2 整理得(x -2)2 +y 2 =4,且y ≠0. 答案:C 3.与圆x 2 +y 2-4x =0外切,又与y 轴相切的圆的圆心的轨迹方程是( ) A .y 2 =8x B .y 2 =8x (x >0)和y =0 C .y 2 =8x (x >0) D .y 2 =8x (x >0)和y =0(x <0) 解析:如图,设与y 轴相切且与圆C :x 2 +y 2 -4x =0外切的圆心为P (x ,y ),半径为r , 则(x -2)2+y 2=|x |+2,若x >0,则y 2 =8x ;若x <0,则y =0. 答案:D 4.如图,设圆(x +1)2 +y 2 =25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点,线段

圆与方程单元测试题及答案

(时间:120分钟总分:150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是( ) A.相离B.相交 C.外切D.内切 2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为( ) A.3x-y-5=0 B.3x+y-7=0 C.x+3y-5=0 D.x-3y+1=0 3.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为( ) A.1,-1 B.2,-2 C.1 D.-1 4.经过圆x2+y2=10上一点M(2,6)的切线方程是( ) A.x+6y-10=0 x-2y+10=0 C.x-6y+10=0 D.2x+6y-10=0 5.点M(3,-3,1)关于xOz平面的对称点是( ) A.(-3,3,-1) B.(-3,-3,-1) C.(3,-3,-1) D.(3,3,1) 6.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=( ) A.5 C.10 7.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为( ) 或- 3 和-2 8.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是( ) A.4 B.3 C.2 D.1 9.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是( ) A.2x-y=0 B.2x-y-2=0 C.x+2y-3=0 D.x-2y+3=0 10.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面

相关主题
文本预览
相关文档 最新文档