当前位置:文档之家› 概率论的那些事儿

概率论的那些事儿

概率论的那些事儿
概率论的那些事儿

概率论的那些事

院系:自动化测试与控制系姓名:XXX

学号:1130110XXX

导师:XXXX

摘要:概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。

关键字:概率论博弈发展生活

发展史

概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。另一方面,由于数学家参与讨论分赌本问题导致惠根斯完成了《论赌博中的计算》一书,由此奠定了古典概率论的基础。使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布伯努利。他的主要贡献是建立了概率论中的第一个极限定理《伯努利大数定理》。之后,法国数学家棣莫弗在他的著作《分析杂论》中提出了著名的《棣莫弗—拉普拉斯定理》。接着拉普拉斯在1812年出版了《概率的分析理论》,首先明确地对概率作了古典的定义。经过高斯和泊松等数学家的努力,概率论在数学中地位基本确立。到了20世纪的30年代,通过俄国数学家柯尔莫哥洛夫在概率论发展史上的杰出贡献,完全使概率论成为了一门严谨的数学分支。近代又出现了理论概率及应用概率论的分支,概率论被广泛的应用到了不同范筹和不同的学科。今天概率论已经成为一个非常庞大的数学分支。研究事物发生究数字重复的几率. 随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和p.s.拉普拉斯又导出了第二个

基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数

学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方

面a·n·柯尔莫哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。在总体上,概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡

尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些

简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则

是玩家连续掷4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用2 个骰子连续掷24 次,不同时出现2个6点,玩家赢,否则庄家赢。当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是24 次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数

学家帕斯卡,求助其对这种现象作出解释,这个问题的解决直接推动了概率论的产生。有人对博弈中的一些问题发生争论,其中的一个问题是“赌金分配问题”,他们决定请教法国数学家帕斯卡(Pascal)和费马(Fermat)基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题。他们对这个问题进行了认真的讨论,花费了3年的思考,并最终解决了这个问题,这个问题的解决直接推动了概率论的产生。概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。数学家和精算师认为机率是在0至1之间之闭区间的数字,指定给一发生与失败是随机的“事件”。机率P(A)根据机率公理来指定给事件A。一事件A

在一事件B确定发生后会发生的机率称为B给之A的条件机率。也就是下面要讲到的博弈与概率。

博弈与概率

据说最早研究概率的人叫帕斯卡.他是法国的一位天才,他留下这样一个名言“人类是能思考的芦苇”,他也同样喜欢赌博,他的朋友中有一位是赌博专家,名叫杜马莱.

有一决杜马莱对帕斯卡提出如下问题:“实力相等胜负可能性各占一半的两个人A和B进行了第三次胜负的争夺战(三局两胜).第一个回合A取胜时,

由于某种情况争夺不得不中断,下的赌钱应该如何分配才好呢?

帕斯卡不愧是天才,他这样回答了杜马莱的问题;“先做一个树结构图,根据树结构图A胜的概率是3/4时,就把赌钱的3/4分给A,把剩下的1/4分给B就可以了.”于是,概率的计算就这样产生了.概率论是“生活真正的领

路人,如果没有对概率的某种估计,那我们就寸步难移,无所作为。”它起源于并不高尚的赌博,但它目前已发展为一个蔚为大观的庞大数学理论。在西方的语言中,概率一词是与探求事物的真实性联系在一起的。我们的生活中有其确定性的一面,如像瓜熟蒂落,日出日没,春夏秋冬,暑往寒来,次序井然,有固定规律可循。生活的另一面却充满了各种各样的偶然性,充满了各种各样的机遇,茫茫然而难踪其绪。概率论的目的就在于从偶然性中探求必然性,从无序中探求有序。赌博就是利用概率的一典范。

赌博中不可缺少的一样东西是骰子,它是一种正方体形玩具,在正方体的各面上分别有点数1,2,3,4,5,6。投掷一个骰子,它落地时向上的数可能是情形1,2,3,4,5,6之一,即可能出现的结果有6种,由于骰子是均匀的,可以认定这六种结果出现的可能性都相等,即每一种结果的概率都是。据说卡当曾参加过这样的一种赌法:把两颗骰子掷出去,以每个骰子朝上

的点数之和作为赌的内容。已知骰子的六个面上分别为1~6点,那么,赌注下在多少点上最有利?

两个骰子朝上的面共有36种可能,点数之和分别可为2~12共11种。从图中可知,7是最容易出现的和数,它出现的概率是,六分之一。

卡当曾预言说押7最好。现在看来这个想法是很简单的,可是在卡当的时代,应该说是很杰出的思想方法。在那个时代,虽然概率论的萌芽有些进展,但还没有出现真正的概率论。十七世纪中叶,法国贵族德·美黑在骰子赌博中,由于有要急近处理的事情必须中途停止赌博,要靠对胜负的预测把赌资进行合理的分配,但不知用什么样的比例分配才算合理,于是就写信向当时法国的最高数学家帕斯卡请教。正是这封信使概率论向前迈出了第一步。帕斯卡和当时第一流的数学家费尔玛一起,研究了德·美黑提出的关于骰子赌博的问题。于是,一个新的数学分支--概率论登上了历史舞台。虽然概率论它是从考虑某一低级的赌博开始,但它不仅在赌博中占有举足轻重的作用,而且在社会科学,生物学,物理学和化学,经济学,保险业等都有应用。还有待我们去进一步研究。

统计与概率论

统计是以概率论为基础发展出来的一门新生科学,当然也不是那么新了,只是相对于数学的很多领域来说比较新。早在16世纪之前,就有很多人研究概率,当时的理解叫做gamble theory,赌博理论,也就是一帮子赌徒研究赌博的问题...然后引起了数学家的注意,他们试图将概率引入数学的范畴。之前的朋友说的也有对的地方,就是kolmogorov建立了概率的理论基础,不过其实是概率论的数学理论基础,并不是大家理解的那种,比如掷筛子,就属于gamble theory,现代概率论更像是测度论,属于理论数学范畴。另外,我们通常学的和用的,都属于经典概率论,跟现代概率论是不一样的。统计主要是帮助人们处理数据的一种思想和方法,它是以概率论为基础的。所以,在很多理论数学家眼里,是看不起统计的,因为它并不是那么纯粹的数学。

在定义上,统计是指对某一现象有关的数据的搜集、整理、计算和分析等的活动。包含统计工作、统计资料和统计学三种含义。贝叶斯定理机率论或概率论是研究随机性或不确定性等现象的数学。更精确地说,机率论是用来模拟实验在同一环境下会产生不同结果的情状。典型的随机实验有掷骰子、扔硬币、抽扑克牌概率论以及轮盘游戏等

在研究方向上

1、统计工作

指搜集、整理和分析客观事物总体数量方面资料的工作过程,是统计的基础。

2、统计资料

统计工作所取得的各项数字资料及有关文字资料,一般反映在统计表、统计图、统计手册、统计年鉴、统计资料汇编和统计分析报告中。

3、统计科学

研究如何搜集、整理和分析统计资料的理论与方法。统计工作、统计资料、统计科学三者之间的关系是:统计工作的成果是统计资料,统计资料和统计科学

的基础是统计工作,统计科学既是统计工作经验的理论概括,又是指导统计工作的原理、原则和方法。原始的统计工作即人们收集数据的原始形态已经有几千年的历史,而它作为一门科学,还是从17世纪开始的。英语中统计学家和统计员是同一个,但统计学并不是直接产生于统计工作的经验总结。每一门科学都有其建立、发展和客观条件,统计科学则是统计工作经验、社会经济理论、计量经济方法融合、提炼、发展而来的一种边缘性学科。从特点看,数量性社会经济统计的认识对象是社会经济现象的数量方面,包括现象的数量表现、现象之间的数量关系和质量互变的数量界限。总体性社会经济统计的认识对象是社会经济现象的总体的数量方面。例如,国民经济总体的数量方面、社会总体的数量方面、地区国民经济和社会总体的数量方面、各企事业单位总体数量方面等等。具体性社会经济统计的认识对象是具体事物的数量方面,而不是抽象的量。这是统计与数学的区别。社会性社会经济现象是人类有意识的社会活动,是人类社会活动的条件、过程和结果,社会经济统计以社会经济现象作为研究对象,自然具有明显的社会性。

生活与概率论

用一个大家喜欢听的例子。

数学概率论分析情感问题,很有意思,而且我发现和我现在所做的采购有相似之处,需要在多方了解的情况下增加自己的database,然后选择最佳概率。请看下文:

波斯公主选驸马

波斯公主到了适婚年龄,要选驸马。候选男子100名,都是公主没有见过的。百人以随机顺序,从公主面前逐一经过。每当一位男子在公主面前经过时,公主要么选他为驸马,要么不选。如果选他,其余那些还没有登场的男子就都遣散回家,选驸马的活动也over 了。如果不选,当下这名男子就离开,也就是pass 掉此人,下一人登场。被pass 掉的,公主不可以反悔再从选。规则是,公主必须在这百人中选出一人做驸马,也就是说,如果前99人公主都看不中的话,她必须选择第100名男子为驸马,不管他有多么丑陋。

任务是:给公主设计选择方法,让她有最高概率选到百人中最英俊的男子为驸马

说明一点是,没有任何选择方法能够保证公主一定选择到最帅的帅哥。对于任何选择方法,总存在某些出场的顺序,让公主与帅哥错过。所以,题目所问的,不是必胜的选法(因为不存在),而是概率最高的选法。

因为并不是要讨论数学,我这里就直接给出答案了:最佳选法是pass掉最开始的100/e名男子(e=2.718…是自然对数,即100/e约等于37)。但是记录下这37名男子中最英俊者。之后鱼贯而来的男子中,出现的第一位英俊程度超越所有前37人者,即为驸马。如果人都走光了,也没出现这么一位Mr.Right,那么就只好选择第100位男子。

正解后面的思考方法

数学的推论且不论,这个答案背后是一个可为广泛应用的思考方法。公主选择的难处在于她不知道这百人的英俊程度是怎样分布的,是在怎样一个范围内。所以她最佳的策略是,pass掉最初37位男子,但是把他们看成一个有代表性的sample,从而了解这百人相貌的大致分布。然后在这个认知的基础上进行选择。

真实的谈情说爱当然不是一个简单的选美。普通人也不能像波斯贵族那样要

谁有谁。但是思维方法共通。假如你是一位女生,第一次恋爱的时候,也许你觉得男朋友不够细腻,不解风情。但你无法判断的是,是否天下男生大多如此,还是你特别倒霉碰到这样的极品。你唯有试过三个五个后,才能够对男性这个物种有个全局的判断。所以,当你和第一任男朋友分手后,大可不必悲天悯人,亦或对天下男人失望。正确的态度是:okay,我现在有一个data point, 现在我来找些更多的data points。

要花多长时间学习?

找到多少data points 才够呢?换句话说我们学习到什么时候才能够信任自己对世界的判断?以下这个小故事中,我们可以看出大自然是怎么解决这个问题的。

1944年冬天,二战进入尾声。德国人封锁了荷兰德占区的补给。1944-1945年的冬天,被称为"hunger winter"(饥饿的冬天)。有四百五十万荷兰人遭受饥饿,一万八千人饿死。1945年,德国战败,封锁也随之解除。

但这个饥饿冬天所带来的影响却一直留存到几十年后。那些封锁期间怀着孩子的妇女,她们肚子里发育中的胚胎,虽无知觉,也经历了这场灾难。几十年后,当这些孩子成为50岁的中年人,科学家们发现他们会比之前,或者之后出生的荷兰孩子都更肥胖,更容易有心血管疾病。

对此的一种解释是,还在妈妈肚子里的时候,我们的身体就在学习这是怎样一个世界:是个食物充足,衣食无忧的世界?还是一个有上顿没下顿的世界?这些荷兰饥荒那年出生的婴儿,他们的身体学习到:"这是一个食物匮乏的世界"。哪怕他们成年之后,荷兰已经是一个富余的发达国家,他们的身体还是不忘早年饥饿的经历,会尽力存储脂肪,准备着下一个饥饿冬天的到来。结果就是这个人群更容易肥胖,并且更容易患有与肥胖相关的心血管疾病。

有意思的是,对食物丰富与否的学习,在10月怀胎中完成,居然之后几十年也无法扭转。这个学习的窗口,是我们的身体,我们的基因所决定的。孩子学东西快,是因为他们的身体和大脑就是specialized 学习机器。有研究说,人脑中负责抽象思维的前额叶在25岁才定型(注2)。换句话说,25岁以前,我们的思维,特别是那些高级的认知能力,还在不断变化着。而这其中很多的变化,就来自我们的环境。这种变化,就是我们在学习我们所在的,到底是怎样一个世界;怎样的思维和行为,是在这个世界上行得通的。

从人脑的发育看来,过了25岁,至少从生理上来说,这种学习就停止了。这个deadline 取决于基因,而基因来源于千百万年的进化。千百万年中,人类的平均寿命是徘徊在20-30岁。这可能就是为什么我们的学习,从我们身体的设计上看来,是在25岁就截止了。

我们无法影响自己生理、身体上的学习,但是有些事情的学习,却是我们可以影响的,而且应该去影响的。选择怎样的工作?居住在哪个城市?找什么样的伴侣?这些似乎不是应该匆匆忙忙,赶着一个deadline(特别是25岁的deadline)去决定的事情。你会进行很多比较,才决定购买一辆汽车或者房子。而工作、伴侣,这些更重要的决定,你当然要更多比较比较,了解一下你是在怎样的一个世界里,才做决定。

也许你30岁了,没有婚配的对象,不喜欢正在做的工作,但有种种压力期待你"别折腾,安顿下来"。这压力可能来自于一个一直不给个人选择的社会传统,或者来自于一个预期寿命只有30岁的进化压力。但是这一切都变了:社会已经有越来越多的选择余地,我们也可以预料之中的活到80,90岁。

也许你要认真考虑一下波斯公主的问题:我是否应该继续收集data points?还是已经到了要做终生决定的时候?

回到波斯公主的题目

波斯公主的题目至少还教了我们另一点,就是哪怕你的方法是最优,你也永远不可能是每次都得到最英俊的驸马。在最优化的选择方法下,公主也只有40%左右的可能性选择到最帅的男人。就是说,如果按照这种方法选择十次,每次这百名男子以随机顺序出现,其中有6次,公主都会选到不是最帅的驸马。

生活就是有风险的,不可测的。这似乎是个打击,但也是一种释怀。尽人事,安天命。如果你按照一个正确的方法去做了,哪怕结果差强人意,这也并不是你的错。

我学会的另一点是,如果我是作为被选的一方(就像那100名男子),timing 是至关重要的。以下是一个简单得多的题目:

如果你是这百名男子中的一名,并且你能够决定自己出场的名次,你会选择在什么时候出场,以最大提高自己被选的概率?

答案是第38名。你不会选择在38名之前,因为你被选的概率是零(假设我们的公主学过高等数学,知道最佳选法)。你也不会选择后于38,因为你前面每多一个人,就意味着多了一分公主选上他的机会(注3)。

如果你有一位意中人,你当然要努力去追求幸福,但你可能也要想一下,这是否是最好的timing?

参考文献

龙永红,《概率论与数理统计》,高等教育出版社,2004.2第二版

陈希孺,《概率论与数理统计》,中国科学技术出版社,1996版

首都师范大学数学系概率统计教研室编,《概率论与数理统计》,首都师范大学出版社

概率论的起源与发展

概率论的起源与发展 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷骰子是他们常用的一种赌博方式。 因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大? 17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。 这是什么原因呢?后人称此为著名的德·梅耳问题。又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得6局便算赢家。如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本? 诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。 参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。 帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。1657年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。这本书迄今为止被认为是概率论中最早的论著。因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。这一时期被称为组合概率时期,计算各种古典概率。 在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成

概率论中几种具有可加性的分布及其关系

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1几种常见的具有可加性的分布 (1) 二项分布 (2) 泊松分布(Possion分布) (3) 正态分布 (4) 伽玛分布 (6) 柯西分布 (7) 卡方分布 (7) 2具有可加性的概率分布间的关系 (8) 二项分布的泊松近似 (8) 二项分布的正态近似 (9) 正态分布与泊松分布间的关系 (10) 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11) 3小结 (12) 参考文献 (12) 致谢 (13)

概率论中几种具有可加性的分布及其关系 摘要概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词概率分布可加性相互独立特征函数 SeveralKindsofProbabilityDstributionanditsRelationshipwithAdd itive 'scentrallimittheorem,andsoon,hascarriedonthedifferentlevelsofdiscussion. KeyWords probabilitydistributionadditivitypropertymutualindependencecharacteristicfunction 引言概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等. 1几种常见的具有可加性的分布 在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]: ①离散场合的卷积公式设离散型随机变量ξζ,彼此独立,且它们的分布列分别是 n k a k P k ,1,0,)(???===ζ和.,,1,0,)(n k b k P k ???===ξ则ξζ?+=的概率分布列可表示为 ②连续场合的卷积公式设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是 )(),(y f x f ξζ,则它们的和ξζ?+=的密度函数如下 其证明如下: ξζ?+=的分布函数是dxdy y f x f z f z F z y x )()()()(ξζ?ξζ??≤+= ≤+= 其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζ?+=的密度函数:

概率论发展史

概率论的大厦是建筑在微积分的地基之上的,例如在函数关系的对应下,随机事件先是被简化为集合,继之被简化为实数,随着样本空间被简化为数集, 概率相 应地由集函数约化为实函数.以函数的观点衡量分布函数)(x f,)(x f的性质是十分良好的: 单调有界、可积、几乎处处连续、几乎处处可导. 因之, 微积分中有关函数的种种思想方法可以通畅无阻地进入概率论领域. 随机变量的数字特征、概率密度与分布函数的关系、连续型随机变量的计算等, 显然借鉴或搬运了微积分的现有成果. 又如概率论中运用微积分的基础----极限论的地方也非常多, 诸如分布函数的性质、大数定律、中心极限定理等.总之,微积分的思想方法渗透到了概率论的各个方面, 换言之, 没有微积分的推动, 就没有概率论的公理化与系统化, 概率论就难以形成一门独立的学科. 微积分与概率论的亲缘关系, 决定了概率论的确定论的特征. 但是作为微积分的一门后继课程, 概率论并非按微积分中的思维方法发展下去,而是另辟蹊径, 其发展路径与微积分大相径庭, 最终成为了随机数学的典型代表, 具备了与微积分相当的地位. 更因其非线性、反因果的非理性特征, 显得比经典的微积分更具有时代精神. 而作为确定性数学典型代表的微积分对概率论的发展具有很大作用, 因此讨论微积分在概率论中的地位, 探究概率论与微积分的联系及方法的相互应用 0 引言 概率论与数学分析是数学的两个不同分支,数学分析是确定性数学的典型代表,概率论则是随机数学的典型代表。由于两者所研究的方向不同,故它们的发展道路大相径庭,但是在各自的发展过程中二者却又紧密地结合在一起,数学分析的发展为概率论奠定了基础,而概率论中随机性、反因果论也逐渐滲透到数学分析当中,推动着数学分析的发展。研究概率论与数学分析两者之间的相互关系,并寻绎概率论在解决数学分析中某些比较困难的问题的方法、思想,是很有意义的。 1 数学分析对概率论的渗透与推动 1933 年,苏俄数学家柯尔莫哥洛夫以集合论、测度论为依据,导入了概率论的公理化体系,概率论得以迅猛发展,在其迅猛发展的道路上,数学分析的思想与方法随处可见。 1.1 集合论与概率论的公理化体系 由于数学的研究对象一般都是具有某种性质或结构的集合,所以集合论是整个数学体系的基础。集合论是在19 世纪数学分析的严密化过程当中培育出来的,两者之间是源和流的关系; 又由于勒贝格积分建立了集合论与测度论的联系,进而形成了概率论的公理化体系; 因而集合论对概率论的滲透,可视为微积分对概率论的一次较有力的推动 数学分析中主要有黎曼积分和勒贝格积分两种。黎曼积分处理性质良好的函数时得心应手,但对于级数、多元函数、积分与极限交换次序等较为棘手的问题时,常常比较困难。勒贝格积分的出现,使黎曼积分遇到的难题迎刃而解,微积分随之进化到了实变函数论的新阶段。有了勒贝格积分理论以后,集合测度与事件概率之间的相似性便显示出来了。不仅如此,测度论中的几乎处处收敛与依测度收敛,实质上就是弱大数定律与强大数定律中的收敛。1933 年,苏俄数学家柯尔莫哥洛夫,建立了在测度论基础上的概率论的公理化体系[2],统一了原先概率的古典定义、几何定义及频率定义纷争不一的局面。他建立的公理化体系,具备

概率论发展简史

一、概率论发展简史 1(20世纪以前得概率论 概率论起源于博弈问题。15—16世纪,意大利数学家帕乔利(L、Pacioli,1445-1517)、塔塔利亚(N、Tartaglia,1499-1557)与卡尔丹(G、cardano,1501-1576)得著作中都曾讨论过俩人赌博得赌金分配等概率问题.1657年,荷兰数学家惠更斯(C、Huygens,1629-1695)发表了《论赌博中得计算》,这就是最早得概率论著作.这些数学家得著述中所出现得第一批概率论概念与定理,标志着概率论得诞生.而概率论最为一门独立得数学分支,真正得奠基人就是雅格布?伯努利(Jacob Bernoulli,1654-1705)。她在遗著《猜度术》中首次提出了后来以“伯努利定理”著称得极限定理,在概率论发展史上占有重要地位。 伯努利之后,法国数学家棣莫弗(A、de Moivre,1667-1754)把概率论又作了巨大推进,她提出了概率乘法法则,正态分布与正态分布率得概念,并给出了概率论得一些重要结果。之后法国数学家蒲丰(C、de Buffon,1707—1788)提出了著名得“普丰问题”,引进了几何概率.另外,拉普拉斯、高斯与泊松(S、D、Poisson,1781-1840)等对概率论做出了进一步奠基性工作。特别就是拉普拉斯,她就是严密得、系统得科学概率论得最卓越得创建者,在1812年出版得《概率得分析理论》中,拉普拉斯以强有力得分析工具处理了概率论得基本内容,实现了从组合技巧向分析方法得过渡,使以往零散得结果系统化,开辟了概率论发展得新时期。泊松则推广了大数定理,提出了著名得泊松分布。

19世纪后期,极限理论得发展称为概率论研究得中心课题,俄国数学家切比雪夫对此做出了重要贡献。她建立了关于独立随机变量序列得大数定律,推广了棣莫弗—拉普拉斯得极限定理。切比雪夫得成果后被其学生马尔可夫发扬光大,影响了20世纪概率论发展得进程. 19世纪末,一方面概率论在统计物理等领域得应用提出了对概率论基本概念与原理进行解释得需要,另一方面,科学家们在这一时期发现得一些概率论悖论也揭示出古典概率论中基本概念存在得矛盾与含糊之处。这些问题却强烈要求对概率论得逻辑基础做出更加严格得考察。 2(概率论得公理化 俄国数学家伯恩斯坦与奥地利数学家冯?米西斯(R、von Mises,1883—1953)对概率论得严格化做了最早得尝试。但它们提出得公理理论并不完善。事实上,真正严格得公理化概率论只有在测度论与实变函数理论得基础才可能建立。测度论得奠基人,法国数学家博雷尔(E、Borel,1781-1956)首先将测度论方法引入概率论重要问题得研究,并且她得工作激起了数学家们沿这一崭新方向得一系列搜索。特别就是原苏联数学家科尔莫戈罗夫得工作最为卓著.她在1926年推倒了弱大数定律成立得充分必要条件。后又对博雷尔提出得强大数定律问题给出了最一般得结果,从而解决了概率论得中心课题之一——大数定律,成为以测度论为基础得概率论公理化得前奏。 1933年,科尔莫戈罗夫出版了她得著作《概率论基础》,这就是概率论得一部经典性著作。其中,科尔莫戈罗夫给出了公理化概率论得一系列基本概念,提出了六条公理,整个概率论大厦可以从这六条公

高等概率论简介

高等概率论简介 课程名称:高等概率论 周学时 3 先修课程:概率论,测度论 (实变函数) 基本目的: 1.在测度论的基础之上,准确掌握概率、事件、随机变量、独立性、特征函数等 基本概念。 2.较准确理解大数定律与中心极限定理的内容,清楚各种收敛之间的关系。 内容提要: 第一章测度论:(10学时) 1) 概率空间(2学时) 2) 随机变量及其分布(2学时) 3) 积分及性质(2学时) 4) 数学期望:各种不等式,积分收敛定理,随机变量函数的数学期望(2学时) 5) 乘积测度,Fubini定理(2学时) 第二章大数定律(12学时) 1)随机变量的独立性:独立性的概念独立性成立的充分条件独立随机变量的性质(4学 时) 2) 弱大数定理:均方收敛与依概率收敛的概念与关系,三角列的弱收敛定理举例(2学 时) 3) Borel-Cantelli 引理, Kolmogorov’s 0-1律(2学时) 4)随机列的收敛:强大数定律证明(一阶矩存在情况)( 2学时) 5) 强大数定律及应用; 收敛速度介绍与大偏差介绍(2学时) 第三章中心极限定理(18学时) 1) 弱收敛:De Moivre-Laplace收敛定理介绍,弱收敛的定义,各种相关定理(4学时) 2) 特征函数:特征函数定义,反演公式,特征函数收敛与弱收敛关系( 4学时) 3)中心极限定理:i.i.d列的中心极限定理Linderberg-Feller定理各种应用( 3学时) 4) Poisson 极限:收敛到Poisson分布的随机变量列(基本定理及一般定理),Poisson过 程与等待时间,复合Poisson过程(3.6节)( 4学时) 5)*平稳分布与无穷可分分布介绍(3.7-3.8节)( 1学时) 6) 随机向量列的极限定理:弱收敛的等价形式,胎紧性,弱收敛与特征函数收敛关系(3.9 节)( 2学时) 教材与参考书: 1.Durrett R., Probability Theory and Examples (4.1版), 2013 下载地址: (pdf.file) 2.Chung K. L., A course in probability theory (第二版), 1974 程士宏《高等概率论》,1996 3.Kallenberg O., Foundations of Modern Probability, 1997 4.汪嘉冈现代概率论基础,1988 5.Patrick Billingsley, Probability and Measure, Second Edition, 1986 6.Patrick Billingsley, Convergence of Probability Measure, 1968 1 / 1

概率论的发展史

概率论的发展史 摘要:概率论是一门研究随机现象的数学规律的学科。它起源于十七世纪中叶,当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。费马、帕斯卡、惠更斯对这个问题进行了首先的研究与讨论,科尔莫戈罗夫等数学家对它进行了公理化。后来,由于社会和工程技术问题的需要,促使概率论不断发展,隶莫弗、拉普拉斯、高斯等著名数学家对这方面内容进行了研究。发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学,社会科学,工程技术,军事科学及生产生活实际等诸多领域中起着不可替代的作用。 关键词:概率论公理化随机现象赌博问题 17世纪资本主义经济的发展和文艺复兴运动的兴起,给欧洲数学注入了新的活力,欧洲数学家们开始以前所未有的热情投入到数学科学的研究中去。在这一个世纪里,他们不仅建立起了以解析几何和微积分为代表的变量数学,进一步研究现实世界中的必然现象及其规律,而且还开始了对偶然现象的研究,这就是所谓的概率论。记得大数学家庞加莱说过:“若想预见数学的将来,正确的方法是研究它的历史和现状。” 一、概率论的起源 概率论是一门研究随机现象的数学规律的学科。十分有趣的是,这样一门重要的数学分支,竟然起源于对赌博问题的研究。 1653年的夏天,法国著名的数学家、物理学家帕斯卡(Blaise Pascal,1623——1662)前往浦埃托镇度假,旅途中,他遇到了“赌坛老手”梅累。为了消除旅途的寂寞,梅累向帕斯卡提出了一个十分有趣的“分赌注”的问题。问题是这样的——一次,梅累与其赌友赌掷骰子,每人押了32个金币,并事先约定:如果梅累先掷出三个6点,或其赌友先掷出三个4点,便算赢家。遗憾的是,这场赌注不算小的赌博并未能顺利结束。当梅累掷出两次6点,其赌友掷出一次4点时,梅累接到通知,要他马上陪同国王接见外宾。君命难违,但就此收回各自的赌注又不甘心,他们只好按照已有的成绩分取这64个金币。这下可把他难住了。所以,当他碰到大名鼎鼎的帕斯卡,就迫不及待地向他请教了。然而,梅累的貌似简单的问题,却真正难住他了。虽然经过了长时间的探索,但他还是无法解决这个问题。 1654年左右,帕斯卡与费马在一系列通信中讨论了类似的“合理分配赌金”的问题。该问题可以简化为: 甲、乙两人同掷一枚硬币,规定:正面朝上,甲得一点;若反面朝上,乙得一点,先积满3点者赢取全部赌注。假定在甲得2点、乙得1点时,赌局由于某种原因中止了,问应该怎样分配赌注才算公平合理。 帕斯卡:若在掷一次,甲胜,甲获全部赌注,两种情况可能性相同,所以这两种情况平均一下,乙胜,甲、乙平分赌注。甲应得赌金的3/4,乙得赌金的1/4。 费马:结束赌局至多还要2局,结果为四种等可能情况: 情1234

概率论发展简史 (2)

一、概率论发展简史 1(20世纪以前的概率论 概率论起源于博弈问题。15-16世纪,意大利数学家帕乔利 (L.Pacioli,1445-1517)、塔塔利亚(N.Tartaglia,1499-1557)和卡尔丹 (G.cardano,1501-1576)的着作中都曾讨论过俩人赌博的赌金分配等概率问题。1657年,荷兰数学家惠更斯(C.Huygens,1629-1695)发表了《论赌博中的计算》,这是最早的概率论着作。这些数学家的着述中所出现的第一批概 率论概念与定理,标志着概率论的诞生。而概率论最为一门独立的数学分支,真正的奠基人是雅格布?伯努利(Jacob Bernoulli,1654-1705)。他在遗着《猜度术》中首次提出了后来以“伯努利定理”着称的极限定理,在概率论发展史 上占有重要地位。 伯努利之后,法国数学家棣莫弗(A.de Moivre,1667-1754)把概率论又作 了巨大推进,他提出了概率乘法法则,正态分布和正态分布率的概念,并给 出了概率论的一些重要结果。之后法国数学家蒲丰(C.de Buffon,1707-1788) 提出了着名的“普丰问题”,引进了几何概率。另外,拉普拉斯、高斯和泊松 等对概率论做出了进一步奠基性工作。特别是拉普拉斯,他是严密的、系统 的科学概率论的最卓越的创建者,在1812年出版的《概率的分析理论》中,拉普拉斯以强有力的分析工具处理了概率论的基本内容,实现了从组合技巧 向分析方法的过渡,使以往零散的结果系统化,开辟了概率论发展的新时期。泊松则推广了大数定理,提出了着名的泊松分布。 19世纪后期,极限理论的发展称为概率论研究的中心课题,俄国数学家切比雪夫对此做出了重要贡献。他建立了关于独立随机变量序列的大数定律,

概率论的起源和发展

概率论的起源和发展 概率论是一门既古老又年轻的学科。说它古老,是因为产生概率的重要因素---赌博游戏已经存在了几千年,概率思想早在文明早期就己经开始萌芽了。而说它年轻,则是因为它在十八世纪以前的发展极为缓慢,现代数学家和哲学家们往往忽略了那段历史,他们更愿意把1654年帕斯卡(Pasac)l和费马(Fomrat)之间的七封通信看作是概率论的开端。这样,概率论的“年龄”就比数学大家族中的其它多数成员小很多。一般认为,概率论的历史只有短短的三百多年时间。虽然在早期概率论的发展非常缓慢,但是十八世纪以后,由于社会学,天文学等其它学科的研究需要,使得概率本身的理论得到了迅速发展,它的思想和方法也逐渐受到了其它学科的重视和借鉴。在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用非常广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1、机会的早期计算 古希腊人从航海实践中发现了许多概率经验规律, 古犹太人在纪元之初就有概率加法定律和乘法定律的应用记录。但是由于结果不确定的特点, 人们一直认为随机现象好似运气都由天神决定, 其规则是世俗不可想象的。能够刺激人们思考概率的事情很多, 但最终孕育概率论的却是庸俗的骰子赌博。公元 960 年左右, 怀特尔德大主教计算出掷三个骰子时不计次序所能出现的不同组合有 56 种。十三世纪左右拉丁诗歌《维图拉》指出这 56 种组合出现的机会不是相同的: 3 枚骰子点数一样, 每个点数只有一种方式; 2 枚骰子点数一样而另一枚不一样, 则有 3 种方式; 如果 3 枚都不一样就有 6 种方式。但是这些经验并没有引起更多的思考, 机会的计算仍处于直觉的、散乱的经验水平上。 卡尔扎诺是一位医学博士, 曾在米兰讲授数学, 写过多部医学、数学等方面的著作。他认为赌博是一种社会病, 也有理由作为可以医治的疾病来研究。约在1564 年, 他集中了自己的智慧和赌博经验, 用拉丁文写出著名的《论机会游戏》, 揭示了赌博中的不确定性原理, 成为概率论前史的重要人物。书中, 卡尔扎诺强调赌博的基本原则是同等条件,“如果它们有利于对手, 那么你是傻瓜, 如果有利于自己, 那么你就不公平”。骰子应该是“诚实的”, 几个诚实的骰子联合起来仍然是诚实的, 下注应该根据这种诚实性。等可能思想的提出是卡尔扎诺的贡献之一, 为理解和解决复杂的赌博问题提供了依据。他定义了胜率(有利结果数与不利结果数之比) 表示机会的大小, 计算出了多种赌博的全部可能结果数和有利结果数, 由于当时组合数学还很贫乏, 他的计算在方法上与《维图拉》基本相同。卡尔扎诺还思考了独立事件的乘法法则, 在一番错误推理后他发现了正确方法, 例如一次的胜率是 3:1, 连续两次的胜率是 9:7。卡尔扎诺是第一个深入讨论概率问题的人, 他提出了考虑随机问题的基本原则, 建立了胜率概念和一些运算法则, 对概率理论的形成具有开创性贡献。但是他也犯了不少错误, 例如他认为在掷两个骰子时, 36 次投掷有 1 次机会出现双 6, 平均起来 18次投掷中, 出现双 6 的机会是 50%。这种推理意味着36 次投掷中必定出现一次双 6, 他没有意识到自己的错误。由于该书只有很少部分讨论机会计算, 其等可能思想

概率论与数理统计概率历史介绍

概率论与数理统计概率历史介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

概率论发展简史及应用

理化生教学与研究386 2013赵?璇?钟?莹 概率论发展简史及应用 概率论发展简史及应用 赵 璇 钟 莹 (沈阳师范大学) 一、概率论的起源 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷色子(又名骰子)是他们常用的一种赌博方式。利用色子赌博的方式可谓五花八门。很自然,赌徒们最关心的就是:如何在赌博中不输! 17世纪中叶,法国有一位热衷于掷骰子游戏的贵族公子哥儿——德·梅尔,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。 这是什么原因呢?后人称此为著名的德·梅尔问题。随后法国数学家帕斯卡、费马及荷兰数学家惠更斯基于排列组合方法,研究利用古典概型解决一些如“分赌注问题”、“赌徒输光问题”等。 到了18、19世纪,随着科学文明的发展,人类面临和要解决的问题也越来越多。后来,人们注意到之前为解决赌博问题而提出的那些方法不仅仅可以用在解决赌博问题上,还可以应用于人口统计、误差理论、产品检验和质量控制等。到后来原先的古典概型已不足以解决这诸多领域中了,人们迫切需要新的理论去解决更多的问题。也就在这时期,作为使概率论成为数学的一分支的的奠基人,瑞士数学家伯努利,建立了概率论中第一个极限定理(即伯努利大数定律),阐明了事件发生的频率稳定于它的概率。 概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。1906年,俄国数学家马尔科夫(Markov)提出了所谓“马尔科夫链”的数学模型。1934年,前苏联数学家辛钦(Khinchine)又提出一种在时间中均匀进行着的平稳过程理论。 20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下柯尔莫哥洛夫(Kolmogorov)1933年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支。 二、概率论的发展 现在,概率论与以它作为基础的数理统计学科一起,在自然科学、社会科学、工程技术、军事科学及工农业生产等诸多领域中都起着不可或缺的作用。 数学家们通过大量的同类型随机现象的研究,从中揭示出概率论某种确定的规律,而这种规律性又是许多客观事物所具有的,所以概率论应用也随之扩宽了。众所周知,接种牛痘是增强机体抵抗力、预防天花等疾病的有效方法,然而,当牛痘开始在欧洲大规模接种之际,它的副作用引起了人们的争议。为了探求事情的真相,伯努利家族的另一位数学家丹尼尔·伯努利根据大量的统计数据,应用概率论的方法,得出了接种牛痘能延长人的平均寿命三年的结论,从而消除了人们的恐惧与怀疑。直观地说,卫星上天、宇宙飞船遨游太空等都有概率论的一份功劳;及时准确的天气预报、考古研究等更离不开概率论与数量统计;电子技术的发展、人口普查及教育等同概率论与数理统计也是密不可分的。 根据概率论中用投针试验估计π值思想产生的蒙特卡罗方法,借助电子计算机这一工具,使这种方法在核物理、表明物理等学科的研究中起着重要的作用。概率论理论严谨,应用广泛,这一数学分支正日益受到人们的重视,以后将会随着科学技术的发展而得到发展。 三、概率论在现代社会发展中的应用 概率论进入其他科学领域的趋势在不断发展。发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学、社会科学、工程技术、军事科学及生产生活实际等诸多领域中都起着不可替代的作用。下面简略介绍一下概率论本身在现代的应用情况。 物理方面,放射性衰变、粒子计数器等问题的研究,都要用到泊松过程和更新理论。化学反应动力学中,研究化学反应的时变率及影响这些时变率的因素问题、自动催化反应等一些连锁反应的动力学模型,都要以生灭过程(马尔柯夫)来描述。许多服务系统,如电话通信、购货排队等等,都可用一类概率模型来描述。在社会科学领域,特别是经济学中研究最优决策和经济的稳定增长等问题,也大量采用概率论方法。同时它对各种应用数学如统计学、运筹学、生物学、经济学和心理学的数学化起着中心作用。 概率论已获得当今社会的广泛应用,正如拉普拉斯所说:“生活中最重要的问题,其中绝大多数在实质上只是概率的问题。”概率已成为日常生活的普通常识的今天,对现实生活中的概率问题进行研究就更显得十分重要。“在过去半个世纪中, 概率论从一个较小的、孤立的课程发展成为一个与数学许多其它分支相互影响, 内容宽广而深入的学科。” 因此,我们必须把概率论作为必备工具, 是科学研究与应用的需求。 现在,概率论已发展成为一门与实际紧密相连的理论严谨的数学科学。它内容丰富,结论深刻,有别开生面的研究课题,由自己独特的概念和方法,已经成为了近代数学一个有特色的分支。 四、结论 本文就概率论的发展简介,具体从他的起源、发展、理论基础及其进一步发展作出了详细的论述。从而得知;概率论是一门研究随机现象中的数量规律的科学。随机现象在自然界和人类生活中无处不在,随着人类社会的进步,科学技术的发展,经济全球华的日益快速进程,概率论在众多领域内扮演着重要的角色。在实际生活中尤为广泛的应用。 摘?要:概率论是一门研究随机现象的数学规律的学科,已有300余年的历史。它起源于十七世纪中叶,当时数学家们首先思考概率论的问题,却是来自赌博的问题。德梅雷、帕斯卡、费尔马等人首先对这个问题进行了研究与讨论,后来伯努利提出了大数定律,高斯和泊松进一步的推理论证。由于社会的发展和工程技术问题的需要,促使概率论不断发展,许多科学家进行了研究。发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学、社会科学、工程技术、军事科学及生产生活实际等诸多领域中起着不可替代的作用。 关键词:概率论;发展;应用 参考文献: [1] 刘秀芳.概率论基础[M].北京.科学出版社. 1982 [2] 杨振明.概率论[M].北京.科学出版社. 1999 [3] 张景中.趣味随机问题[M].北京.科学出版社 [4] 孙荣恒.应用概率论[M].北京.科学出版社 [5] 茆诗松 程依明 濮晓弄.北京.概率论与数理统计[M].高等教育出版社.2004

概率论的基本概念

第一章概率论的基本概念 第一节随机事件、频率与概率 一、教学目的: 1.通过本节起始课序言简介,使学生初步了解概率论简史、特色,从 而引导学生了解本课程概况及学习本课程的思想方法 2.通过本次课教学,使学生理解随机事件概念、频率与概率的概念, 了解随机试验、样本空间的概念,掌握事件的关系和运算,掌握 概率的基本性质及其运算 二、教学重点:概率的概念 三、教学难点:事件关系的分析与运算 四、教学内容: 1.序言:⑴简史⑵学法 2.§1.随机试验: ⑴实例⑵确定性现象⑶随机现象 3.§2.样本空间、随机事件: ⑴样本空间⑵随机事件⑶事件关系 与运算 4.§3. 频率与概率⑴频率定义、性质⑵概率定义、性质 五、小结: 六、布置作业: 标准化作业第一章题目 第二节古典概型、条件概率 一、教学目的: 通过本节教学使学生了解古典概型的定义,理解条件概率的概念,并能够解决一些古典概型、条件概率的有关实际问题. 二、教学重点:古典概率、条件概率计算 三、教学难点:古典概型与条件概率分析与建模 四、教学内容: 1.§4.古典概型 2.§5.条件概率(一) 五、小结: 六、布置作业: 标准化作业第一章题目 第三节乘法公式、全概率公式、Bayes公式、独立性 一、教学目的: 1.通过本节教学使学生在理解条件概率概念的基础上,掌握乘法公

式、全概率公式、Bayes公式以及能够运用这些公式进行概率计算。 2.理解事件独立性概念,掌握用独立性概念进行计算. 二、教学重点: 1.乘法公式及其使用 2.独立性概念及其应用 三、教学难点:应用公式分析与建模 四、教学内容: 1.§5.条件概率(二、三)2.§6.独立性 五、小结: 六、布置作业: 标准化作业第一章题目 第四节习题课 一、教学目的: 通过本习题课教学使学生全面系统对概率论的基本概念进一步深化,同时熟练掌握本章习题类型,从而提高学生的分析问题与解决问题的能力. 二、教学重点: 1.知识内容系统化 2.几类问题解决方法 三、教学难点:实际问题转化为相应的数学模型 四、教学内容: 1.本章知识内容体系归纳 2.习题类型: ⑴古典概型计算 ⑵事件关系与运算 ⑶条件概率计算 ⑷乘法公式、全概率公式、Bayes公式使用与计算. ⑸独立性问题的计算 五、讲练习题 第二章随机变量及其分布 第一节随机变量、离散型随机变量的概率分布 一、教学目的: 通过本节教学使学生理解随机变量的概念,理解离散型随机变量的分布及其性质,掌握二项分布、泊松分布,并会计算有关事件的概率及其分布.

概率论与数量统计-公式

第1章随机事件及其概率 (1)排列组合公式 从m 个人中挑出n 个人进行排列的可能数。 从m 个人中挑出n 个人进行组合的可能数。 (2)加法和乘法原理 加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题 (4)随机试验和随机事件 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用来表示。 基本事件的全体,称为试验的样本空间,用表示。 一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。(6)事件的关系与运算 ①关系: 如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):如果同时有, ,则称事件A 与事件B 等价,或称A 等于B : A=B 。 A、B 中至少有一个发生的事件:A B ,或者A +B 。 属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也 可表示为A-AB 或者 ,它表示A 发生而B 不发生的事件。 A、B 同时发生:A B ,或者AB 。A B=?,则表示A 与B 不可能同时发 生,称事件A 与事件B 互不相容或者互斥。基本事件是互不相容的。

概率论发展简史

一、概率论发展简史 令狐采学 1(20世纪以前的概率论 概率论起源于博弈问题。15-16世纪,意大利数学家帕乔利(L.Pacioli,1445-1517)、塔塔利亚(N.Tartaglia,1499-1557)和卡尔丹(G.cardano,1501-1576)的著作中都曾讨论过俩人赌博的赌金分配等概率问题。1657年,荷兰数学家惠更斯(C.Huygens,1629-1695)发表了《论赌博中的计算》,这是最早的概率论著作。这些数学家的著述中所出现的第一批概率论概念与定理,标志着概率论的诞生。而概率论最为一门独立的数学分支,真正的奠基人是雅格布?伯努利(Jacob Bernoulli,1654-1705)。他在遗著《猜度术》中首次提出了后来以“伯努利定理”著称的极限定理,在概率论发展史上占有重要地位。 伯努利之后,法国数学家棣莫弗(A.de Moivre,1667-1754)把概率论又作了巨大推进,他提出了概率乘法法则,正态分布和正态分布率的概念,并给出了概率论的一些重要结果。之后法国数学家蒲丰(C.de Buffon,1707-1788)提出了著名的“普丰问题”,引进了几何概率。另外,拉普拉斯、高斯和泊松 (S.D.Poisson,1781-1840)等对概率论做出了进一步奠基性工作。特别是拉普拉斯,他是严密的、系统的科学概率论的最卓越的创建者,在1812年出版的《概率的分析理论》中,拉普拉斯以强有力的分析工具处理了概率论的基本内容,实现了从组合

技巧向分析方法的过渡,使以往零散的结果系统化,开辟了概率论发展的新时期。泊松则推广了大数定理,提出了著名的泊松分布。 19世纪后期,极限理论的发展称为概率论研究的中心课题,俄国数学家切比雪夫对此做出了重要贡献。他建立了关于独立随机变量序列的大数定律,推广了棣莫弗—拉普拉斯的极限定理。切比雪夫的成果后被其学生马尔可夫发扬光大,影响了20世纪概率论发展的进程。 19世纪末,一方面概率论在统计物理等领域的应用提出了对概率论基本概念与原理进行解释的需要,另一方面,科学家们在这一时期发现的一些概率论悖论也揭示出古典概率论中基本概念存在的矛盾与含糊之处。这些问题却强烈要求对概率论的逻辑基础做出更加严格的考察。 2(概率论的公理化 俄国数学家伯恩斯坦和奥地利数学家冯?米西斯(R.von Mises,1883-1953)对概率论的严格化做了最早的尝试。但它们提出的公理理论并不完善。事实上,真正严格的公理化概率论只有在测度论和实变函数理论的基础才可能建立。测度论的奠基人,法国数学家博雷尔(E.Borel,1781-1956)首先将测度论方法引入概率论重要问题的研究,并且他的工作激起了数学家们沿这一崭新方向的一系列搜索。特别是原苏联数学家科尔莫戈罗夫的工作最为卓著。他在1926年推倒了弱大数定律成立的充分必要条件。后又对博雷尔提出的强大数定律问题给出了最一般

概率论课程大纲

《概率论》课程大纲 一、课程简介 概率论是定量研究随机现象(事件)统计规律的一门数学分支学科。学习《概率论》的主要目的是:了解、认识随机现象的统计性质;知道如何构造随机模型并且能计算和分析随机事件发生的概率及其相关性质。《概率论》主要包括古典概率模型、随机变量及其分布函数、数学期望和方差、极限定理等。 二、教学内容 第一章***概率论基础 主要内容:样本空间和随机事件,概率公理化,古典概率模型,条件概率与独立性,全概率定律和Bayes 公式。 重点与难点:古典概率模型的概率计算 第二章***随机变量 主要内容:离散和连续随机变量,分布函数,随机变量函数的分布,数学期望和方差 重点与难点:随机变量的分布。 第三章***随机向量 主要内容:随机向量与联合概率分布,随机向量的函数分布,条件期望,协方差和相关系数。 重点与难点:条件期望。 第四章**极限定理 主要内容:特征函数,随机变量序列的收敛性,大数定律,中心极限定理。 重点与难点:大数定律和中心极限定理。 第五章**统计推断 主要内容:参数估计,假设检验,线性回归,非参数统计方法。 重点与难点:参数估计。 三、教学进度安排 第一章概率论基础,大致需要4周时间, 第二章随机变量,需要4周时间 第三章随机向量,需要3周时间 第四章极限定理,需要3周时间 第五章统计推断,需要3周时间 四、课程考核及说明 每次课后都会布置作业。期中有一次2节课的开卷考试,期末有2小时的闭卷考试。 平时成绩(主要是平时作业成绩)占10% 期中考试成绩占30% 期末考试成绩占60% 五、教材与参考书 教材:”Probability, Statistics, and Stochastic Processes” (Peter Olofsson, John Wiley & Sons, 2005) 参考书: “ The Essentials Probability “ (Richard Durrett, Duxbury Press, 1994) 《概率论》(何书元,北京大学出版社,2006)

相关主题
文本预览
相关文档 最新文档