当前位置:文档之家› 微波通信微波放大器的设计讲解

微波通信微波放大器的设计讲解

微波通信微波放大器的设计讲解
微波通信微波放大器的设计讲解

微波通信

课程设计说明书

微波低噪声放大器的设计

起止日期:年月日至年月日

学生

班级

学号

成绩

指导教师(签字)

年月日

目录

一、设计原理 (1)

二、设计设备 (4)

三、设计步骤 (4)

四、设计结果及分析 (5)

五、软件仿真 (7)

六、总结体会 (13)

微波放大器的设计

一、设计原理

一个射频晶体放大器电路可分为三大部分:二端口有源电路、输入匹配电路及输出匹配电路,如图1所示。一般而言,二端口有源电路采用共射极(或共源极)三极管(BJT 、FET )电路,此外,还包括直流偏压电路。而输入匹配电路及输出匹配电路大多采用无源电路,即利用电容、电感或传输线来设计电路。一般放大器电路,根据输入信号功率不同可以分为小信号放大器、低噪声放大器及功率放大器三类。而小信号放大器依增益参数及设计要求,可分成最大增益及固定增益两类。而就S 参数设计而言,则可有单向设计及双边设计两种。本单元仅就小信号放大器来说明射频放大器之基本理论及设计方法。

1.单边放大器设计(Unilateral Amplifier Design )

所谓单边设计即是忽略有源器件S 参数中的S 12,即是S 12=0。此时可得:

ΓIN = S 11 及 ΓOUT = S 22

则放大器之单边转换增益(Unilateral Transducer Gain,G TU )为:

L O S TU G G G G =

其中 2

2222

21

2

1121111L

L

L O S

S

S S G S G S G Γ-Γ-=

=Γ-Γ-=

假若电路又符合下列匹配条件:

ΓS = S 11* 及 ΓL = S 22*

则可得到此放大器电路之最大单边转换增益(Maximum Unilaterla

ΓL = ΓOUT *

图1 放大器电路方框图

L

L

S S S S S Γ-Γ+

=22211211'11

1S

S

S S S S S Γ-Γ+

=11211222'22

1

S IN 11ΓL ΓOUT = S ’22

R S

L

Transducer Gain,G TU,max ):

2

22

2

212

11

max ,1111S S S G TU -?

?-=

2.双边放大器设计(Bilateral Amplifier Dseign)

双边设计即是考虑有源器件S 参数中的S 12,即是S 12≠0。此时可得:

L L IN S S S S S Γ-Γ+==Γ22211211'

11

1 及 S

S OUT S S S S S Γ-Γ+==Γ11211222'

221

若利用最大增益匹配法(亦称共轭阻抗匹配法),则可得

ΓS =ΓIN * 及 ΓL =ΓOUT *

经过推导可利用下列公式计算出最佳输入反射系数ΓSm 和最佳输出反射系数 ΓLm :

2

1

21211124C C B B C Sm

????

????-±?=Γ ,22222

22224C C B B C Lm ????????-±?=Γ 其中

21

1222111122222

1112

2

222

1122222211111S S S S S S C S S C S S B S S B -=???-=??-=?

-+-=?--+=

3.单边设计评价因子(Unilateral Figure of Merit , M )

在判断有源元件是否适用单边设计时,主要看它的评价因子是否够小。一般而言,当M 值小于0.03或-15dB 时即可采用单边设计。 其计算公式如下:

)

1()1(2

222

1122112112S S S S S S M -?-???=

最大增益误差比则为:

2max ,2)

1(1

)1(1M G G M TU T -<<+

其中G T 是有源元件的转换增益(Transducer Gain) 2

211222112

2212)1)(1()1()1(L

S L S L S T S S S S S G ΓΓ-Γ-Γ-Γ-??Γ-=

4.放大器的稳定条件(Stability Criteria ) (1)无条件稳定Unconditionally stable )

一个良好的放大器设计电路除考虑增益和输出入匹配外,还需要考虑放大器在工件频段中是否为无条件稳定,以避免电路产生振荡。如图11-2所示:

对于一个放大器电路而言,其有源器件在ΓS =0及ΓL =0情况下,无条件稳定的充要条件为

K > 1 , |S 11| < 1 且 |S 22| < 1

其中K 称为稳定因子(stability factor )

21

122

22221121S S S S K ??

+--=

(2)条件稳定(Conditionally stable )

当有源器件不符合上述无条件稳定的三大规定时,即称为条件稳定。在此情况下,在输入端平面及输出端平面,必存一些不稳定区域,如图2所示:

而在设计输出入匹配电路时,务必避免使用这些区域,以免造成放大器电路自激。

其对应无条件稳定的条件为

||c S | - r S | > 1,|S 11|< 1 且 ||c L | - r L | > 1,|S 22|< 1

图2 条件稳定圆示意图

L | - r L | < 1 | S 22 | < 1

| |c S | - r S | < 1 | S 11 | < 1

)

而条件稳定则是

||c S | - r S | < 1,|S 11|< 1 或 ||c L | - r L | < 1,|S 22|< 1

(A )输出稳定圆(Load Stability Circle ): L L L r c =-Γ

半径 2

2

222112?

-=

S S S r L ; 圆心 2

2

222?

-=

S C c L

(B )输入稳定圆( Source Stability Circle ):

s s S r c =-Γ

半径 2

2

112112?

-=S S S r s ; 圆心 2

2

111?

-=

S C c

s

二、设计设备

三、 步骤一:设定放大器工件频率(f 0)与输出入阻抗(R S , R L )。一般射频放大器的输出入阻抗设定为50Ω。

步骤二:根据电源选用晶体三极管,同时设定三极管的偏压条件(VCE ,I C ),决定出在该条件下的三极管的S 参数(S 11,S 21, 12,S 22),并设计适用它的偏压电路。 步骤三:将步骤二所获得的S 参数代入上述公式计算出下列设计参数: 稳定因子,K

单边设计评价因子,M 最大单边转换增益,G TU,max 输入稳定圆的圆心,C S 及半径,r S

输出稳定圆的圆心,C

L 及半径,r

L

最佳输入反射系数Γ

Sm

最佳输出反射系数Γ

Lm

步骤四:检查K值是否小于1。若K值大于1,则为无条件稳定可进行下一步骤。若小于,则须将输出入稳定圆标示于单位圆的史密斯圆图上,以便在设计输出入匹配电路时,避免使用到不稳定区域(如图11-2)所示。

步骤五:检查M值是否够小。

(1)若M值接近0.03(-15dB)则适用单边设计,可得

Γ

S = S

11

*及Γ

L

= S

22

*

最大增益即为G

TU,max

(2)若M值大于0.03(-15dB)则须用双边设计,可得

Γ

S =Γ

Sm

及Γ

L

Lm

最大增益即为G

T,max

步骤六:利用步骤五所得Γ

S 及Γ

L

设计输出入匹配电路。

四、设计结果及分析

利用ATF-35143设计一2000MHz放大器。其中电源为5VDC,输出入阻抗为

50Ω。ATF-35143的S参表(V

CS =2V,I

DS

=10mA,Zo=50Ω,T

A

=25℃)如下表:

ATF-35143 Electrical Specifications

TA = 25°C, RF parameters measured in a test circuit for a typical device

设计结果分析:

经公式计算结果,有源器件的K值在工件频率上大于1,为无条件稳定。此结果也可由输出输入稳定圆来验证。输入稳定圆的圆心距离大小| c

S

| = 2.675,

大于其半径大小r

S = 1.644,输出稳定圆的圆心距离大小| c

L

| = 4.123,也大

于其半径大小r

L = 3.085,故可证得为无条件稳定。而计算所得单边设计评价因

子M=0.08>0.03,所以不可以用单边设计,而须采用双边设计。

经双边设计计算公式,可得:

=0.821⊿172.6o

最佳输入反射系数Γ

Sm

=0.787⊿41.2o

最佳输出反射系数Γ

Lm

最大转换增益 G

=20.821dB。

Tmax

,再加入偏压电路后,可本例中最佳输入反射系数和最佳输出反射系数经匹配F

得该放大器电路及模拟结果。

五、软件仿真

1、进入微波软件MICROWAVE。

2、在原理图上设计好相应的电路,设置好P1,P2,P3,P4端口,完成频率设置、尺寸规、器件的加载、仿真图型等等的设置。

3、最后进行仿真,结果应接近实际测量所得到的仿真图形。

4、电路图,接着是相应的仿真图。

图3 模拟结果

仿真过程:

使用Ansoft Designer SV

第一步:建立电路图(工程→插入电路设计→空白)

第二步:添加衬底信息(电路→加入模型数据→加入衬底定义)

第三步:添加BFP540(画图→N-节点)

第四步:设定仿真频率围(电路→添加分析设置)

第五步:执行仿真(电路→分析)

第六步:确定仿真结果(电路→报告)

第七步:稳定性校验(电路→史密斯工具)

第八步:稳定性:在晶体管输出端口连接平行电阻器

第九步:执行仿真(电路→分析)

第十步:稳定性校验(电路→史密斯工具)

第十一步:选择功率反射系数(电路→史密斯工具):Ga=11.8dB, NF=1.33 Circle

第十二步:设计输入匹配电路(电路→史密斯工具→匹配符)

第十三步:确定负载反射系数

第十四步:设计输出匹配电路(电路→史密斯工具→匹配符)

第十五步:完成电路

第十六步:执行仿真(电路→分析)

第十七步:确定仿真结果(电路→报告)

4、布局图

六、总结体会

这次课程设计,总体来说让我懂得很多知识,受益匪浅。

首先动手实践比理论课更具趣味性,同时更具挑战性。再者让我对“实践是检验真理的唯一标准”这句话又有了进一步的理解。理论是实践的基础,实践是检验真理的唯一标准,不懂理论进行实验对我们学习是没有作用的。本次课程设计,我进一步理解了课堂上老师所讲的知识,同时学到了一些书本以外的知识。此外,我发现理论知识也非常重要,首先要了解熟悉微波低噪声放大器原理和微波低

噪声放大器设计相关理论知识。然后了解射频放大器的基本原理与设计方法,利用实验模组

实际测量以了解放大器的特性以及学会使用微波软件对射频放大器的设计和仿真,并分析结果。通过本次课程设计,我对射频放大器的基本原理、微波低噪声放大器的设计的理解进一步巩固和加深了,提高了综合运用本课程所学知识的能力;培养了我选用参考书,查阅手册及文献资料的能力;培养了我独立思考,深入研究,分析问题、解决问题的能力;培养了我严肃认真的工作作风,逐步建立正确的生产观念、经济观念和全局观念。

课程设计是把我们所学的理论知识进行系统的总结并应用于实践的良好机会,有利于加强我们用知识理论来分析实际问题的能力,进而加强了我们对知识认识的实践度,巩固了我们的理论知识,深化了对知识的认识,并为走向社会打下一个良好的基础。

过程中也遇到许多问题和麻烦,在得到老师的指导和同学的帮助下,较顺利地进行了本次课程设计。此外,一个团队分工合作很重要,没有完不成的任务,只有不团结的队伍。我们积极讨论,各抒己见,通过整个小组成员的努力,在愉快的合作中很好的完成了自己的任务,成功地设计出了我们的微波低噪声放大器。

本次课程设计老师要求很严格,我也真正收获了不少知识,不论是书面知识还是生活领悟。不管是一次小小的课程设计,还是将来的学习工作甚至是生活,都要严格要求自己,严格要求自己会让我们更好地完成每一件事,也培养了我们严谨的工作生活态度。

在以后的学习中,我们不仅要学好理论知识,打好基础,也要注重实践,真正做到在实践中深化理论,灵活运用所学理论知识,把自己培养成全面发展的当代大学生。

单片分布微波放大器的设计

单片分布微波放大器的设计 分布式放大器能提供很宽的频率范围和较高的增益。有一段时间,其设计通常采用传输线作为输入和输出匹配电路。Bill Packard(惠普公司的创始人之一)早在1948年就在其论文中提出了基于分布式设计的真空管放大器电路。随着砷化镓(GaAs)微波微波单片集成电路的发展成熟,为了提高效率、输出功率、减小噪声系数,人们提出了很多种放大器电路类型,但是分布式放大器仍然是宽带电路(如光通信电路)的主流设计。理解砷化镓微波单片集成电路GaAs MMIC分布式放大器的设计,对很多宽带电路的应用都会有很大的帮助。 约翰·霍普金斯大学从198?年开始就开设了MMIC设计课程,并在让学生在TriQuint公司的产线上流片。一款由Craig Moore(从198?年到2003年,他一直担任该课程的助教)设计的分布式放大器作为该课程一个经典的设计例子。该设计甚至经历了低温环境实验,在液氮的低温下表现出更低的噪声系数。该放大器采用TriQuint公司的0.5μm GaAs MESFET工艺,其增益比基于0.5μm GaAs伪高电子迁移率晶体管PHEMT的新电路略低,2006年的新课程中则采用了新版本的0.5μm GaAs PHEMT分布放大器和一些其他电路作为例子。本文将介绍宽带放大器的设计方法以及仿真和实测的结果。 图1:采用微带传输线的分布式放大器电路结构图。 分布式放大器使用宽带传输线给一组有源器件注入输入信号(如图1),同时另一条并行的传输线用于收集各个有源器件的输出信号,并将其叠加。每一级提供相当的增益,但是增益分布在一个很宽的频率范围内。和级联设计相比,总增益是各级增益之和,而不是各级增益的乘积。但使用集总参数元件来近似分布式传输线时(如图2),集总参数传输线的到地并联电容,被晶体管的寄生电容代替。集总参数元件的等效传输线作为一个低通滤波器使用,其截止频率和晶体管的寄生电容成反比。因此晶体管的尺寸直接决定了电路的工作频率上限。设计总要综合考虑的各种参数包括:放大器的级数、有源器件的尺寸、器件的工艺类型(如果有多种类型)以及每一级的直流偏置。更多的级数意味着更大的增益-带宽积,但是也会引入更大的功耗。一旦晶体管的尺寸确定,就可以使用仿真软件来优化增益、反射系数、输出功率和噪声系数等各项参数。 图2:采用集总参数元件的分布式放大器电路结构图(其中CGS和CDS分别表示栅电容和漏极电容)。 由于分布式放大器的应用场合很多,对各项性能指标的要求很灵活,宽带增益是其中最重要的一项指标。在Craig Moore这个设计例子中,采用了增强型PHEMT器件,因为增强型器件只需要一组正电压供电。为了能提供和198?年TriQuint半导体公司采用的 0.5μm GaAs MESFET工艺的电路相同的性能,该设计采用了0.5μm GaAs PHEMT工艺,并且使用3级晶体管放大拓扑。为了适应电池供电的应用,选用3.3V电压。当然为了满足不同的客户需求,工作电压和电流可以方便的在较大范围内调节。在1.5V和14mA的供电下,仿真结果显示:仅损失了2dB增益,并且栅电压在1.5V到5.0V,漏极电流在14~35mA之间变化时,性能的变化也很小。为达到最佳增益、匹配性能,采用安捷伦?司的计算机辅助工程软件ADS 进行线性仿真,确定合适的电感值、PHEMT尺寸。 图3:PHEMT分布式放大器的匹配、增益、噪声系数和稳定因子的仿真结果。 通过理想的仿真计算,该设计选用了6×30μm的增强型PHEMT器件,Craig Moore 的198?年的设计中在MESFET管的漏极增加了一些额外的匹配元件,以保证有效输出电容和栅极输入容抗相同。此时输入和输出的集总参数传输线将是对称的,其相位延迟也相同。文章还比较了这种输入输出传输线对称的匹配方案和另一种漏级电容独立优化的方案(漏极电

微波通信原理的详细介绍

微波通信原理的详细介绍 我国微波通信广泛应用L、S、C、X诸频段,K频段的应用尚在开发之中。由于微波的频率极高,波长又很短,共在空中的传播特性与光波相近,也就是直线前进,遇到阻挡就被反射或被阻断,因此微波通信的主要方式是视距通信,超过视距以后需要中继转发。一般说来,由于地球曲面的影响以及空间传输的损耗,每隔50公里左右,就需要设置中继站,将电波放大转发而延伸。这种通信方式,也称为微波中继通信或称微波接力通信长距离微波通信干线可以经过 几十次中继而传至数千公里仍可保持很高的通信质量。微波站的设备包括天线、收发信机、调制器、多路复用设备以及电源设备、自动控制设备等。为了把电波聚集起来成为波束,送至远方,一般都采用抛物面天线,其聚焦作用可大大增加传送距离。多个收发信机可以共同使用一个天线而互不干扰,我国现用微波系统在同一频段同一方向可以有六收六发同时工作,也可有八收八发同时工作以增加微波电路的总体容量。多路复用设备有模拟和数字之分。模拟微波系统每个收发信机可以工作于60路、960路、1800路或2700路通信,可用于不同容量等级的微波电路。数字微波系统应用数字复用设备以30路电话按时分复用原理组成一次群,进而可组成二次群120路、三次群480路、四次群1920路,并经过

数字调制器调制于发射机上,在接收端经数字解调器还原成多路电话。最新的微波通信设备,其数字系列标准与光纤通信的同步数字系列(SDH)完全一致,称为SDH微波。这种新的微波设备在一条电路上八个束波可以同时传送三万多路 数字电话电路(2.4Gbit/s)。微波通信由于其频带宽、容量大、可以用于各种电信业务传送,如电话、电报、数据、传真以及采色电视等均可通过微波电路传输。微波通信具有良好的抗灾性能,对水灾、风灾以及地震等自然灾害,微波通信一般都不受影响。但微波经空中传送,易受干扰,在同一微波电路上不能使用相同频率于同一方向,因此微波电路必须在无线电管理部门的严格管理之下进行建设。此外由于微波直线传播的特性,在电波波束方向上,不能有高楼阻挡,因此城市规划部门要考虑城市空间微波通道的规划,使之不受高楼的阻隔而影响通信。近年来我国开发成功点对多点微波通信系统,其中心站采用全向天线向四周发射,在周围50公里以内,可以有多个点放置用户站,从用户站再分出多路电话分别接至各用户使用。其总体容量有100线、500线和1000线等不同的容量的设备,每个用户站可以分配十几或数十个电话用户,在必要时还可通过中继站延伸至数百公里外的用户使用。这种点对多点微波通信系统对于城市郊区、县城至农村村镇或沿海岛屿的用户、对分散的居民点也十分合用,较为经济。微波通信还有“对流层散射通信”、“流星余迹通

微波线性功率放大器设计研究

微波线性功率放大器设计研究 摘要随着4G无线通信和军事领域新标准新技术的迅速发展,对于作为微波通信系统、雷达、电子对抗、宽带频率调制发射机、数字电视发射机等系统核心部件的功率放大器来说,它不仅仅是将信号放大到足够的功率电平,以实现信号的发射、远距离传输和可靠接收,而且对带宽、输出功率、线性度、效率和可靠性方面都提出了更高的要求。功率放大器的好坏成为制约系统发展的瓶颈。因此对于微波功率放大器的研究和设计有着重要的意义。 关键词微波;线性功率放大器;设计 前言 在宽带通信系统中,如多载波调制OFDM、长期演进系统LTE,都是非恒包络调制信号,信号的峰均比很高,回退放大器会大大降低工作效率,有必要采取有源线性化技术,射频预失真技术顺势而生,它只需在射频通路增加很少的射频元器件,就可达到提高功放输出功率、降低系统功耗、节约系统成本的效果。 1 原理 美国Scintera公司推出的射频数字预失真(RF DPD)产品RFPALSC18xx 系列,为数字预失真提出了新的解决方案。RFPAL工作午射频频率上,只涉及到射频通路的信号输入和输出,比较方便和功放集成,它具有较高的集成度,电路设计简单。其最新产品SC 1894,工作频率168MHz至3800MHz,输入信号带宽25kHz至75MHz,它利用功放输出信号和输入信号计算功放非线性参数,具有自适应调节功能,与工作在SW至60 W平均输出功率的A/AB类或Doherty 放大器一起使用,最高能達到28dB。的临波道抑制和38dB的三阶交调系数改善。它采用QFN管脚封装,支持外部时钟输入,低功耗设计,最大功耗仅为990mW。SC1894所采用的射频预失真技术可补偿调幅至调幅(AM~AM)和调幅至调相(AM-PM)失真、互调失真和功放记忆效应,采用反馈信息补偿由于温差和功放老化造成的信号失真。图1a)是SC1894管脚封装及典型外围电路,b)是基于SCI894实现射频预失真的原理框图。 射频信号经过输入定向耦合器耦合出输入信号RFin,经过巴伦匹配和阻抗变换进入芯片,功放输出信号进过反馈定向耦合器和阻抗匹配后进入芯片RFFB 管脚,SC1894通过处理这两个信号对功放进行建模和预失真处理,并输出预失真处理信号,通过定向耦合器叠加至输入信号端,最后输出预失真以后的信号。 当频率高于3800MHz时,我们采用变频模式的射频预失真电路,如图2所示,输入信号从中频通过定向耦合器进入SC1894的RFIN端口,功放输出信号经过定向耦合器,下变频至3800MHz以内的中频频率,送入芯片RFFB端口,进行自适应预失真处理,输出信号RFOUT通过反向定向耦合器进入发射通路[1]。

微波通信微波放大器的设计讲解

微波通信 课程设计说明书 微波低噪声放大器的设计 起止日期:年月日至年月日 学生 班级 学号 成绩 指导教师(签字) 年月日

目录 一、设计原理 (1) 二、设计设备 (4) 三、设计步骤 (4) 四、设计结果及分析 (5) 五、软件仿真 (7) 六、总结体会 (13)

微波放大器的设计 一、设计原理 一个射频晶体放大器电路可分为三大部分:二端口有源电路、输入匹配电路及输出匹配电路,如图1所示。一般而言,二端口有源电路采用共射极(或共源极)三极管(BJT 、FET )电路,此外,还包括直流偏压电路。而输入匹配电路及输出匹配电路大多采用无源电路,即利用电容、电感或传输线来设计电路。一般放大器电路,根据输入信号功率不同可以分为小信号放大器、低噪声放大器及功率放大器三类。而小信号放大器依增益参数及设计要求,可分成最大增益及固定增益两类。而就S 参数设计而言,则可有单向设计及双边设计两种。本单元仅就小信号放大器来说明射频放大器之基本理论及设计方法。 1.单边放大器设计(Unilateral Amplifier Design ) 所谓单边设计即是忽略有源器件S 参数中的S 12,即是S 12=0。此时可得: ΓIN = S 11 及 ΓOUT = S 22 则放大器之单边转换增益(Unilateral Transducer Gain,G TU )为: L O S TU G G G G = 其中 2 2222 21 2 1121111L L L O S S S S G S G S G Γ-Γ-= =Γ-Γ-= 假若电路又符合下列匹配条件: ΓS = S 11* 及 ΓL = S 22* 则可得到此放大器电路之最大单边转换增益(Maximum Unilaterla ΓL = ΓOUT * 图1 放大器电路方框图 L L S S S S S Γ-Γ+ =22211211'11 1S S S S S S S Γ-Γ+ =11211222'22 1 S IN 11ΓL ΓOUT = S ’22 R S L

07微波低噪声放大器设计与测量

实验七微波低噪声放大器的设计与测量 一、实验目的 1.了解射频放大器的基本原理与设计方法。 2.利用实验模块实际测量以了解放大器的特性。 3.学会使用微波软件对射频放大器的设计并分析结果。 二、预习内容 1.熟悉放大器原理等理论知识。 2.熟悉放大器设计相关理论知识。 三、实验设备 四、理论分析 一个射频晶体放大器电路可分为三大部分:二端口有源电路、输入匹配电路及输出匹配电路,如图4-1所示。一般而言,二端口有源电路采用共射极(或共源极)三极管(BJT、FET)电路,此外,还包括直流偏压电路。而输入匹配电路及输出匹配电路大多采用无源电路,即利用电容、电感或传输线来设计电路。一般放大器电路,根据输入信号功率不同可以分为小信号放大器、低噪声放大器及功率放大器三类。而小信号放大器依增益参数及设计要求,可分成最大增益及固定增益两类。而就S参数设计而言,则可有单向设计及双边设计两种。本单元仅就小信号放大器来说明射频放大器之基本理论及设计方法。

(一) 单边放大器设计(Unilateral Amplifier Design ) 所谓单边设计即是忽略有源器件S 参数中的S 12,即是S 12=0。此时可得: ΓIN = S 11 及 ΓOUT = S 22 则放大器之单边转换增益(Unilateral Transducer Gain,G TU )为: L O S TU G G G G = 其中 2 2222 21 2 1121111L L L O S S S S G S G S G Γ-Γ-= =Γ-Γ-= 假若电路又符合下列匹配条件: ΓS = S 11* 及 ΓL = S 22* 则可得到此放大器电路之最大单边转换增益(Maximum Unilaterla Transducer Gain,G TU,max ): 2 22 2 212 11 max ,1111S S S G TU -? ?-= (二) 双边放大器设计(Bilateral Amplifier Dseign) 双边设计即是考虑有源器件S 参数中的S 12,即是S 12≠0。此时可得: L L IN S S S S S Γ-Γ+ ==Γ22211211' 111 及 S S OUT S S S S S Γ-Γ+==Γ11211222' 221 若利用最大增益匹配法(亦称共轭阻抗匹配法),则可得 ΓS =ΓIN * 及 ΓL =ΓOUT * 经过推导可利用下列公式计算出最佳输入反射系数ΓSm 和最佳输出反射系数 ΓLm : 2121211124C C B B Sm ????????-±?=Γ ,2 2 222 22224C C B B Lm ???? ????-±?=Γ 图13-1 放大器电路方框图 L L S S S S S Γ-Γ+ =22211211'11 1L L S S S S S Γ -Γ + =22211211 '111S S S S S S S Γ-Γ+ =11211222'22 1S IN 11ΓL Γ OUT = S ’22 R S L

通信原理基础知识

通信原理基础知识 通信原理基础知识专栏 本课程为计算机通信专业、网络工程专业,及计算机科学与技术专业的学生开设。其目的是使计算机学院毕业的学生具有一定的通信知识背景,了解和掌握现代通信的基本原理及相关技术,尤其是数字通信的基本原理,为进一步学习后续通信和网络专业课程打下基础。[ 阅读全文] 第1章通信系统概述 更多.. 通信按传统理解就是信息的传输与交换,信息可以是语音、文字、符号、音乐、图像等等 第1节通信的基本概念 第2节通信的发展历程 第3节通信的发展趋势 第4节本书概述 第2章传输介质 更多.. 传输介质是连接通信设备,为通信设备之间提供信息传输的物理通道;是信息传输的实际载体 第1节传输介质的基本概念 第2节双绞线 第3节同轴电缆 第4节无线信道 第5节无线信道的微波频段 第6节光纤 第3章信号的传输技术 更多.. 根据国际电信联盟(ITU)的定义,传输是指通过物理介质传播含有信息的信号的过程 第1节传输技术概述 第2节模拟信号的调制传输 第3节数字信号的基带传输 第4节数字信号的调制传输 第5节光信号的传输 第4章信号的数字化处理技术 更多..通信系统中的信号可以分为模拟信号与数字信号两大类,与模拟信号相比,由于数字信号在传输、交换、处理等过程中有极大的优越性,因此目前的通信系统普遍是以数字信号为主的数字通信系统

概述 第1节模拟信号的数字化 第2节多路复用技术 第3节数字复接技术 第4节同步技术 第5节同步数字系列(SDH) 第5章信号的交换 更多..“交换”即是在通信网大量的用户终端之间,根据用户通信的需要,在相应终端设备之间互相传递话音、图像、数据等信息 第1节交换技术概述 第2节数字程控交换 第3节ATM交换 第4节以太网交换 第5节光交换 第6章话音通信 更多.. 公用交换电话网即PSTN(Public Switched Telephone Network),它是以电路交换为信息交换方式, 以电话业务为主要业务的电信网。PSTN同时也提供传真等部分简单的数据业务 第1节公用交换电话网(PSTN) 第2节信令与信令网 第3节智能网 第7章数据通信基础 更多.. 数据通信是指计算机和其他数字设备之间通过通信节点、有线或无线链路进行数字信息的交换 第1节数据通信的演变 第2节数据通信概述 第3节数据通信系统主要任务 第4节数据传输方式 第5节数据通信关键技术 第6节数据通信系统技术指标 第7节数据通信网 第8节OSI参考模型与协议 第8章局域网 更多.. 局域网是一种地理范围有限的网络,是一种使小区域内的各种通信设备互联在一起的通信网络 第1节局域网概述 第2节局域网技术 第3节以太网 第4节家庭网

07微波低噪声放大器设计与测量

实用标准文案 实验七微波低噪声放大器的设计与测量 一、实验目的 1. 了解射频放大器的基本原理与设计方法。 2. 利用实验模块实际测量以了解放大器的特性。 3. 学会使用微波软件对射频放大器的设计并分析结果。 二、预习内容 1. 熟悉放大器原理等理论知识。 2. 熟悉放大器设计相关理论知识。 三、实验设备 四、理论分析 一个射频晶体放大器电路可分为三大部分:二端口有源电路、输入匹配电路及输出 匹配电路,如图4-1所示。一般而言,二端口有源电路采用共射极(或共源极)三极管 (BJT、FET)电路,此外,还包括直流偏压电路。而输入匹配电路及输出匹配电路大多采用无源电路,即利用电容、电感或传输线来设计电路。一般放大器电路,根据输入信

号功率不同可以分为小信号放大器、低噪声放大器及功率放大器三类。而小信号放大器 依增益参数及设计要求,可分成最大增益及固定增益两类。而就 S 参数设计而言,则可 有单向设计及双边设计两种。本单元仅就小信号放大器来说明射频放大器之基本理论及 设计方法。 S S $2§1 L S I1 S 11 -__— 1 S ? 2 L 图13-1 放大器电路方框图 (一) 单边放大器设计(Un ilateral Amplifier Desig n ) 所谓单边设计即是忽略有源器件 S 参数中的S 12,即是S 12=0。此时可得: 输入 匹配电路 G s r IN = s ' 二端口 有源电路 G O r OUT * d 输出 匹配电路 r OUT = s ' 0— G L S 22 S S 12E1 S S 22 1 Sn S R L

IiN = S 11 及IO UT = S 22

短波通信原理

短波通信原理 尽管当前新型无线电通信系统不断涌现,短波这一古老与传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。其原因主要有三: (一)短波就是唯一不受网络枢钮与有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。无论哪种通信方式,其抗毁能力与自主通信能力与短波无可相比; (二)在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波; (三)与卫星通信相比,短波通信不用支付话费,运行成本低。 近年来,短波通信技术在世界范围内获得了长足进步。这些技术成果理应被中国这样的短波通信大国所用。用现代化的短波设备改造与充实我国各个重要领域的无线通信网,使之更加先进与有效,满足新时代各项工作的需要,无疑就是非常有意义的。 这里简要介绍短波通信的一般概念,优化短波通信的经验,以及一些热门的新技术。 1、短波通信的一般原理 1、1、无线电波传播 无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。 无线电波一般指波长由100,000米到0.75毫米的电磁波。根据电磁

波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1、6兆赫;短波的波长为100米~10米,频率为1、6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。频率与波长的关系为:频率=光速/波长。 电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散与媒介质的吸收,其场强不断减弱。为使接收点有足够的场强,必须掌握电波传播的途径、特点与规律,才能达到良好的通信效果。 常见的传播方式有: 地波(地表面波)传播 沿大地与空气的分界面传播的电波叫地表面波,简称地波。地波的传播途径如图1、1 所示。其传播途径主要取决于地面的电特性。地波在传播过程中,由于能量逐渐被大地吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。但地波不受气候影响,可靠性高。超长波、长波、中波无线电信号,都就是利用地波传播的。短波近距离通信也利用地波传播。直射波传播 直射波又称为空间波,就是由发射点从空间直线传播到接收点的无线电波。直射波传播距离一般限于视距范围。在传播过程中,它的强度衰减较慢,超短波与微波通信就就是利用直射波传播的。 在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天

相关主题
文本预览
相关文档 最新文档